Inserting Intentional Bugs for Model Checking Assurance

Thomas L. Rodeheffer
Microsoft Research, Silicon Valley

Writing a formal specification for a system or system
component forces one to be precise about the system’s ac-
tions, and this process often flushes out design bugs just
by itself. But once the specification is written, how does
one know it is correct? Before investing the effort in writ-
ing a formal proof, one can use a model checker to ex-
plore the specification’s state space. Unfortunately, most
interesting systems have specifications whose state space
is enormous, if not infinite. If the model checker finds no
errors in the relatively small, constrained configurations
that it can feasibly explore, that is well and good, but if
there were an error, would the model checker have found
it? One way to get some assurance of this is to introduce
some errors on purpose, and see if the model checker finds
them.

This paper presents the results of model checking, with
inserted errors, a TLA+ specification for a node in Pas-
ture, a messaging library that provides secure offline ac-
cess to data using a TPM. The model checking results give
some assurance that the specification is correct; that is,
that it maintains its invariants. This paper also presents a
formal proof of correctness, checked by the TLA+ Proof
System.

1 Introduction

Once a formal specification for a system is written, it is
usually desirable to check that the specification conforms
to some concept of correctness. One way to do this is to
prove that the specification is a refinement of a simpler
specification whose correctness is more obvious. This re-
finement approach is used in two stages in proving that
the Memoir system is correct [10, 4]. Another way is
to write invariants, or safety properties, and then directly
prove that the specification maintains the invariants.

Ramakrishna Kotla
Microsoft Research, Silicon Valley

Of course, in either case there could be oversights in
the proof, so to be certain that the proof is correct, it must
be a formal proof checked by a mechanical proof checker.
Unfortunately, such formal proofs tend to be lengthy and
tedious, since the limited deductive power of current me-
chanical proof checkers requires detailed proof steps. So
itis a good idea to be fairly confident that the specification
is correct before investing the effort in writing a formal
proof.

To get confidence that a specification maintains its in-
variants, one can use a model checker to explore the state
space. Unfortunately, a model checker is limited to ex-
ploring a finite number of states, and the state space usu-
ally explodes rapidly as the model configuration param-
eters are increased. Although model checking may have
found no errors in the specification, there is always the
question of whether, if there were an error, would the
model checker have been able to find it within the config-
urations that are feasible to check? To address this ques-
tion, we propose introducing some errors on purpose and
seeing if the model checker can find them.

We present the results of model checking, with inserted
errors, a TLA+ [8] specification for a node in Pasture, a
messaging library that provides secure offline access to
data using a TPM. The state space of even small config-
urations of the Pasture specification is too large to gain
much confidence by direct model checking, but observing
that intentional bugs can be found within the configura-
tions that can be checked gives a reasonable confidence
that the specification is correct. We then go on to describe
a formal proof that the specification maintains its invari-
ants. The formal proof has been checked using the TLA+
Proof System [3]. Appendices contain the full text of the
formal specification and formal proof.

2 Opverview of Pasture

Pasture [6] is a messaging library that provides secure off-
line access to data. When online, the receiver downloads
an encrypted copy of the data from a sender. Later, when
offline, the receiver makes a decision either (1) to obtain
access to the decryption key and thus to the data, or (2) to
revoke access to the decryption key and thus effectively
delete the data without reading it.

Pasture provides two safety properties: access unde-
niability and verifiable revocation. Access undeniability
means that a receiver cannot deny any decision it made
to obtain access to data and still survive an audit. Verifi-
able revocation means that a receiver can provide a proof
of revocation for any decision it made to revoke access to
data. This proof establishes that the receiver never did and
never will be able to access that data.!

These properties could be used, for example, by a video
rental service. The receiver could pay for and download
an encrypted video from the sender. Later, the receiver
could decide whether to obtain access to the video and
watch it, or revoke access and never watch it. Afterwards,
if access was revoked, the receiver could present the proof
of revocation to the sender and get a refund.

Pasture works by implementing a tamper-evident
append-only log of decisions on the receiver. Figure 1
shows the protocol.? For this paper we concentrate on the
implementation of the tamper-evident append-only log
and how it relates to the use of a decryption key and the
production of a proof of revocation.

Pasture uses a Trusted Platform Module (TPM) [1, 2] in
the receiver to maintain a cryptographic summary of the
receiver’s log and to protect decryption keys. We assume
that the reader is generally familiar with how TPMs work.

