
A Bug’s Life
Fixing a MongoDB Replication Protocol Bug with TLA+

William Schultz, Siyuan Zhou

Talk Outline

• MongoDB Background
• Life of a Replication Bug
• Specifying the Replication Protocol in TLA+
• Model Checking the Specification
• Takeaways

• Without a formal model, it’s nearly impossible to get a complex distributed protocol right.
TLA+ and TLC are tools that make this possible for practicing software engineers.

Background

Background

• MongoDB is a document oriented database
• A MongoDB database consists of a set of collections, where a

collection is a set of unique documents e.g.

MongoDB

{
 _id: 1,
 name: “Will”,
 company: “MongoDB”,
 age: 25
}

Background

• We have an extensive and mature testing infrastructure
• 1000s of hours of testing are run on new commits every day

o Includes unit/integration tests, randomized fuzzing, concurrency tests, Jepsen,
etc.

MongoDB Test Infrastructure

Background

• MongoDB provides the ability to run a database as a replica set
• This is a set of MongoDB nodes that coordinate to provide high

availability using a consensus protocol

Replication in MongoDB

Background

• Replica sets use a consensus protocol similar to Raft
• There is a primary node that inserts writes into the oplog
• Secondaries fetch log entries from other nodes and apply them

Replication in MongoDB

Background

• Protocol is leader based
• Replica set leaders are totally ordered by term

o The term is a monotonic counter maintained on each node

Replication in MongoDB

Background
Replication in MongoDB

SA

index 1 2

term
P1

SB

Client Write

1

index 1 2

term 1

index 1 2

term 12

Sync Source

Sync Source

Replicate Entry

Replicate Entry

1

Advance Commit Point

2
P2

Send Commit Point

Rollback

X

Background

• Replica set concepts to keep in mind:
o sync source
o commit point
o rollback
o term
o “branch of log history”

Replication in MongoDB

Life of a Replication Bug

Bug Timeline

• Series of safety and liveness bugs in replication protocol
• Stemmed from one bug found in 2016

Bug Timeline

1. 2016 - Heartbeat Commit Point Propagation (Safety)
2. 2018 - No Available Sync Source (Liveness)
3. 2019 - Sync Source Cycles (Liveness)
4. 2019 - Commit Point Held Back on Stale Nodes (Liveness)
5. 2019 - Initial Solution Fails in 5 Node Replica Set (Safety)

Bug 1: Heartbeat Commit Point Propagation

• Correctness bug found in November 2016 by a replication team
engineer

• Allowed for nodes to erroneously mark log entries as “committed”
o Consequence: client could read data it thinks is durable, even if it isn’t

2016

Bug 1: Heartbeat Commit Point Propagation
2016

A

B

C

This entry in
term 1 will be
rolled back.

Heartbeat: commit point is at 3

index 1 2 3

term 1 2 2

index 1 2 3

term 1 2 2

index 1 2 3

term 1 1

Bug 1: Heartbeat Commit Point Propagation

• Solution: Only update commit point via sync source spanning tree
o Guarantees commit points are sent between nodes on same branch of log

history

2016

P

S1 S2

S3 S4

Bug 2: No Available Sync Source

• New liveness bug found in February 2018
o Discovered in our test infrastructure

2018

Bug 2: No Available Sync Source
2018

A

B

C 1 1

Commit Point: 2

Commit Point: 2

The node won’t
choose a sync
source since its last
applied is
up-to-date.

Commit Point: 1

1 1

1 1

Bug 2: No Available Sync Source

• Solution: Relax rule sync source selection rules
o Allow nodes to sync from someone with a higher commit point if logs are the

same

2018

Bug 3: Sync Source Cycle

• Liveness bug of a new variety
• Nodes may get into sync source cycles

o Prevents them from ever syncing new log entries
• Consequence of the previous alteration to sync source selection rules

2019

Bug 3: Sync Source Cycle
2019

A B

Commit Point: 0 Commit Point: 1

After Node A restarts

Node A is ahead of Node B, so Node B
chooses Node A as sync source

Node B has a higher commit point, so
Node A syncs from Node B

1 1 1 1

Bug 3: Sync Source Cycle

• Solution: Rethink commit point propagation
• Key idea: learn commit point if it is on your branch of history

o Via heartbeats or sync source

2019

Bug 4: Commit Point Held Back on Stale Nodes

• New liveness bug noticed in February 2019
• Stale nodes may not be able to advance their commit point

2019

Bug 4: Commit Point Held Back on Stale Nodes
2019

1 1 1 1 1 1 1 2 2A

B

Commit Point: 9

Commit Point: 1

1 1 1 1 1 1

Say Node B just restarted. We cannot advance the commit point
and the stable timestamp, meaning memory pressure.

