
Teaching Transition Systems
and Formal Specifications with TLA+

Philippe Mauran Philippe Quéinnec Xavier Thirioux

Université de Toulouse, France
Institut de Recherche en Informatique de Toulouse

{mauran,queinnec,thirioux}@enseeiht.fr

August 27, 2012

.



Context and Objectives
Course Contents

Feedback

Outline

1 Context and Objectives

2 Course Contents
Transition Systems
Formal Specifications

3 Feedback
General Feedback
Tools
Comparison and Limitations

2 / 19



Context and Objectives
Course Contents

Feedback

Academic Context

INPT/ENSEEIHT

2nd and 3rd years of a French engineer school
Equivalent to a European master’s degree
Somewhat like a American master’s degree

Students’ background

Rather strict selection of students (selective admission)
Correct mathematics bases (functions, set operations,
elementary logic)
Mandatory courses

Two diploma

Computer science and applied mathematics (80 students,
since 2005)
Computer science and networking (15 students, since 2010).

3 / 19



Context and Objectives
Course Contents

Feedback

Research Context

All members of the teaching unit belong to IRIT/ACADIE team

Focus: methods and tools to verify and certify distributed
embedded critical systems.

Domain-specific modeling, proven transformation

Synchronous and asynchronous modeling and verification

Distributed Real-time Embedded systems

Tools: Coq, TLA+, Petri nets, AADL. . .

4 / 19



Context and Objectives
Course Contents

Feedback

Objectives

Primary objective

Introduction to formal methods: formal specification, formal
development, formal verification

Secondary objectives

Make it practicable

Experiment

We teach formal methods rather than TLA+, just as we teach
object oriented design rather than Java, or operating systems
rather than Unix.

5 / 19



Context and Objectives
Course Contents

Feedback

Transition Systems
Formal Specifications

Outline

1 Context and Objectives

2 Course Contents
Transition Systems
Formal Specifications

3 Feedback
General Feedback
Tools
Comparison and Limitations

6 / 19



Context and Objectives
Course Contents

Feedback

Transition Systems
Formal Specifications

Transition Systems

Contents

Specification, modeling, and validation of systems, especially
concurrent and distributed systems.

State transition systems

Temporal logics: LTL, CTL

Verification methods: model checking, axiomatic proofs

Emphasis on modeling and refinement rather than proofs.

7 / 19



Context and Objectives
Course Contents

Feedback

Transition Systems
Formal Specifications

Organization

15 lessons of 1h45: 9 lectures with exercises, and 6 assisted labs.

1 Transition systems (1 lecture)

2 TLA+ expressions and actions (2 lectures, 2 labs)

3 Fairness (1 lecture)

4 LTL logic, CTL logic, properties (2 lectures, 1 lab)

5 Modeling and verification of concurrent and distributed
algorithms (3 lectures, 3 labs)

Note: we start purely formal (e.g. TS = 〈S ,R ⊆ S × S〉,
traces. . . ) before going more concrete (e.g. symbolic
representation with variables, executions).

8 / 19



Context and Objectives
Course Contents

Feedback

Transition Systems
Formal Specifications

Formal Specifications

Contents

Labeled transition systems with observable and unobservable
events

Simulation and bisimulation relations

Mainly with CCS (Calculus of Communicating Systems)

Formal refinement in open systems

9 / 19



Context and Objectives
Course Contents

Feedback

Transition Systems
Formal Specifications

In-House Framework to Verify Refinement

Module-like code with game semantics

A client’s action chooses which procedure to invoke and the
value of its input parameter.
The client must comply with the procedure precondition.

Then the module’s action realizes the procedure by changing
its internal state and setting the output value.

Game semantics: alternation between an arbitrary client’s
action and a corresponding module’s action.

Win:

Finite game: the client has no possible move
or infinite game (the module always answers to the client)

10 / 19



Context and Objectives
Course Contents

Feedback

Transition Systems
Formal Specifications

Refinement verification

Refinement

Another (more concrete) client/module TLA+ implementation
which must ensure:

The client’s actions are less constraining: the abstract client’s
actions simulate the concrete client’s actions;

Conversely, the concrete module’s actions simulate the
abstract module’s actions.