The cryptographic summary of the receiver’s log is
maintained in a Platform Configuration Register (PCR)
inside the receiver’s TPM. A PCR can be updated only
via the TPM primitive TPM_Extend, which corresponds
to the action of appending a value (called a measurement

IThe properties apply only when the sender is correct. A faulty
sender could just send the data in the clear to a receiver, and there could
be no guarantee about whether the receiver accessed the data or not. The
intent is to protect a correct sender against a faulty receiver.

2Certain details related to preventing spoofing have been omitted,
such as signatures on the messages. Also, we omit showing that the
sender should verify the proof KP before encrypting the message.

Receiver

Online message exchange

Sender

M: message
hM « hash(M)
send ("getKey", hM)
L: receiver’s append-only log
K,KP « CreateBoundKey(L||hM)
K: asymmetric key
KP: proof of correct key binding
- send ("encKey", hM, K, KP)
EM « Encrypt(M,K)
send ("encMsg", hM, K, KP, EM)

Case A:
Offline decision to obtain access

I M « ObtainAccess(hM,EM)

Case B:
Offline decision to revoke access

RP < RevokeAccess()
RP: proof of revocation

L < LihM |

L L[5

Figure 1: Pasture protocol.

in the TPM literature) to the log. A given PCR value
serves as a cryptographically unique representation of the
sequence of measurements used to produce it, since it is
cryptographically impossible to determine any other se-
quence that would produce the same result. Pasture uses
PCRapp to hold the log summary.

The TPM primitive TPM_CreateWrapKey is used to
bind the decryption key to a potential future state of the
log, in which the current log has been extended by the
decision to obtain access to the key. This decision is rep-
resented in the log as the cryptographic hash hM of the
message. To revoke access to the key, the receiver instead
extends its log by 6 # hM. This extension makes it (cryp-
tographically) impossible to reach the log state to which
the decryption key is bound, and thus makes it impossible
ever to use the decryption key.

Since the TPM’s PCRs are volatile, and are reset to
their initial values on reboot, the main difficulty faced by
Pasture is how to preserve its state across reboots. If an
adversary could rollback Pasture state to an earlier point,
arranging to violate Pasture’s safety properties of access
undeniability and verifiable revocation would be easy.

Memoir [10] presented a general solution to this prob-
lem for any deterministic application. Memoir maintains

a cryptographic log summary of application states in a
PCR much like Pasture’s PCR ppp. The optimized Mem-
oir solution adds a checkpoint routine to the system shut-
down sequence and a recovery routine to the system boot
sequence. The checkpoint routine copies the PCR to an
NV RAM location and then sets an NV RAM flag indicat-
ing that the copy is current. The recovery routine checks
that the NV RAM value is marked as current and if so
plays back measurements from the full log, re-extending
the PCR until its content matches the value saved in the
NV RAM. Memoir uses an ExtensionSecret to prevent an
adversary from duplicating a prefix of the re-extension
process. Any time that the log is extended, when the mea-
surement is extended on the PCR the NV RAM flag is
cleared indicating that the NV RAM copy of the PCR is
no longer current.

Memoir exploits Secure Execution Mode (SEM) in the
manner developed by Flicker [9]. SEM enables a routine
to run in a protected environment, with interrupts, other
cores, and DMA disabled, and with a special PCRgg\
set to a value (otherwise cryptographically unreachable)
based on a cryptographic hash of the routine.

Pasture adopts most of the Memoir approach, with a
few modifications so that the normal Pasture operations of
CreateBoundKey, ObtainAccess, and RevokeAccess do
not need to run in SEM. In this way Pasture exploits the
specific nature of its application to obtain a solution with
much less overhead in its particular case. Figure 2 shows
the implementation of Pasture operations.

Pasture’s Recover operation re-extends PCR s pp from
the full log, then enters SEM to verify that PCRapp
matches the value saved in the NV RAM and that the
value in NV RAM is current. If so, PCRgg\ is extended
by Happy, to produce a value SemHappy that can be
reached in no other way, and the NV RAM flag is cleared
to indicate that the NV RAM value can no longer be con-
sidered as current. Otherwise, PCRgg)s is extended by
Unhappy, producing a different value.

CreateBoundKey requires both that PCRspp contain
the proposed future log summary and that PCRgg\ con-
tain SemHappy in order for decryption to be possible.
The adversary could reboot the system and re-extend
PCRApp, but cannot arrange for PCRggpy to contain
SemHappy and so cannot rollback and access a decryp-
tion key.

