Teaching Transition Systems
and Formal Specifications with TLA™

Philippe MAURAN Philippe QUEINNEC Xavier THIRIOUX

Université de Toulouse, France
Institut de Recherche en Informatique de Toulouse
{mauran,queinnec,thirioux}@enseeiht.fr

August 27, 2012

uuuuuuuuuuuuuuuuuuuuu

Université
de Toulouse



@ Context and Objectives

@ Course Contents
@ Transition Systems
@ Formal Specifications

© Feedback
@ General Feedback
@ Tools
@ Comparison and Limitations

2/19



Context and Objectives
Course Contents
Feedback

Academic Context

INPT/ENSEEIHT

2nd and 3rd years of a French engineer school
Equivalent to a European master's degree
Somewhat like a American master's degree

Students’ background

@ Rather strict selection of students (selective admission)

@ Correct mathematics bases (functions, set operations,
elementary logic)

@ Mandatory courses

Two diploma

e Computer science and applied mathematics (80 students,

since 2005)
e Computer science and networking (15 students, since 2010).

3/19




Context and Objectives
Course Contents
Feedback

Research Context

All members of the teaching unit belong to IRIT/ACADIE team
@ Focus: methods and tools to verify and certify distributed

embedded critical systems.

Domain-specific modeling, proven transformation

Synchronous and asynchronous modeling and verification

Distributed Real-time Embedded systems

Tools: Coq, TLA™, Petri nets, AADL. ..

4/19



Context and Objectives
Course Contents
Feedback

Objectives

Primary objective

Introduction to formal methods: formal specification, formal
development, formal verification

| \

Secondary objectives
o Make it practicable

@ Experiment

\

We teach formal methods rather than TLA™, just as we teach
object oriented design rather than Java, or operating systems
rather than Unix.

5/19



@ Context and Objectives

© Course Contents
@ Transition Systems
@ Formal Specifications

© Feedback
@ General Feedback
@ Tools
@ Comparison and Limitations

6/19



Context and Objectives
Course Contents
Feedback

Transition Systems
Formal Specifications

Transition Systems

Contents
Specification, modeling, and validation of systems, especially
concurrent and distributed systems.

@ State transition systems
@ Temporal logics: LTL, CTL

@ Verification methods: model checking, axiomatic proofs

Emphasis on modeling and refinement rather than proofs.

7/19



Context and Objectives
Course Contents
Feedback

Transition Systems
Formal Specifications

Organization

15 lessons of 1h45: 9 lectures with exercises, and 6 assisted labs.

@ Transition systems (1 lecture)

@ TLAT expressions and actions (2 lectures, 2 labs)

© Fairness (1 lecture)

© LTL logic, CTL logic, properties (2 lectures, 1 lab)

© Modeling and verification of concurrent and distributed

algorithms (3 lectures, 3 labs)

Note: we start purely formal (e.g. TS=(S5,RC S x §S),
traces...) before going more concrete (e.g. symbolic
representation with variables, executions).

8/19



Context and Objectives
Course Contents
Feedback

Transition Systems
Formal Specifications

Formal Specifications

@ Labeled transition systems with observable and unobservable
events

@ Simulation and bisimulation relations

e Mainly with CCS (Calculus of Communicating Systems)

@ Formal refinement in open systems

9/19



Context and Objectives
Course Contents
Feedback

In-House Framework to Verify Refinement

Transition Systems
Formal Specifications

Module-like code with game semantics

@ A client’s action chooses which procedure to invoke and the
value of its input parameter.
The client must comply with the procedure precondition.
@ Then the module's action realizes the procedure by changing
its internal state and setting the output value.
@ Game semantics: alternation between an arbitrary client’s
action and a corresponding module’s action.
o Win:
o Finite game: the client has no possible move
e or infinite game (the module always answers to the client)

10/19



Context and Objectives
Course Contents
Feedback

Refinement verification

Transition Systems
Formal Specifications

Another (more concrete) client/module TLA" implementation
which must ensure:

@ The client’s actions are less constraining: the abstract client's
actions simulate the concrete client’s actions;

@ Conversely, the concrete module’s actions simulate the
abstract module’s actions.

