
Current state of (distributed) TLC

Markus A. Kuppe

M.Sc. Student

Department of Computer Science

University of Hamburg

International Workshop on the TLA+ Method and Tools, 2012

1/34



Outline

Distributed TLC
Algorithm
Network topology
Fault tolerance

Demo
A Toolbox based (advanced) distributed TLC deployment

Performance and Scalability
Baseline
Scale vertically
Scale horizontally

Summary and Outlook
Summary
Outlook

2/34



Outline

Distributed TLC
Algorithm
Network topology
Fault tolerance

Demo
A Toolbox based (advanced) distributed TLC deployment

Performance and Scalability
Baseline
Scale vertically
Scale horizontally

Summary and Outlook
Summary
Outlook

3/34



A distributed model checker algorithm (master)
Data: SQ, FPS , TRACE , φ , WORKER , n
begin1

SQ←− initStates() ; // Generate init states once2

foreach w ∈WORKER do concurrently3

while SQ 6= /0 do4

S ←− subset(SQ,n) ; // Worklist size n5

Succ ←− successors(w ,S) ; // remotely6

SQ←− SQ \S ; // Mark states S done7

if isViolation(Succ) then8

SQ←− /0 ; // End9

return path(s', TRACE), φ ; // Path to s ′10

end11

SQ←− SQ ∪Succ ; // Add new succ. to SQ12

append(TRACE ,Succ) ; // Maintain TRACE13

H ←− hashes(Succ) ; // Prev. calculated14

addToSegment(FPS ,H) ; // Into corresp. FPS15

end16

end17

end184/34



A distributed model checker algorithm (worker)
Data: φ , FPS
begin1

Succ ←− /02

foreach s ∈ States do3

s ′←− genSucc(s) ; // Generate succ. states4

Succ ←− Succ ∪{hash(s'),s',s} ; // Calculate hashes5

end6

foreach h ∈ segment(FPS ,h) do concurrently check known7

Succ ←− Succ \{h,s',s} ; // Remove known states8

end9

foreach s ′ ∈ Succ do check safety props10

if violates(s, s', φ) then11

signalViolation(s ′,φ) ; // End12

end13

end14

return Succ15

end16

5/34



Outline

Distributed TLC
Algorithm
Network topology
Fault tolerance

Demo
A Toolbox based (advanced) distributed TLC deployment

Performance and Scalability
Baseline
Scale vertically
Scale horizontally

Summary and Outlook
Summary
Outlook

6/34



Basic topology

m

FPS

SQ

Trace

w1

w...

wn

master node worker nodes

Figure: basic setup
7/34



Advanced topology

m

SQ

Trace

w1

w...

wn

FPS1

FPSm

master node worker nodes

Figure: advanced setup
8/34



Outline

Distributed TLC
Algorithm
Network topology
Fault tolerance

Demo
A Toolbox based (advanced) distributed TLC deployment

Performance and Scalability
Baseline
Scale vertically
Scale horizontally

Summary and Outlook
Summary
Outlook

9/34



Fault tolerance

I 1...n workers (w)

I 1...m �ngerprint sets (FPS)

I Lost �ngerprint set means
corresponding states will
be re-explored

I FP collision probability will
be o�

I Can neither compensate
loosing SQ nor Trace (yet)

I Chkpt only provides fault
tolerance against program
errors

I Workaround: Keep remote
backups of .chkpt �les

m

SQ

Trace

w1

w...

wn

FPS1

FPSm

Figure: broken setup

10/34



Outline

Distributed TLC
Algorithm
Network topology
Fault tolerance

Demo
A Toolbox based (advanced) distributed TLC deployment

Performance and Scalability
Baseline
Scale vertically
Scale horizontally

Summary and Outlook
Summary
Outlook

11/34



Outline

Distributed TLC
Algorithm
Network topology
Fault tolerance

Demo
A Toolbox based (advanced) distributed TLC deployment

Performance and Scalability
Baseline
Scale vertically
Scale horizontally

Summary and Outlook
Summary
Outlook

12/34



Does (distributed) TLC perform?

time

Figure:
EC2-69-xmxms60G-w32-nodes08-cDef-l1_n32_k2-RHead-fpmem08

13/34



Does (distributed) TLC perform?

I Problems

I Performance degrades as soon as TLC goes to disk (expected)

I I/O bound
I (Solid state) disks order of magnitude slower compared to

RAM
I vs. much greater storage size

I FPS memory utilization is suboptimal

14/34



Outline

Distributed TLC
Algorithm
Network topology
Fault tolerance

Demo
A Toolbox based (advanced) distributed TLC deployment

Performance and Scalability
Baseline
Scale vertically
Scale horizontally

Summary and Outlook
Summary
Outlook

15/34



Big Memory

time

Figure: Heap and non-heap

16/34



Big Memory contd.

Allocates on heap & LSB

I long[][] (multidimensional)

I 22% initial overhead
I Length, class schema,

pointers

I long[tblCnt] as temporary sort
array during disk �ush

I 50% storage overhead
I Sorting overhead
I int addressing hard limit for

(a single) DiskFPSet

I Sums up to net e�ciency approx.
40%

I Exposed to GC

I Fingerprints cannot gc'ed

Allocates on non-heap & MSB

I Replaces multidim. array with
static continuous memory

I No overhead
I Initial bootstrap cost to

statically allocate

I Half memory consumption by
removing long[tblCnt] array
completely

I Presort in-memory FP based
on most signi�cant bits
(MSB)

I Requires on-heap 2nd level
collision bucket (�x by e.g.
re-probing)

I Removes GC cost completely

17/34



FPSet concurrency

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120

140

160

Post Pre Threads

In
se

rt
io

n
s 

x1
0

0
0

0
0

Figure: FPS memory ops concurrency pre and post e. (16 virtual cores)

18/34



FPSet concurrency contd.