Likewise, RevokeAccess and Audit quote both

CreateBoundKey(hM):

R, <~ TPM_Read(PCR pp)

Ry, < SHAL(R, || hM)

K <— TPM_CreateWrapKey({
PCRApp = Ryy &&
PCRgp\ = SemHappy &&

o PCRggp(= SealReboot })

KP < (“CreateBoundKey”, hM, R, Ry, O)
ObtainAccess(hM, EM):

transport
session
BINDKEY

append hM to full log
TPM_Extend(PCRppp, hM)
M < TPM_Unbind(EM)

RevokeAccess():

R; < TPM_Read(PCRppp)
append & to full log
TPM_Extend(PCRpp, 6)
R’t+1' $,t+1' Alt+1' o<
TPM_Quote(PCRpp, PCRggp, PCRggaL)
RP «— (“RevokeAccess”, 8, Ry, R'ty 1, S't410 A'pe1s O

Audit(nonce):

Ry Spr Ay 0L <=
TPM_Quote(PCRppp, PCRggp1, PCRgEA L NONCE)
AP <« (“Audit”, full log, R;, S;, A;, nonce, o)

Recover():

FOR EACH entry A on full log: TPM_Extend(PCRpp, A)

IF nv.current && nv.R =TPM_Read(PCR,pp)
THEN
nv.current <— FALSE
TPM_Extend(PCRgsgp, Happy)
ELSE
TPM_Extend(PCRggp s, Unhappy)

secure execution mode

Checkpoint():

Ry <~ TPM_Read(PCR pp)

S; < TPM_Read(PCRggy)

A < TPM_Read(PCRggp)

C; < TPM_ReadCounter(CTR)
o «— | TPM_Extend(PCRggp, Seal)

transport
session
SEAL

[nVv.R <R,
IF Validgen (0, Ry, Spy Ay Cp)
&& S, =SemHappy
&& A; = SealReboot

&& C;=TPM_ReadCounter(CTR)
THEN

TPM_IncrementCounter(CTR)
nv.current <— TRUE
| TPM_Extend(PCRggp, Unhappy)

secure execution mode

Figure 2: Pasture operations.

PCRapp and PCRggy in order to prove that PCRapp
was quoted at a time when PCRggy contained
SemHappy.

Pasture’s Checkpoint operation has a difficulty. It needs
to verify that PCRggy contains SemHappy so that it can
trust the current contents of PCRspp, but it has to en-
ter SEM in order to protect its actions from interference
by the adversary. Its solution is to use a transport session
SEAL to get an attestation « of the contents of PCR App
and PCRggMm before entering SEM. A TPM monotonic
counter CTR is used to prevent the adversary from replay-
ing an earlier SEAL attestation.

Taking the SEAL also has to destroy the usefulness of
PCRpp, or else an adversary could take the SEAL, ex-
tend PCR 5 pp to obtain access to a key or generate a ver-
ifiable proof of revocation, and then pass the SEAL to the
checkpoint SEM routine and continue with a normal re-
boot and recovery, which would rollback the actions that
the adversary performed after taking the SEAL. For this
purpose, PCRggar, is used. PCRgga1, normally contains
its initial value SealReboot, which is checked in Create-
BoundKey and quoted in RevokeAccess and Audit. The
SEAL transport session extends PCRgga1, thus rendering
PCRpp useless until the next reboot.

3 The specification

Appendix A gives a TLA+ [8] specification of the state
within a Pasture node. The specification closely tracks
the Pasture operations shown in Figure 2 and also mod-
els the actions of an adversary who has the power to ex-
tend PCRs, to observe whatever attestations are created,
to invoke Pasture’s secure execution mode routines with
any parameters known to the adversary, and to reboot the
node at arbitrary times. Since we assume that cryptog-
raphy cannot be broken, the adversary does not have the
power to forge attestations or to set PCRs to an arbitrary
value.?

The specification abstracts the Pasture node in the fol-
lowing ways:

3The protection of Pasture’s NV RAM depends on the assumption
that the value SemProtect is present in PCRgg\ only during Pasture’s
secure execution mode routines, which is the subject of the invariant
InvNvProtection.

* Only one hash. The specification models the hash
hM as just one value, PcrxOBTAIN. The revoke
measurement § is modeled as PcrxREVOKE. Note
that if multiple, distinct hash values were modeled,
the specification would be symmetric over permuta-
tions of the hash values. Modeling all hash values as
just the one value PcrxOBTAIN eliminates this sym-
metry from the specification. No descriptive power
is lost, because the specification does not admit any
actions that compare isolated hash values.