11/19



@ Context and Objectives

@ Course Contents
@ Transition Systems
@ Formal Specifications

© Feedback
@ General Feedback
@ Tools
@ Comparison and Limitations

12/19



Context and Objectives General Feedback
Course Contents Tools
Feedback Comparison and Limitations

General Feedback (Transition Systems)

Fairness is difficult

@ Major stumbling block

@ Easier by introducing trace semantics and temporal logics
(LTL, CTL): fairness is a trace filter

@ Fairness on named actions ends being understood, fairness on
an arbitrary transition predicate is never understood

Non-determinism is difficult

e x' € S : “who chooses the value?”, “how is it chosen?”

@ It helps that TLAT actions are predicates.

LTL is easy and rather intuitive, CTL is not.

13/19



Context and Objectives General Feedback
Course Contents Tools
Feedback Comparison and Limitations

General Feedback (TLA™ approach)

-+ Axiomatic proofs are manageable with regard to invariants.

— Liveness formal proofs are too complex.

= an automatic verifier helps a lot.

Checked properties and specification

@ The difference between checked properties (i.e. invariants,
leadsto) and module specification (i.e. actions) is not clear:
students want the checked properties to behave like
constraints on the module (especially the usual
Typelnvariant).

@ The term specification used in TLAT doesn't help: students
are used to a dichotomy specification = expected properties /
implementation = realization.

14/19



Tools

Context and Objectives General Feedback
Course Contents Tools
Feedback Comparison and Limitations

TLC

Historically, only TLC is used.

+
+

An essential tool for students to experiment

Its trace is sufficient to deal with the invalidation of a safety
property.

Giving the shortest invalid trace helps a lot.

ok but less easy for the invalidation of a liveness property.

Unfortunately not always the shortest prefix or shortest cycle.

Slow

Initially, students use TLC as a debugger: quickly write
something, run TLC, patch, restart, and so on.

Some students are never completely autonomous

15/19



Context and Objectives General Feedback
Course Contents Tools
Feedback Comparison and Limitations

Other Tools

Other TLAT tools

@ TLA™ Toolbox: experiment is planned for 2012
Better integration between source code, errors and trace
@ TLA™ Proof System: not planned
Another course teaches checking and assisted proof
environments (notably Coq and Why)
@ PlusCal: out of scope
Our goal is to teach transition systems and formal
specification.

A missing tool: a type checker

A basic type checker would help with regard to typos or minor
errors (extension of tlasany ?7):

@ Hasty cut-and-paste with wrong variable name
e Wrong operator (e.g. € instead of C)

46 /19



Context and Objectives General Feedback
Course Contents Tools
Feedback Comparison and Limitations

Comparison

Other attempts were done with:

@ Unity (Chandy & Misra): description language ok,
unfortunately no tools (small in-house tool to check safety
properties via weakest precondition computation)

@ Promela: Spin is really fast but Promela is a too low level
modeling language (no set or sequence)

@ B method: somewhat complex, Atelier B hard to master,
buggy (at the time)

@ Petri nets: highly specialized

17/19



Context and Objectives General Feedback
Course Contents Tools
Feedback Comparison and Limitations

Limitations

@ Only small models and simple algorithms are studied.
(e.g. distributed mutual exclusion, Dijkstra’s self-stabilizing
algorithm)

@ Small state space models.

@ An experiment with a long lasting homework has failed:
students are not autonomous enough to follow a rigorous
methodology (each step must be given) + stopping blocks
with some TLC errors.

@ Lack of industrial case studies: to our knowledge, none of our
graduates has ever used TLA™ for his job (excluding
academics).

However formal specifications and formal approaches are used
in critical domains (e.g. avionics, satellites).

18/19



Context and Objectives General Feedback
Course Contents Tools
Feedback Comparison and Limitations

Conclusion

@ By first teaching transition systems and transition predicates,
TLA™ is correctly seen as a specification language, not a
programming one.

@ The theory of transition systems offers a pure and simple
formal description, while TLA™ offers an expressive language
to describe these systems.

@ Basic TLA™ is simple enough to be quickly understood
(actions, sets and functions): its standard mathematical
notation helps.

e Complex notions (e.g. fairness, non-determinism) are
expressible and accessible.

@ Tools (TLC) are essential to our success.

= TLA™ is a definite help in teaching formal methods.

19/19



	Context and Objectives
	Course Contents
	Transition Systems
	Formal Specifications

	Feedback
	General Feedback
	Tools
	Comparison and Limitations