Bug 4: Commit Point Held Back on Stale Nodes

• Solution
o Relax condition for commit point updates from your sync source
o Sync source guaranteed to be on the same history branch

2019

Bug 5: Initial Solution Fails in 5 Node Replica Set

• The original solution to Bug 1 was believed safe, even though it had
liveness issues
o Discovered that the solution was not safe in replica sets with > 4 nodes
o Could lead to nodes erroneously committing log entries in certain cases

2019

Specifying the Protocol in TLA+

MongoDB Replication TLA+ Spec
Variables

* The server's term number.

VARIABLE globalCurrentTerm

* The server's state (Follower, Candidate, or Leader).

VARIABLE state

* The commit point learned by each server.

VARIABLE commitPoint

* A sequence of log entries.

VARIABLE log

* The current sync source of each server, if it has one.

VARIABLE syncSource

MongoDB Replication TLA+ Spec
Initial State Predicate

* Define initial values for all variables.

Init == /\ globalCurrentTerm = 0

 /\ state = [i \in Server |-> Follower]

 /\ commitPoint = [i \in Server |-> [term |-> 0, index |-> 0]]

 /\ syncSource = [i \in Server |-> Nil]

 /\ log = [i \in Server |-> << >>]

MongoDB Replication TLA+ Spec
Next State Relation

* Defines how the variables may transition.

Next ==

 * -- Replication protocol

 \/ AppendOplogAction

 \/ RollbackOplogAction

 \/ BecomePrimaryByMagicAction

 \/ ClientWriteAction

 \/ ChooseNewSyncSourceAction

 * -- Commit point learning protocol

 \/ AdvanceCommitPoint

 \/ LearnCommitPointAction

MongoDB Replication TLA+ Spec
Statistics

• Original spec
o 295 lines of TLA+ including comments & model checking helpers

• Extended spec that models sync source selection
o 378 lines of TLA+ including comments & model checking helpers

https://github.com/visualzhou/mongo-repl-tla/blob/5fd666da29e7cc088ea70c8d076c12818aba372e/RaftMongo.tla
https://github.com/will62794/mongo-repl-tla-models/blob/34711a7289fb1323c06d171a073b06a45ee26811/RaftMongoSyncSources.tla

Model Checking

Model Checking

1. 2016 - Heartbeat Commit Point Propagation (Safety)
2. 2018 - No Available Sync Source (Liveness)
3. 2019 - Sync Source Cycles (Liveness)
4. 2019 - Commit Point Held Back on Stale Nodes (Liveness)
5. 2019 - Initial Solution Fails in 5 Node Replica Set (Safety)

Bug Timeline

Model Checking

1. 2016 - Heartbeat Commit Point Propagation (Safety)
2. 2018 - No Available Sync Source (Liveness)
3. 2019 - Sync Source Cycles (Liveness)
4. 2019 - Commit Point Held Back on Stale Nodes (Liveness)
5. 2019 - Initial Solution Fails in 5 Node Replica Set (Safety)

Bug Timeline

Model Checking
Bug 1: Heartbeat Commit Point Propagation, 3 nodes

• The action used for propagating commit points via heartbeat

* Node i learns the commit point from j via heartbeat.

LearnCommitPoint(i, j) ==

 /\ CommitPointLessThan(i, j)

 /\ commitPoint' = [commitPoint EXCEPT ![i] = commitPoint[j]]

 /\ UNCHANGED <<electionVars, logVars, syncSource>>

Model Checking
Bug 1: Heartbeat Commit Point Propagation, 3 nodes

• The invariant we want to check:

RollbackCommitted(i) ==

 \E j \in Server:

 /\ CanRollbackOplog(i, j)

 /\ IsCommitted(i, Len(log[i]))

* The invariant to check.

NeverRollbackCommitted == \A i \in Server: ~RollbackCommitted(i)

Model Checking
Bug 1: Heartbeat Commit Point Propagation, 3 nodes, LearnCommitPoint action

• Model checking stats:
o 3 nodes, a symmetry set
o Propagate commit point via heartbeats (LearnCommitPoint action)
o State constraints: globalCurrentTerm ≤ 3, ∀ i ∈ Server : Len(log[i]) ≤ 3

o Invariant: NeverRollbackBeforeCommitPoint
o 2015 Macbook Pro, 3 CPU Cores (3.1 GHz Intel Core i7)
o Invariant violation found in ~2 seconds after generating ~500 distinct states
o 9177 distinct states in full state space
o TLC config

https://github.com/will62794/mongo-repl-tla-models/blob/34711a7289fb1323c06d171a073b06a45ee26811/1_LearnCommitPoint.cfg

Model Checking
Bug 1: Heartbeat Commit Point Propagation, 3 nodes

• We can try fix the protocol with a new action definition:

LearnCommitPointFromSyncSource(i, j) ==

 /\ ENABLED AppendOplog(i, j) * only learn commit point from sync source.