Potential key bindings. The specification assumes
that a key may be bound to any current state of the
log extended by PcrxOBTAIN. Extending the log by
PcrxOBTAIN obtains access to this key and extend-
ing the log by PcrxREVOKE revokes access to this
key.

Recovery. In Pasture, recovery first re-extends
PCRapp from measurements recorded in the full
log and then enters SEM to verify that the result-
ing value in PCR app is current. The specification
accomplishes the re-extension by allowing any pos-
sible sequence of extensions of PCRapp, since this
is within the power of the adversary. The specifi-
cation models recovery as the re-extension sequence
that happens to be the correct one.

Checkpoint. In Pasture, checkpoint first performs a
SEAL transport session and gets the attestation, and
then enters SEM to verify the attestation and then
record the log summary in NV RAM. The specifi-
cation collects a knowledge of all SEAL attestations
that have ever been generated and allows choosing
any known one for the SEM routine to verify, since
this is within the power of the adversary. The spec-
ification models checkpoint as choosing the correct
one.

The specification starts with a series of Bug definitions
all set to FALSE. Overriding one of these definitions with
TRUE introduces a bug into the specification as discussed
later in Section 5.

Next the specification introduces definitions for PCRs.
A PCR is modeled as an initial value in Pcri combined
with a sequence of extensions in Pcrx.

Next the specification introduces definitions for PC val-
ues within Secure Execution Mode (SEM). When the

node is in SEM the adversary cannot interpose any ac-
tions except to reboot the node.

Next the specification introduces definitions for Pas-
ture’s protected NV RAM, the SEAL transport session,
and then finally the state of the entire node.

There are two “fiduciary” variables which are used for
expressing invariants: obtains and revokes.

The variable obtains is a set that contains all application
PCR values that have been used to obtain a key. Since the
last decision logged must be the decision to obtain the
key, these PCR values all have PcrxOBTAIN as their final
extension.

The variable revokes is a set that contains all applica-
tion PCR values have been used for a proof of revocation.
Since the last decision logged must be the decision to re-
voke a key, these PCR values all have PcrxREVOKE as
their final extension.

Next the specification introduces the next state relation
decomposed as a long series of actions. Then the actual
Init and Next definitions of the specification are presented,
followed by the complete specification Spec.

Finally, the specification introduces a list of invariants.
The invariant InvType asserts that all variables always
contain values of the correct type. The invariant InvNv-
Protection asserts that access to Pasture’s NV RAM re-
gion (which is controlled by the value contained in the
secure execution mode PCR) is permitted precisely when
the node is in secure execution mode. The invariants
InvAccessUndeniability and InvVerifiableRevocation cor-
respond to the main safety properties of Pasture.

Access undeniability is equivalent to saying that when-
ever the node is auditable, every element in obtains is a
prefix of the current application PCR. This means that
whenever a node is auditable, it must provide a full log
that lists every decision it made to obtain access to a key.

Verifiable revocation is equivalent to saying that there
is no PCR o € obtains and PCR r € revokes such that
everything in o except the last decision (which must be
OBTAIN) matches everything in r except the last deci-
sion (which must be REVOKE). If it were possible to have
such an o and r, it would mean that there would be a key
for which both access was obtained and also a proof of
revocation was generated.

4 Model checking

Appendix B shows a TLA+ specification for model check-
ing the Pasture node specification. The model specifica-
tion creates an instance of PastureNode with constants for
the initial values and extensions of PCRs. The constants
are carefully chosen to be a minimal set that satisfies the
required assumptions.

The model specification also introduces a parameter-
ized constraint to limit the number of states to a finite
number. The parameters of the constraint are as follows:

* MaxAppPcrLen. The maximum number of exten-
sions of PCR app; and therefore the maximum num-
ber of entries in the log and the maximum number of
keys for which access can be obtained or revoked.

* MaxSemPcrLen. The maximum number of exten-
sions of PCRgg\. Pasture requires at least one, so
that the Pasture SEM routines can extend PCRggm
before exiting, which is required to remove access
privileges from Pasture’s NV RAM. Note that the
specification does not count entering a SEM routine
as requiring an extension to PCRggyr, but merely
initializes PCRgg\ with SemProtected which repre-
sents the result of resetting and then extending with
the cryptographic module hash. The TPM semantics
of resetting PCRggy ensures that it is cryptograph-
ically impossible to reach SemProtected in any other
way.

e MaxSealPcrLen. The maximum number of ex-
tensions of PCRggay,. Pasture requires at least
one, so that the SEAL transport session can extend
PCRgEAL-

