
Teaching Transition Systems and Formal Specifications

with TLA+

Philippe Mauran Philippe Quéinnec Xavier Thirioux
Université de Toulouse

Institut de Recherche en Informatique de Toulouse
2 rue Camichel, BP 7122

F-31071 Toulouse Cedex 7, France
{mauran,queinnec,thirioux}@enseeiht.fr

Abstract

We present here our experience with teaching two courses using TLA+. The first course
concerns state transition systems, and the second one is about formal specifications. In
the first course, TLA+ is used to describe, reason about, and analyze transition systems.
The second course deals with refinement, simulation and bisimulation, and TLA+ is used
to check refinements.

1 Context

The courses are taught in two different “engineer” degrees (equivalent to graduate or mas-
ter degrees) at INPT/ENSEEIHT1, one in computer science and applied mathematics (80
students), the other one in computer science and networking (15 students). In both cases,
students have a solid scientific background with rather good mathematics bases. However,
they have no previous exposition to formal specification and modeling. These courses were
first taught in 2005, and have been taught each year since then.

All four members of the teaching unit belong to IRIT/ACADIE team2 which studies
methods and tools to verify and certify distributed embedded critical systems. As such, we
have a good knowledge both of distributed systems, and of formal techniques. Moreover, two
of us are regular users of TLA+ for our research activities.

2 Why TLA+?

We had done previous attempts with other formalisms (Unity, Promela, B. . . ) but none were
truly satisfactory. The main reason is that tools were either not available or too complex to
master, or that the formalism was too specialized.

Our research experience with TLA+ led us to believe that it could be a good formalism
for teaching: light and rather simple, but rigorous; complete (w.r.t to temporal logic and
transition systems); modular; and with automatic tools (TLC).

Neither courses are pure TLA+ courses, TLA+ is mainly a tool to express and manipulate
formal concepts. Hence, only the relevant parts of TLA+ for a given course are taught.

1http://www.enseeiht.fr
2http://www.irit.fr/-Equipe-ACADIE-



3 Courses Contents

3.1 Transition Systems

This course3 is concerned with the specification, modeling, and validation of systems, es-
pecially concurrent systems. State transition systems are used as the basis for modeling.
Temporal logics (CTL, LTL) are used to specify safety, liveness, and fairness properties.
Verification methods (model checking, axiomatic proofs) are used to validate models.

This course is taught in 15 lessons of 1h45: 10 lectures with exercises, and 5 assisted
labs. During its presentation, this course mixes formal subjects (transition systems, temporal
logics) and “applied” subjects, where TLA+ is used to express the formal concepts previously
seen. The presentation of TLA+ is along the lines of Lamport’s book [1], using different
examples: we first present transition systems and actions, then temporal logic and properties,
composition (modules), and refinement.

As students are also trained to checking and assisted proof environments (notably Coq [2]
and Why [3]) in a previous course, our approach is to put forward TLA+’s possibilities as
a modeling tool rather than the verification environment provided by the TLA+ Toolbox.
Thus, throughout exercises, we focus on describing and specifying transition systems, on giv-
ing students an intuition of temporal operators, and on expressing systems properties into
temporal logic. The use of TLC during lab sessions allows to keep this focus on specification,
and to bind clearly, in a logical framework, the specification of systems in terms of transitions
and fairness, and their specification in terms of safety and liveness properties. We present
and illustrate the semantics of temporal operators, as well as the main proof rules, but we do
not require their practical use by students, for the reasons given above. Lastly, we propose a
rather standard approach to develop specifications, based on refining and incremental trans-
formations that gradually introduce more details into the system model. On this occasion,
we give the students a first exposure to building systems by refining and composing modules,
but these topics are more completely covered in the formal specifications course that follows.

3.2 Formal Specifications

This course introduces the formal notion of refinement in open systems, by presenting la-
beled transition systems with (un)observable events. Simulation and bisimulations relations
are defined. Modules and their execution semantics are presented, and refinement between
modules is studied. The course has 14 lessons of 1h45, with three nearly equal parts: simu-
lation/bisimulation of transition systems, CCS, refinement.

A in-house small framework based on TLA+ is used in labs to verify refinement properties
of module-like code. This framework uses game semantics to describe client’s and module’s
behaviors: the client chooses which procedure it wants to invoke and the value of its input
parameter (records are used if we want to emulate a multi-parameter procedure); then the
module realizes the procedure by changing its internal state and setting the output value.
When choosing a procedure and its input value, the client must ensure that the precondition
of the procedure is valid, and inversely, the module must ensure the procedure postcondition.
Each of these steps is implemented as a TLA+ action (see annex A for a full example), and an
execution is an alternation between an arbitrary client action and the corresponding module
action.

3Slides, in French, are available here: http://queinnec.perso.enseeiht.fr/Ens/ens-st.html.