 /\ LearnCommitPoint(i, j)

Model Checking
Bug 1: Heartbeat Commit Point Propagation, 3 nodes, LearnCommitPointFromSyncSource action

• Model checking stats:
o 3 nodes, a symmetry set
o Propagate commit point via sync source (LearnCommitPointFromSyncSource action)
o State constraints: globalCurrentTerm ≤ 3, ∀ i ∈ Server : Len(log[i]) ≤ 3

o Invariant: NeverRollbackBeforeCommitPoint
o 2015 Macbook Pro, 3 CPU Cores (3.1 GHz Intel Core i7)
o No errors found, TLC finished in ~3 seconds
o 7402 distinct states in full state space

• 1775 fewer states than the previous model

o TLC config

https://github.com/will62794/mongo-repl-tla-models/blob/34711a7289fb1323c06d171a073b06a45ee26811/1_LearnCommitPointFromSyncSource_3_node.cfg

Model Checking
Bug 1: Heartbeat Commit Point Propagation, 3 nodes

• The protocol appears to be safe when using the sync source
propagation rule

• Is it safe with more than 3 nodes, though?

Model Checking
Bug 1: Heartbeat Commit Point Propagation, 5 nodes, LearnCommitPointFromSyncSource action

• Model checking stats:
o 5 nodes, a symmetry set
o Propagate commit point via sync source (LearnCommitPointFromSyncSource action)
o State constraints: globalCurrentTerm ≤ 3, ∀ i ∈ Server : Len(log[i]) ≤ 3

o Invariant: NeverRollbackBeforeCommitPoint
o Ubuntu 16.10 workstation, 10 CPU cores (3.40GHz Intel Core i7)
o Invariant violation found in ~2 seconds after generating ~3000 distinct states
o 230,091 distinct states in full state space, TLC finished in ~1 min.
o This bug was never found in production or testing
o TLC config

https://github.com/will62794/mongo-repl-tla-models/blob/34711a7289fb1323c06d171a073b06a45ee26811/1_LearnCommitPointFromSyncSource_5_node.cfg

Model Checking
Bug 1: Heartbeat Commit Point Propagation, 5 nodes

SD

SC

SA

SB

P2

Uncommitted entry

index 1

term 2

index 1

term

index 1

term 1

index 1

term 2

index 1

term 2

Send Commit Point

1

Replicate Entry

Model Checking

1. 2016 - Heartbeat Commit Point Propagation (Safety)
2. 2018 - No Available Sync Source (Liveness)
3. 2019 - Sync Source Cycles (Liveness)
4. 2019 - Commit Point Held Back on Stale Nodes (Liveness)
5. 2019 - Initial Solution Fails in 5 Node Replica Set (Safety)

Bug Timeline

Model Checking
Bug 2: No Available Sync Source

• We define a liveness property of commit points that we want to hold
true

* At any time, if two nodes' commit points are not the same, they

* will be the same eventually.

CommitPointEventuallyPropagates ==

 /\ \A i, j \in Server:

 (commitPoint[i] /= commitPoint[j] ~> commitPoint[i] = commitPoint[j])

Model Checking
Bug 2: No Available Sync Source

• Slight modification needed to account for perpetual rollbacks

* At any time, if two nodes' commit points are not the same, they

* will be the same eventually.

* This is checked after all possible rollback is done.

CommitPointEventuallyPropagates ==

 /\ \A i, j \in Server:

 (commitPoint[i] /= commitPoint[j] ~>

 (~ENABLED RollbackOplogAction => commitPoint[i] = commitPoint[j]))

Model Checking
Bug 2: No Available Sync Source

• Demonstrated the original liveness bug with TLC
o 3 nodes
o Property: CommitPointEventuallyPropagates
o 2015 Macbook Pro, 3 CPU Cores (3.1 GHz Intel Core i7)
o Temporal Property Violation found in 1 min. 06s
o 19,694 distinct states generated
o TLC config

https://github.com/will62794/mongo-repl-tla-models/blob/34711a7289fb1323c06d171a073b06a45ee26811/3_CommitPointPropagationLiveness.cfg