* MaxTsValues. The maximum number of SEAL at-
testations that can be known at any one time. Pas-
ture requires at least one, so that the most recent
SEAL attestation can be provided to the Checkpoint
SEM routine. Note that the specification admits of
forgetting a SEAL attestation that once was known.
This permits model checking a Pasture configuration
through multiple reboots with only one SEAL attesta-
tion known at a time, since only the most recent one
needs to be remembered for Pasture to continue to
function.

c £ ¢
K
$8E2s
1 el
S s333
===== 4 cores 48 cores
configuration depth distinct states run time run time
11111 31 47742 7s

1112 32 106556 83s
11121 36 966697 110s
11211 33 369750 41s
12111 34 283760 83s
21111 36 1062426 110s
11212 34 853554 84s
11122 42 3011870 293s
22111 40 6800068 14m 6m
22211 42 68210216 157m 48m
22212 43 175125010 613m 122m
21122 47 162409454 106m
21123 48 379647806 224m
21222 53 4234887880 3596m

Table 1: Model checking results. Wall clock run time.
Complete state space exploration.

¢ MaxBootCtr. The maximum value of the boot
counter. Pasture increments this counter once each
time through the Checkpoint routine.

We used the TLA+ toolbox [7] with TLC2 version 2.05
to model check the specification for various configura-
tions. For each configuration, TLC determined the max-
imum depth of the state space graph as well as the total
number of distinct states. No violations were found. Ta-
ble 1 shows the results.

For brevity, we refer to a specific configuration by list-
ing the parameter values left-to-right in the order shown
in Table 1. For example, the (2,1,2,2,2) configuration is
the last configuration listed in the table.

We started by model checking configurations on an In-
tel Core™ i7 M620 laptop with 4 GB of memory and 4
cores @ 2.67 GHz. As expected, the number of distinct
states and consequently the model checking run time in-
creased enormously as the configuration parameters were
increased. Figure 3 shows TLC’s agonizing plot of queue
size over time for the largest configuration we model
checked using the laptop. The rate of next state explo-
ration became particularly slow after about two hours of
run time as TLC was completely disk-bound.

] Queue Size (app2sem2seal2tsiboot2) =

[Time: 10 hours 13 minutes
Current: 0
Maximurn: 14962426

Figure 3: TLC queue size plot for the (2,2,2,1,2) con-
figuration running on the laptop.

To check some larger configurations, we obtained un-
shared access to an AMD Opteron™ 6168 server with 128
GB of memory and 48 cores @ 1.90 GHz. However, even
using this large server machine, the enormous state space
explosion of the Pasture node specification exposed some
limitations in TLC.

The (2,1,1,2,3) configuration has over 379 million dis-
tinct states, so there is a non-trivial probability of finger-
print collision.* Such a collision would cause TLC to fail
to explore the complete state space. TLC reported a calcu-
lated collision probability of 0.058 and an observed col-
lision probability of 0.027. We re-ran the configuration
with a different fingerprint seed and four hours later were
pleased to see that the second run explored the same num-
ber of distinct states, this time reporting an observed col-
lision probability of 0.002. We performed a third run with
yet another seed, and TLC again explored the same num-
ber of distinct states. At this point we decided that the
TLC runs on this configuration were almost certainly not
suffering from fingerprint collision.

The (2,1,2,2,2) configuration has over 4 billion distinct
states. According to the birthday paradox, the probability
of a 64-bit fingerprint collision among this many states is
0.38. TLC reported an observed collision probability of

4 Assuming all fingerprints are equally likely, the probability of a col-
lision among k independent probes into a set of size H can be estimated
as 1 — exp(—k = (k — 1)/(2 « H)). This is known as the birthday
paradox. The formula calculates out to 0.0039 for the given number of
distinct states using 64-bit fingerprints.

1.0, for whatever that is worth. We re-ran the configu-
ration with a different fingerprint seed and two and a half
days later were pleased to see that the second run explored
the same number of distinct states. We performed a third
run with yet another seed, and this time TLC explored five
fewer distinct states. The number of distinct states listed
for this configuration in Table 1 is the number explored in
the first and second runs. However, with these results it
is not clear whether or not TLC is actually exploring the
entire state space. None of the runs found any errors.

Clearly, the probability of a fingerprint collision would
make the results of running TLC on any larger configu-
ration fairly inconclusive, even if we wanted to wait for
such a run to complete.

We did not apply SYMMETRY in our model checking
runs because the specification as written has none. The
use of the one value PcrxOBTAIN as a model for any
hash value hM wrings out the one symmetry that would
be present in a more detailed specification.