2



A refinement is then another client/module TLA+ implementation which must ensure:

• The client’s actions are less constraining: the abstract client’s actions simulate the
concrete client’s actions;
• Conversely, the concrete module’s actions simulate the abstract module’s actions.

At last, a module is considered implementable when it is without deadlock (w.r.t the initial
specification) and its actions are deterministic.

3.3 Token Ring Mutual Exclusion

As an illustration, we present the main lines of an implementation of mutual exclusion in a
distributed system, by means of a token moving around a ring.

3.3.1 Abstract Version

We start with an abstract version, specifying mutual exclusion between N processes (or sites).

• Each site has an identifier, which is a natural number between 0 and N − 1.
• The system state is represented by one or more arrays, indexed by the sites identifiers.

The element i of each array stands for a local variable of site i .
• The transitions are defined as TLA+ actions, parameterized by the identifiers of the

sites.

This approach is kept throughout each version.
As regards the specification development, we start with defining state variables, then

expected properties, then actions, and lastly the Next and Spec predicates. At this point,
we may have to tune a little bit properties or actions, in particular when we state fairness
properties. Concerning our example, given the current level of detail, we have to set a strong
fairness constraint on the action that allows to enter the critical section. This is an opportunity
to illustrate the notion of strong fairness, and to prepare the next step. Properties are limited
to mutual exclusion (safety), absence of deadlock (weak liveness), and absence of starvation
(strong liveness).

3.3.2 Centralized Version

This version introduces the token, as a global variable, the value of which represents the iden-
tifier of the site that holds the token. The liveness and safety properties related to the token’s
motion are stated, along with the corresponding actions which, again, are parameterized by
the sites’ identifiers. We note that a token moving along a ring is stronger than necessary,
a fair moving token (which infinitely often visits any site) is enough. Usually, at first, the
students do not avoid the starvation caused by omitting the forced transfer of the token when
a process leaves its critical section, but they find this bug rather easily if we put the focus on
the action that releases mutual exclusion. When we consider fairness constraints, we can lay
the stress on the fact that we can drop the strong fairness on the actions that allow to enter
the critical section, as the global mutual exclusion condition can be detected by a local one,
namely the presence of the token.

3



3.3.3 Distributed Token

This step simply introduces a representation of the token that is closer to a distributed
version: the token is represented as an array, indexed by the sites’ identifiers. Our purpose
is to emphasize the relationship between a centralized representation and a distributed one.
Refinement equivalence (via bisimulation) is verified.

3.3.4 Introducing Communication Channels

This step introduces an abstract representation for the communication medium, as a set of
channels. Each channel is a link between a site and its successor in the ring. An array of
sequences of booleans, indexed by the channels’ identifiers is added, in order to represent the
sending of a message holding the token. The transfer of the token between each site and its
in-going and out-going channels is specified as extra actions, and new properties are added
to describe the refinement.

3.3.5 Labs

Lab sessions lay the stress on building a relevant representation of the system to be modeled,
and on stating liveness and fairness properties, which are unfamiliar to the students. During
labs, the students use TLC to check that Spec implies the system’s properties (or not).
The readability of traces is appreciated, although locating the actions corresponding to state
changes remains rather laborious.

4 Empirical Feedback

4.1 Students’ Stumbling Blocks

• Fairness is very difficult. This may be the most important point which is not understood
by a significant part of the students. Students tend to fully ignore it or to abuse it
(adding strong fairness everywhere). We have found that it helps to first introduce
trace semantics and temporal logics (LTL, CTL) without any reference to TLA+. Then
various kinds of fairness (simple fairness on states, conditional fairness on states, weak
and strong fairness on transitions) are explained as a filtering of the traces. At last,
fairness in TLA+ is explained with this simple concepts.
• Non-determinism is difficult: even x ′ ∈ S is like magic. Non-determinism is seen in

previous courses (e.g. an introduction to automata theory) but TLA+ courses are
actually the first ones where non-determinism is heavily and practically used. During
a large part of the initial lessons, we have to repeat that TLA+ actions are predicates,
and we purposely use non-determinism to stress it.
• Choose is believed to be like random(). Once again, the rigorous mathematical definition

helps to explain the difference.
• Quantifiers are believed easier than set theory: ∀x ∈ S : ∃y ∈ S ′ : p(x ) = y is more

used than the mathematically equivalent p(S ) ⊆ S ′

• Axiomatic proofs are manageable with regard to invariants. However, liveness formal
proofs are too complex.

4



• The difference between checked properties (i.e. invariants, leadsto) and module speci-
fication (i.e. actions) is not clear: students want the checked properties to behave like
constraints on the module (especially the usual TypeInvariant).
• Students are used to rely on a type checker to catch minor errors (e.g. using ∈ instead

of ⊆). They found the absence of a (even crude) type checker to be cumbersome.