Model Checking

1. 2016 - Heartbeat Commit Point Propagation (Safety)
2. 2018 - No Available Sync Source (Liveness)
3. 2019 - Sync Source Cycles (Liveness)
4. 2019 - Commit Point Held Back on Stale Nodes (Liveness)
5. 2019 - Initial Solution Fails in 5 Node Replica Set (Safety)

Bug Timeline

Model Checking
Bug 3: Sync Source Cycles

• We add an action to model sync source selection
• And then specify our correctness property

o We will specify this particular liveness property as an invariant

Model Checking
Bug 3: Sync Source Cycles

* Server i chooses server j as its new sync source.

* i can choose j as a sync source if log[i] is a prefix of log[j] and log[j] is longer than log[i].

ChooseNewSyncSource(i, j) ==

 /\ \/ IsLogPrefix(i, j)

 * If logs are equal, allow choosing sync source if it has a newer commit point.

 \/ /\ log[i] = log[j]

 /\ commitPoint[j].index > commitPoint[i].index

 /\ state[i] = Follower * leaders don't need to sync oplog entries.

 /\ syncSource' = [syncSource EXCEPT ![i] = j]

 /\ UNCHANGED <<electionVars, logVars, commitPoint>>

Model Checking
Bug 3: Sync Source Cycles

* Does a 2 node sync source cycle exist?

SyncSourceCycleTwoNode ==

 \E s, t \in Server :

 /\ s /= t

 /\ syncSource[s] = t

 /\ syncSource[t] = s

• Specifying the case of a 2 node cycle is much easier:

Model Checking
Bug 3: Sync Source Cycles

• We can also specify the general case i.e. a multi-node cycle
• Core idea: model the sync source spanning tree/graph in TLA+

P

S1 S2

S3 S4

Nodes

Edges

Model Checking
Bug 3: Sync Source Cycles

* The set of all paths (with bounded length) in the node graph that consists

* of edges <<s,t>> where s has t as a sync source.

SyncSourcePaths ==

 {p \in BoundedSeq(Server, Cardinality(Server)) :

 \A i \in 1..(Len(p)-1) : syncSource[p[i]] = p[i+1]}

Model Checking
Bug 3: Sync Source Cycles

* Is there a non-trivial path in the sync source graph from node i to node j?

* This rules out trivial paths i.e. those of length 1.

SyncSourcePath(i, j) ==

 \E p \in SyncSourcePaths :

 /\ Len(p) > 1

 /\ p[1] = i * the source node.

 /\ p[Len(p)] = j * the target node.

* Does a general (multi-node) sync source cycle exist?

SyncSourceCycle == \E s \in Server : SyncSourcePath(s, s)

Model Checking
Bug 3: Sync Source Cycles

• Finally, we can ask specifically for cycles of size > 2

* The sync source cycle predicate.

NonTrivialSyncCycle == SyncSourceCycle /\ ~SyncSourceCycleTwoNode

* The invariant.

NoNonTrivialSyncCycle == ~NonTrivialSyncCycle

Model Checking
Bug 3: Sync Source Cycles

• Model checking stats:
o 4 nodes, a symmetry set
o State constraints: globalCurrentTerm ≤ 3, ∀ i ∈ Server : Len(log[i]) ≤ 3

o Invariant: NoNonTrivialSyncCycle
o 2015 Macbook Pro, 3 CPU Cores (3.1 GHz Intel Core i7)
o Invariant violation found in ~6 seconds
o 226,262 distinct states in full state space
o Multi-node sync source cycle was never seen in production or testing
o TLC config

https://github.com/will62794/mongo-repl-tla-models/blob/34711a7289fb1323c06d171a073b06a45ee26811/2_MultiNodeSyncSourceCycle.cfg

Takeaways

Takeaways

• Hard to know if a protocol is really correct without a formal model
o It’s very difficult for humans to reason about edge cases of

concurrent/distributed algorithms
• Even very simple and abstract models can help catch non-trivial bugs

o No models allowed more than 3 log entries per node
o Asynchronous message passing was not modeled explicitly in our spec

Takeaways

• We expect that formally modeling our system upfront could have saved
100s of hours of engineering time
o Multi-year effort to root out all these bugs
o Only took a few weeks to model and check the protocol using TLA+

• Future goal is to integrate TLA+ into design process at MongoDB

Takeaways

• The specs and models used can be found here:
https://github.com/will62794/mongo-repl-tla-models

https://github.com/will62794/mongo-repl-tla-models