It was nice to see that none of the invariants were vio-
lated for the configurations that TLC could check. How-
ever, there is always the possibility that a bug lurks over
the horizon. Normally, we would like to check configu-
rations with parameter values up to at least three. In our
experience, a system will often have interesting behavior
when there is the chance for three instances of something
to interact. But in model checking the Pasture specifica-
tion, it was not feasible to check a configuration in which
all of the parameters were two, let alone three. This was
disappointing.

5 Inserted bugs

To get more assurance that the specification was cor-
rect, we intentionally added bugs to the specification to
see if the model checker could find violations within the
small configurations that were feasible to check. The
idea was to start with the smallest configuration and then
carefully increase the configuration parameters until the
model checker found a violation.

In order to insert a bug, we identified a place in the
specification where it seemed likely that omitting a check
or an action would prove harmful to correct behavior.
Since the intent of a specification is to capture what is nec-
essary for correct behavior, such bugs of omission could

be inserted at almost any point. Table 2 shows the results.
The 16 different bugs we investigated are as follows:

* BugObtainAccessNoCheckHappy models what hap-
pens if Pasture fails to bind the key such that it can be
used for decryption only when the secure execution
mode PCR is happy.

* BugObtainAccessNoCheckSeal models what hap-
pens if Pasture fails to bind the key such that it can be
used for decryption only when the seal PCR contains
its reboot value.

* BugProveRevokeNoCheckHappy models what hap-
pens if Pasture fails to check in a proof of revocation
that the application PCR was quoted at a time when
simultaneously the secure execution mode PCR was

happy.

* BugProveRevokeNoCheckSeal models what happens
if Pasture fails to check in a proof of revocation
that the application PCR was quoted at a time when
simultaneously the seal PCR contained its reboot
value.

* BugRecovNoCheckApp models what happens if se-
cure execution mode within recovery fails to check
that the application PCR was restored to the value
saved in the NV RAM.

* BugRecovNoCheckCur models what happens if se-
cure execution mode within recovery fails to check
that the value saved in the NV RAM is marked as
current.

* BugRecovNoClrCur models what happens if secure
execution mode within recovery fails to clear the cur-
rent flag in the NV RAM.

* BugSealNoExt models what happens if the seal
transport session within checkpoint fails to extend
the seal PCR.

* BugChkptNoCheckTsHappy models what happens if
secure execution mode within checkpoint fails to
check that the seal attestation recorded that the se-
cure execution mode PCR was happy.

MaxSealPcrLen

MaxAppPcrLen
MaxSemPcrLen
MaxTsValues
MaxBootCtr

counterexample (if any) found at

bug configuration depth distinct states runtime invariant violated
BugObtainAccessNoCheckHappy 1 1 1 1 1 8 1969 4s InvAccessUndeniability
BugObtainAccessNoCheckSeal 1 1 1 1 1 19 29259 7s InvAccessUndeniability
BugProveRevokeNoCheckHappy 1 1 1 1 1 10 5836 3s InvVerifiableRevocation
BugProveRevokeNoCheckSeal 11111 21 37812 7s InvVerifiableRevocation
BugRecovNoCheckApp 11111 19 28013 6s InvAccessUndeniability
BugRecovNoCheckCur 11111 12 9029 5s InvAccessUndeniability
BugRecovNoClrCur 11111 12 6368 4s InvAccessUndeniability
BugSealNoExt 11111 19 109599 15s InvAccessUndeniability
BugChkptNoCheckTsHappy 11111 20 42021 8s InvAccessUndeniability
BugChkptNoCheckTsSeal 11212 34 874078 165s —none—
BugChkptNoCheckTsCtr 11112 29 107183 16s InvAccessUndeniability
BugChkptSaveCurApp 11111 20 32826 8s InvAccessUndeniability
BugChkptNolncCtr 11111 29 66215 11s InvAccessUndeniability
BugChkptNoSetCur 11122 32 198270 250s —none—
BugAuditNoCheckHappy 11111 9 2490 4s InvAccessUndeniability
BugAuditNoCheckSeal 11212 34 853554 166s —none—

Table 2: Model checking results for inserted bugs. All runs performed on laptop.

BugChkptNoCheckTsSeal models what happens if
secure execution mode within checkpoint fails to
check that the seal attestation recorded that the seal
PCR contained its reboot value.

BugChkptNoCheckTsCtr models what happens if se-
cure execution mode within checkpoint fails to check
that the seal attestation recorded the same value of
the boot counter as it currently contains.