11 / 19



Context and Objectives
Course Contents

Feedback

General Feedback
Tools
Comparison and Limitations

Outline

1 Context and Objectives

2 Course Contents
Transition Systems
Formal Specifications

3 Feedback
General Feedback
Tools
Comparison and Limitations

12 / 19



Context and Objectives
Course Contents

Feedback

General Feedback
Tools
Comparison and Limitations

General Feedback (Transition Systems)

Fairness is difficult

Major stumbling block

Easier by introducing trace semantics and temporal logics
(LTL, CTL): fairness is a trace filter

Fairness on named actions ends being understood, fairness on
an arbitrary transition predicate is never understood

Non-determinism is difficult

x ′ ∈ S : “who chooses the value?”, “how is it chosen?”

It helps that TLA+ actions are predicates.

LTL/CTL

LTL is easy and rather intuitive, CTL is not.

13 / 19



Context and Objectives
Course Contents

Feedback

General Feedback
Tools
Comparison and Limitations

General Feedback (TLA+ approach)

Proofs

+ Axiomatic proofs are manageable with regard to invariants.

− Liveness formal proofs are too complex.

⇒ an automatic verifier helps a lot.

Checked properties and specification

The difference between checked properties (i.e. invariants,
leadsto) and module specification (i.e. actions) is not clear:
students want the checked properties to behave like
constraints on the module (especially the usual
TypeInvariant).

The term specification used in TLA+ doesn’t help: students
are used to a dichotomy specification = expected properties /
implementation = realization.

14 / 19



Context and Objectives
Course Contents

Feedback

General Feedback
Tools
Comparison and Limitations

Tools

TLC

Historically, only TLC is used.

+ An essential tool for students to experiment
+ Its trace is sufficient to deal with the invalidation of a safety

property.
Giving the shortest invalid trace helps a lot.

∼ ok but less easy for the invalidation of a liveness property.
Unfortunately not always the shortest prefix or shortest cycle.

∼ Slow
− Initially, students use TLC as a debugger: quickly write

something, run TLC, patch, restart, and so on.
− Some students are never completely autonomous

15 / 19



Context and Objectives
Course Contents

Feedback

General Feedback
Tools
Comparison and Limitations

Other Tools

Other TLA+ tools

TLA+ Toolbox: experiment is planned for 2012
Better integration between source code, errors and trace
TLA+ Proof System: not planned
Another course teaches checking and assisted proof
environments (notably Coq and Why)
PlusCal: out of scope
Our goal is to teach transition systems and formal
specification.

A missing tool: a type checker

A basic type checker would help with regard to typos or minor
errors (extension of tlasany ?):

Hasty cut-and-paste with wrong variable name
Wrong operator (e.g. ∈ instead of ⊆)

16 / 19



Context and Objectives
Course Contents

Feedback

General Feedback
Tools
Comparison and Limitations

Comparison

Other attempts were done with:

Unity (Chandy & Misra): description language ok,
unfortunately no tools (small in-house tool to check safety
properties via weakest precondition computation)

Promela: Spin is really fast but Promela is a too low level
modeling language (no set or sequence)

B method: somewhat complex, Atelier B hard to master,
buggy (at the time)

Petri nets: highly specialized

17 / 19



Context and Objectives
Course Contents

Feedback

General Feedback
Tools
Comparison and Limitations

Limitations

Only small models and simple algorithms are studied.
(e.g. distributed mutual exclusion, Dijkstra’s self-stabilizing
algorithm)

Small state space models.

An experiment with a long lasting homework has failed:
students are not autonomous enough to follow a rigorous
methodology (each step must be given) + stopping blocks
with some TLC errors.

Lack of industrial case studies: to our knowledge, none of our
graduates has ever used TLA+ for his job (excluding
academics).
However formal specifications and formal approaches are used
in critical domains (e.g. avionics, satellites).

18 / 19



Context and Objectives
Course Contents

Feedback

General Feedback
Tools
Comparison and Limitations

Conclusion

By first teaching transition systems and transition predicates,
TLA+ is correctly seen as a specification language, not a
programming one.

The theory of transition systems offers a pure and simple
formal description, while TLA+ offers an expressive language
to describe these systems.

Basic TLA+ is simple enough to be quickly understood
(actions, sets and functions): its standard mathematical
notation helps.

Complex notions (e.g. fairness, non-determinism) are
expressible and accessible.

Tools (TLC) are essential to our success.

⇒ TLA+ is a definite help in teaching formal methods.

19 / 19


	Context and Objectives
	Course Contents
	Transition Systems
	Formal Specifications

	Feedback
	General Feedback
	Tools
	Comparison and Limitations


