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A distributed model checker algorithm (master)
Data: SQ, FPS , TRACE , φ , WORKER , n
begin1

SQ←− initStates() ; // Generate init states once2

foreach w ∈WORKER do concurrently3

while SQ 6= /0 do4

S ←− subset(SQ,n) ; // Worklist size n5

Succ ←− successors(w ,S) ; // remotely6

SQ←− SQ \S ; // Mark states S done7

if isViolation(Succ) then8

SQ←− /0 ; // End9

return path(s', TRACE), φ ; // Path to s ′10

end11

SQ←− SQ ∪Succ ; // Add new succ. to SQ12

append(TRACE ,Succ) ; // Maintain TRACE13

H ←− hashes(Succ) ; // Prev. calculated14

addToSegment(FPS ,H) ; // Into corresp. FPS15

end16

end17
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A distributed model checker algorithm (worker)
Data: φ , FPS
begin1

Succ ←− /02

foreach s ∈ States do3

s ′←− genSucc(s) ; // Generate succ. states4

Succ ←− Succ ∪{hash(s'),s',s} ; // Calculate hashes5

end6

foreach h ∈ segment(FPS ,h) do concurrently check known7

Succ ←− Succ \{h,s',s} ; // Remove known states8

end9

foreach s ′ ∈ Succ do check safety props10

if violates(s, s', φ) then11

signalViolation(s ′,φ) ; // End12

end13

end14

return Succ15

end16
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Basic topology
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Figure: basic setup
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Advanced topology
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Figure: advanced setup
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Fault tolerance

I 1...n workers (w)

I 1...m �ngerprint sets (FPS)

I Lost �ngerprint set means
corresponding states will
be re-explored

I FP collision probability will
be o�

I Can neither compensate
loosing SQ nor Trace (yet)

I Chkpt only provides fault
tolerance against program
errors

I Workaround: Keep remote
backups of .chkpt �les
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Figure: broken setup
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Does (distributed) TLC perform?

time

Figure:
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Does (distributed) TLC perform?

I Problems

I Performance degrades as soon as TLC goes to disk (expected)

I I/O bound
I (Solid state) disks order of magnitude slower compared to

RAM
I vs. much greater storage size

I FPS memory utilization is suboptimal
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Big Memory

time

Figure: Heap and non-heap
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Big Memory contd.

Allocates on heap & LSB

I long[][] (multidimensional)

I 22% initial overhead
I Length, class schema,

pointers

I long[tblCnt] as temporary sort
array during disk �ush

I 50% storage overhead
I Sorting overhead
I int addressing hard limit for

(a single) DiskFPSet

I Sums up to net e�ciency approx.
40%

I Exposed to GC

I Fingerprints cannot gc'ed

Allocates on non-heap & MSB

I Replaces multidim. array with
static continuous memory

I No overhead
I Initial bootstrap cost to

statically allocate

I Half memory consumption by
removing long[tblCnt] array
completely

I Presort in-memory FP based
on most signi�cant bits
(MSB)

I Requires on-heap 2nd level
collision bucket (�x by e.g.
re-probing)

I Removes GC cost completely
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FPSet concurrency

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120

140

160

Post Pre Threads

In
se

rt
io

n
s 

x1
0

0
0

0
0

Figure: FPS memory ops concurrency pre and post e. (16 virtual cores)
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FPSet concurrency contd.

I Concurrent memory read access (exclusive writes)

I Striped locks to increase concurrency/�ne grained locking

I Only lock corresponding part of hash table during memory
writes

I Disk locking remains untouched (I/O is dominant cost)
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Scale horizontally - Distributed TLC

time

Figure: 56/8, 88/12 and 142/19 workers/nodes (l12_n10_k8)
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Scale horizontally - Enhancements

I Distributed FPS!!!

I Remote memory still faster compared to local (solid state) disk

I Distributed FPS put and contains ops concurrently

I �BlockSelector� based on network stats to assign big chunks of
work at once

I Degraded breadth-�rst search

I Calculate �ngerprint collision probability concurrently during
end-game phase

I Full pass over all �ngerprint sets

I Node-local worker cache (1MiB) keeps 5 to 10% lookups from
�ngerprint sets

I (Ordered put and contains to reduce page seeks)

I Sort executed on worker
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Performance comparison

time

Figure: Pre and post e. SQ size over time

24/34



Summary

I Increased TLC performance

I Made distributed TLC scale to many machines (primarily due
to distributed FPS)

I Preliminary results show approx. 0.7 scalability factor
I Tests need to be extended to higher node counts

I Toolbox based distributed deployment
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Outlook

I Dynamic distributed FPS and bug free recovery

I StateQueue & Trace scaling and fault tolerance

I �AutoScaling� based on actual machine load

I Increased locality by partitioning/segmenting on state
properties di�erent from �ngerprints

I Better support for large scale deployments (based on Jenkins
scheduler?)

I Mathematical performance model
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Q&A

Thank you for your attention
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Test model parameters

l n k distinct states (k^n) size (MiB) cost/state (2^l)

10 6 8 218 (262.144) 2 1024

10 8 8 224 (16.777.216) 128 4096

10 10 8 230 (1.073.741.824) 8.192 16.384

12 6 8 218 2 1024

12 8 8 224 128 4096

12 10 8 230 8.192 16.384

14 6 8 218 2 1024

14 8 8 224 128 4096

14 10 8 230 8.192 16.384

1 32 2 232 (4.294.967.296) 32.768 2

1 33 2 233 (8.589.934.592) 65.536 2
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SQ bu�er size

Figure: SQBu�erSize
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Ordered �ngerprint operations

Figure: Ordered FP ops
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