BugChkptSaveCurApp models what happens if se-
cure execution mode within checkpoint saves in NV
RAM the current application PCR rather than the
value of the application PCR recorded in the seal at-
testation.

BugChkptNolncCtr models what happens if secure
execution mode within checkpoint fails increment
the boot counter.

BugChkptNoSetCur models what happens if secure
execution mode within checkpoint fails set the cur-
rent flag in the NV RAM.

* BugAuditNoCheckHappy models what happens if
the verifier of an audit fails to check that the applica-
tion PCR was quoted at a time when simultaneously
the secure execution mode PCR was happy.

* BugAuditNoCheckSeal models what happens if the
verifier of an audit fails to check that the application
PCR was quoted at a time when simultaneously the
seal PCR contained its reboot value.

5.1 Rapid finding of counterexamples

For all but three bugs the model checker found, within a
few seconds of wall clock run time in a very small config-
uration, a counterexample execution trace that exhibited a
violation of an invariant.

For example, consider BugChkptNoCheckTsCtr. In this
bug, the secure execution mode routine within Checkpoint
neglects to check that the SEAL attestation quotes a boot
counter value that is the same as the current boot counter
value.

The counterexample found by TLC violated the invari-

ant InvAccessUndeniability because execution reached a
state in which (1) a key was present in the obtains fidu-
ciary variable, meaning that at some point access had been
obtained to the key, and (2) the node was auditable but the
resulting audit log (based on PCRapp) did not include
this key. In the TLC counterexample, the state got this
way as follows:

1. an initial Recovery sequence,

2. a normal Checkpoint sequence, which performed a
SEAL transport session and passed the SEAL attes-
tation to the secure execution mode routine within
Checkpoint, which saved the initial, empty log in the
NV RAM,

a reboot,

a normal Recovery sequence,

an extension of PCR app to obtain access to a key,

AN

an adversarial entry to the secure execution mode
routine within Checkpoint, passing it the SEAL attes-
tation from the first Checkpoint sequence, and then
performing the routine to save the initial, empty log
in the NV RAM as current, (this is where the bug
took effect)

7. areboot, and finally

8. a normal Recovery sequence, which restored
PCRapp to the value of the empty log, while estab-
lishing PCRgsgm = SemHappy and PCRggap, =
SealReboot.

The counterexample requires the boot counter to be incre-
mented twice, which is why the configuration that exhibits
the counterexample requires MaxBootCtr = 2.

All of the other counterexamples were found in a mini-
mal configuration that permitted at most one boot counter
increment. Since the counterexamples were all found in
such very small configurations, it would seem likely that
the Pasture node specification does not have any “interest-
ing” behavior that comes out only at higher configuration
parameter values. This result gives a reasonable assur-
ance that if there were a bug in the original specification,
it would have been found in the original model checking
runs.

In prior work [11] we also found that inserted bugs
were detected in model checking runs much shorter than
the runs required to model check the correct specification
with “decent” configuration parameter values, although

not nearly to the dramatic extent that we see in the Pas-
ture node specification.

5.2 Bugs that were not safety violations

In three cases the bugs we introduced did not produce
counterexamples in small configurations. We examined
theses bugs more closely and it turned out that they were
not safety violations after all.

In the case of BugChkptNoSetCur, the checkpoint rou-
tine fails to set the current flag in the NV RAM after sav-
ing the application PCR. The consequence of this bug is
that it will not be possible to recover after a reboot. Al-
though this is a serious liveness problem, it is not a safety
violation.

The other two cases, BugChkptNoCheckTsSeal and
BugAuditNoCheckSeal are perhaps more interesting.

In BugChkptNoCheckTsSeal the checkpoint SEM rou-
tine fails to check that PCRggar, = SealReboot. We can
see that this bug results in different execution behavior in
the (1,1,2,1,2) configuration because the number of dis-
tinct states with the bug in Table 2 is different from the
number listed for this configuration in Table 1.

With this bug, the adversary can run the transport ses-
sion to take a SEAL, then perform some additional exten-
sions on PCRapp, then perform the transport session a
second time to take a second SEAL. Since the checkpoint
SEM routine fails to check the value of PCRgga1, in the
SEAL, it will accept either of the two SEALSs indiscrim-
inately. So with this bug, the adversary can optionally
either leave the additional extensions on the log by call-
ing checkpoint with the second SEAL or retract them by
calling checkpoint with the first SEAL, in either case after-
wards rebooting and recovering in the normal way. This
is strange behavior, because Pasture’s design is based on
the idea of an append-only log, and this bug permits the
adversary to retract some entries from the end of the log.

