
Formal verification of Pastry

Using TLA+

Tianxiang Lu

Stephan Merz

Christoph Weidenbach

August 27, 2012

TLA+ Workshop at FM2012, Paris

Introduction

• Pastry

– Overlay P2P network protocol

– Distributed Hash Table

– Self organized nodes

– Resilient to churn:

• concurrent join

• silent departure

• Virtual ring

– (see the picture)

August 27, 2012

2/10

 0 2M-1

18

58

65

95

rightset

leftset

Leaf Set of 18
 l = 2

Coverage

 of 18

Nodes

Keys

Introduction

• Verification Challenges

– Complex data structure

– Distributed protocol: absence of global state

– Dynamic network: spontaneous departure, join of nodes

• Today I will talk about

– How we formally modeled Pastry in TLA+

– How we prove properties of Pastry using TLAPS

August 27, 2012 3/10

Formal Model in TLA+

August 27, 2012 4/10

Verification Target

• Validate model by refuting impossibility claims

– NeverJoin: A new node can never be joined the network

– NeverDeliver: A lookup message can never be delivered

• Safety Property: Correct Delivery

– For each key k, there is at most one node i that may deliver, and no

other node is closer to k than i.

August 27, 2012 5/10

Model Checking Pastry Properties

• Model Checking using TLC

• Statistics

– 8 state variables

– 11 concurrent actions

– Total state space roughly: 2152 X 364 (≈1076) for 4 nodes

– Server with 2 CPUs (32 Bit Linux machine with Xeon(R) X5460)

– 3.16GHz, 4 GB of memory per CPU

August 27, 2012 6/10

Property Time Depth # states Counter Example

NeverDeliver 1" 5 101 yes

NeverJoin 1" 9 19 yes

……

CorrectDelivery > 1 month 21 1952882411 no

Proving Correct Delivery

• To prove:

1. Invent a property Inv, in order to apply the rule

2. Prove by:

• Recall that

August 27, 2012 7/10

InvSpec

NextjiAInvjiAInvInvInit

[]

 of),(action-subevery for '),(





iveryCorrectDelSpec

iveryCorrectDelInvInvSpec

[]

[]





iveryCorrectDelSpec []

varsNextInitSpec][][

InvSpec []

Proof in TLA+ toolbox

• Proof of the model in TLAPS with strong assumptions

– no nodes leave the network

– only one node can join the network at a time in any neighboring

region

• Statistics

– 23 invariants proved by induction on 11 actions

– About 100 lemmas on arithmetic and ring calculation

– About 100 lemmas on data structures

– About 1200 proof steps for proving type correctness

– About 12500 proof steps for inductive proof of invariants

• CPU Intel Core i3-2330M 2.20GHz, 8 GB RAM, 64-bit, Win7

• JVM –Xms5120M -Xmx5120M -XX:PermSize=2048M

• About 10 minutes and 5GB for generating proof obligations

August 27, 2012 8/10

Done & Doing

• Done

– Real-world case study of complex network protocol: Pastry

• Found bugs in Protocol and improved it.

– Modeled routing and join protocols in TLA+ and model checked

them in TLC

– Finished the proof of the model in TLAPS with strong

assumptions

• Doing

– Relaxed the assumptions: more nodes join in neighboring region

– Finding the proper invariants and proving them

August 27, 2012 9/10

Remarks on the Tools

• Trace explorer

– Very useful !

– Display the action name ?

• TLC with multi-threads

– Significant speed up

– Huge memory footprint and no CPU usage after weeks

• Java runtime problem ?

• What about distributed version of TLC ?

• TLAPS

– Proof editing is very convenient! (zoom, non-linear, jump …)

– Generation of proof obligation caused memory problem ?

August 27, 2012 10/10

Thank you !

August 27, 2012 JVM error: Stack Overflow!

Join

June 8, 2011 Extend: 1/3

Neighbors of i

i

Left set

Right

set

Leaf set range of i

Ready node

Dead node/ Key

j

Waiting node

Coverage

of i

l=2

Neighbors of i

Right set

Join(j, s)

JReply(i, j)

j : “ready”

PReply(a1 , j)

Complete?

…

Probe(j, a1) Probe(j, a2) Probe(j, an)

PReply(a2, j) PReply(an, j)

…

Repair(j)

yes

no

j: “wait”

Bug of Pastry

June 8, 2011 Extend 2/3

Join(a, c)

JReply(c, a)

Probe(a, d)

Join(b, d)

JReply(d, b)

Probe(b, c)

PReply(d, a) PReply(c, b)

PRply(c, a) PRply(d, b)

ls(a) ls(b) ls(c) ls(d)

- - - - d d c c

c d c d d d c c

c

d

c

d

d

b

c

a

c d c d d b c a

c d c d d a c b

Probe(a, c) Probe(b, d)

b a

c d

Lookup(k, d) Deliver(b,k)
Routing … k

Lease Granting Protocol

June 8, 2011 Extend 3/3

RequestLease (i, ln) RequestLease(i, rn)

GrantLease (ln, i) GrantLease (rn, i)

both?

i: “ready”

i: “ok”

Complete?

yes

i:“ok”

Neighbor? Neighbor? Leaf set

yes

no no

yes

[Haeberlen et al. 2005, FreePastry]