I Concurrent memory read access (exclusive writes)

I Striped locks to increase concurrency/�ne grained locking

I Only lock corresponding part of hash table during memory
writes

I Disk locking remains untouched (I/O is dominant cost)

19/34



Outline

Distributed TLC
Algorithm
Network topology
Fault tolerance

Demo
A Toolbox based (advanced) distributed TLC deployment

Performance and Scalability
Baseline
Scale vertically
Scale horizontally

Summary and Outlook
Summary
Outlook

20/34



Scale horizontally - Distributed TLC

time

Figure: 56/8, 88/12 and 142/19 workers/nodes (l12_n10_k8)
21/34



Scale horizontally - Enhancements

I Distributed FPS!!!

I Remote memory still faster compared to local (solid state) disk

I Distributed FPS put and contains ops concurrently

I �BlockSelector� based on network stats to assign big chunks of
work at once

I Degraded breadth-�rst search

I Calculate �ngerprint collision probability concurrently during
end-game phase

I Full pass over all �ngerprint sets

I Node-local worker cache (1MiB) keeps 5 to 10% lookups from
�ngerprint sets

I (Ordered put and contains to reduce page seeks)

I Sort executed on worker

22/34



Outline

Distributed TLC
Algorithm
Network topology
Fault tolerance

Demo
A Toolbox based (advanced) distributed TLC deployment

Performance and Scalability
Baseline
Scale vertically
Scale horizontally

Summary and Outlook
Summary
Outlook

23/34



Performance comparison

time

Figure: Pre and post e. SQ size over time

24/34



Summary

I Increased TLC performance

I Made distributed TLC scale to many machines (primarily due
to distributed FPS)

I Preliminary results show approx. 0.7 scalability factor
I Tests need to be extended to higher node counts

I Toolbox based distributed deployment

25/34



Outline

Distributed TLC
Algorithm
Network topology
Fault tolerance

Demo
A Toolbox based (advanced) distributed TLC deployment

Performance and Scalability
Baseline
Scale vertically
Scale horizontally

Summary and Outlook
Summary
Outlook

26/34



Outlook

I Dynamic distributed FPS and bug free recovery

I StateQueue & Trace scaling and fault tolerance

I �AutoScaling� based on actual machine load

I Increased locality by partitioning/segmenting on state
properties di�erent from �ngerprints

I Better support for large scale deployments (based on Jenkins
scheduler?)

I Mathematical performance model

27/34



Acknowledgment

I Microsoft Research & MSR Inria Joint Lab

I Amazon AWS

I Experiments presented in this paper were carried out using the
Grid'5000 experimental testbed, being developed under the
INRIA ALADDIN development action with support from
CNRS, RENATER and several Universities as well as other
funding bodies - https://www.grid5000.fr

I Dr. Cli� Click �Scaling Up a Real Application on Azul� 2006
(JavaOne) - http://www.stanford.edu/class/ee380/
Abstracts/070221_J1_ScalingUp.pdf

28/34

https://www.grid5000.fr
http://www.stanford.edu/class/ee380/Abstracts/070221_J1_ScalingUp.pdf
http://www.stanford.edu/class/ee380/Abstracts/070221_J1_ScalingUp.pdf


Q&A

Thank you for your attention

29/34



References

I eMail: mailto:tla-workshop-2012@lemmster.de

I Slides: https://www.lemmster.de/uploads/
CurrentStateDistributedTLC_MarkusAKuppe.pdf

I tlc-perf repository: https://github.com/lemmy/tlc-perf

I memopt builds:
http://tla.msr-inria.inria.fr/kuppe/memopt/

30/34

mailto:tla-workshop-2012@lemmster.de
https://www.lemmster.de/uploads/CurrentStateDistributedTLC_MarkusAKuppe.pdf
https://www.lemmster.de/uploads/CurrentStateDistributedTLC_MarkusAKuppe.pdf
https://github.com/lemmy/tlc-perf
http://tla.msr-inria.inria.fr/kuppe/memopt/


Additional material

31/34



Test model parameters

l n k distinct states (k^n) size (MiB) cost/state (2^l)

10 6 8 218 (262.144) 2 1024

10 8 8 224 (16.777.216) 128 4096

10 10 8 230 (1.073.741.824) 8.192 16.384

12 6 8 218 2 1024

12 8 8 224 128 4096

12 10 8 230 8.192 16.384

14 6 8 218 2 1024

14 8 8 224 128 4096

14 10 8 230 8.192 16.384

1 32 2 232 (4.294.967.296) 32.768 2

1 33 2 233 (8.589.934.592) 65.536 2

32/34



SQ bu�er size

Figure: SQBu�erSize

33/34



Ordered �ngerprint operations

Figure: Ordered FP ops

34/34


	Distributed TLC
	Algorithm
	Network topology
	Fault tolerance

	Demo
	A Toolbox based (advanced) distributed TLC deployment

	Performance and Scalability
	Baseline
	Scale vertically
	Scale horizontally

	Summary and Outlook
	Summary
	Outlook