4.2 Achievements

• By first teaching transition systems and transition predicates, students easily grasp that
an action is not an assignment. There is enough distance between TLA+ and standard
programming languages (e.g. Java or C) so that confusions are mitigated. Moreover it
is easy to switch between TLA+ and basic transition systems. The theory of transition
systems offer a pure and simple formal description, while TLA+ offers an expressive
language to describe these systems.
• LTL is easy and rather intuitive, CTL is not. This is not a surprise to anyone used to

both logics!
• Basic TLA+ is simple enough to be quickly understood.
• Complex notions (e.g. fairness, non-determinism) are accessible.

4.3 Tools

As the courses were introduced in 2005, they were based on the command-line tools: TLC,
tlatex. TLC has proved to be an essential tool for student to experiment. TLC is exclusively
used in model-checking mode, never in simulation mode. When dealing with the invalidation
of a safety property, its trace is generally sufficient to understand the cause. The fact that
it is the shortest trace which invalidates the property helps a lot. When dealing with the
invalidation of a liveness property, TLC does not necessarily show the shortest trace, and
students are sometimes unsettled by this.

Surprisingly, a difficulty occurs when the model is buggy and yields a too small state
space. This happens with basic typos (e.g. x = x + 1 instead of x ′ = x + 1) or hasty cut-
and-paste (e.g. giving x ′ = 1 ∧ . . . ∧ x ′ = 2). In this case, safety properties are satisfied, and
students are either omitting liveness properties or finding it hard to understand why TLC
is unhappy. Then debugging unfortunately relies on PrintT statements to discover which
actions are always false.

As any automatic tool, the drawback of using TLC is its systematic use to check any
combination of properties and actions until no error occurs. Students tend to consider that
an absence of error from TLC is a proof of the correctness of their module with regard to the
informal specification of the problem, whereas it is only a proof of correctness with regard to
their supplied properties. Therefore, some students use a “winning” strategy which consists
in deleting or restricting invalid properties rather than correcting the module. Fortunately,
the execution time of TLC means that students quickly discover that thinking before running
TLC pays in the long term.

In 2012, we plan to experiment with the TLA+ Toolbox. Our own experience lets us
believe that the closer integration between the traces and the text of the model will help
students to understand an execution.

PlusCal was considered out of scope: our goal is to teach transition systems and formal
specification from a mathematical and logical point of view. By its objectives themselves,

5



Pluscal’s algorithmic nature hides too much the underlying mathematical abstract machine.

5 Conclusion

At the end of the two courses, we observe that students have learned to formally specify and
verify small systems, with various degrees of abstraction, varying from temporal logic proper-
ties (e.g. LTL with 2,3 and no prime variable) to non-deterministic or implementable TLA+

module specification. Moreover, they have acquired a better understanding of specification
transformations (especially state and code refinement) and of relations between specifications
(simulation, bisimulation). Thus, we believe that the students have learned useful concepts
for their future career.

However, this success is mitigated by two points. First, given the short duration of
the courses and the tools limitations with regard to large models, only small models and
algorithms are studied, e.g. classical concurrent and distributed algorithms. Moreover, model
checking is only attempted with small state space models (a few thousands states). Secondly,
formal methods are not yet widely used in the industry. In that sense, the two courses have
more sense from an educational point of view, than from an utilitarian one.

References

[1] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley, 2002.

[2] The Coq proof assistant. http://coq.inria.fr/.

[3] Why3 – where programs meet provers. http://why3.lri.fr/.

6



A Formal Specification with Game Semantics: An Example

This module has two operations: one to acquire a ticket, one to release it. The client can ask
for a ticket as long as all have not been given, and it can release any acquired ticket. The
module must not give the same ticket twice. More efficient refinements (e.g. using a counter)
are then developed and checked.

Pre X actions are client’s actions, and Act actions are module’s actions. In the module’s
actions, used is its internal state before the operation, used p is the state after the operation.
A run alternates between ClientContract and ModuleContract .

module Tag
extends Naturals

constants N

CHOICES
∆
= {“acquire”, “Release”}

state
∆
= subset (1 . . N )

Init(used)
∆
= used = {}

Pre Acquire(param, used)
∆
=

∧ used 6= 1 . . N
∧ param = “ NO DATA”

Act Acquire(param, used , used p, result)
∆
=

∧ result ∈ (1 . . N \ used)
∧ used p = used ∪ {result}

Pre Release(param, used)
∆
=

∧ param ∈ used
Act Release(param, used , used p, result)

∆
=

∧ result = “ NO DATA”
∧ used p = used \ {param}

ClientContract(choice, param, used)
∆
=

∨ (choice = “Acquire” ∧ Pre Acquire(param, used))
∨ (choice = “Release” ∧ Pre Release(param, used))

ModuleContract(choice, param, used , used p, result)
∆
=

∧ (choice = “Acquire”⇒ Act Acquire(param, used , used p, result))
∧ (choice = “Release” ⇒ Act Release(param, used , used p, result))

7