But although the behavior is strange, it turns out that
there is no actual safety violation. The additional exten-
sions performed by the adversary cannot be used to ob-
tain access to any keys or generate any verifiable proofs
of revocation, since PCRgga1, will no longer contain its
original SealReboot value after the first transport session
runs. The entries that the adversary can retract from the
log are merely “phantom” entries that do not correspond
to any effective decision.

A similar situation exists in the case of BugAudit-
NoCheckSeal. This bug permits the adversary to add en-
tries to the end of the log as shown by one audit which
a later audit will show as having been retracted. But the
retractable entries are “phantom” entries that do not cor-
respond to obtaining access to keys or to generating veri-
fiable proofs of revocation.

Originally, when we placed bugs into the specification,
we assumed that they all would lead to safety violations.
But in three cases this assumption turned out to be mis-
taken. One benefit of model checking with known bugs is
a better understanding of what actually makes the specifi-
cation work.

6 Formal proof of correctness

Once we were confident that the Pasture node specifica-
tion was correct, we proceeded to write a formal correct-
ness proof and check it using the TLA+ Proof System [3].

Appendix C shows the proof. Since the TLA+ Proof
System currently cannot handle temporal reasoning, we
had to check manually the final step that proves that an
invariant always holds. We also omitted numerous tedious
proofs about properties of sequences.

The proof is based on the idea that there is always at
most one current log and the current log can be domiciled
in at most one of three places:

e The current log can be domiciled in PCRapp,
when PCRsgm = SemHappy and PCRggap, =
SealReboot. This is the situation when the Pasture
node is operational and processing decisions to ob-
tain access or revoke access to Pasture decryption
keys.

The current log can be domiciled in a SEAL at-
testation, when the SEAL quotes PCRgpm
SemHappy, PCRggaL = SealReboot, and the cur-
rent boot counter. This is the situation during shut-
down after the SEAL transport session has been run
but before the SEM checkpoint routine is invoked.

The current log can be domiciled in the NV RAM,
when the current flag is set. This is the situation after
shutdown before the node reboots.

10

The proof wraps this idea up into one master invariant
called InvOneLog.

In order to establish InvOneLog, the proof first estab-
lishes a number of preliminary invariants showing that all
variables contain values of the correct type, that PCRggM
and PCRgga1, are managed properly, that SEAL attes-
tations quote a reasonable boot counter value, and that
the contents of the fiduciary variables obtains and revokes
make sense. Once the master invariant InvOneLog is es-
tablished, the Pasture safety invariants InvAccessUndeni-
ability and InvVerifiableRevocation follow as corollaries.

Most of the proof is consumed with walking each in-
variant through all of the action alternatives. Although
tedious, writing the proof was straightforward. Counting
the time it took to learn how to use the TLA+ Proof Sys-
tem, the proof took two weeks to write. Interestingly, the
seLL4 microkernel verification project (a far larger effort)
also found that invariant reasoning dominated their proof
effort [5].

As a side note, the two “phantom” entry non-safety-
violation bugs discussed in Section 5.2 each violate the
invariant /nvOneLog since they permit different versions
of the current log to exist at the same time. This shows
that the proof is stronger than strictly necessary to es-
tablish the correctness of the Pasture node specification.
However, weakening the proof to account for this seems
like it would add considerable detail to an already tedious
proof.

The Pasture node specification runs 19 pages and the
formal proof 68 pages. Memoir also used TLA+ and the
TLA+ Proof System and their specification runs 40 pages
and formal proof 350 pages [4]. The sel.4 project used
Haskell and Isabelle and took about 2 person-years to
create the specification and 11 person-years to create the
proof [5]. So even though a formal specification can be
somewhat lengthy, a formal proof of its correctness tends
to be much more lengthy.

7 Conclusion

Model checking with inserted bugs provides reasonable
confidence that the specification is correct. Examining
the counterexample execution traces can lead to improved
understanding of the specification and possible improve-
ments. For example, in the Pasture specification, we dis-

covered that the specification could be made weaker, with
the incorporation of two “phantom” entry bugs, and still
maintain its invariants. However, weakening the specifi-
cation in this way would make it much more tedious to
prove that the invariants were maintained.

Formal proofs give a greater assurance, but they can
be tedious. An enormous amount of detail is required to
guide a mechanical proof checker through the verification
process. When formal proofs of safety are important, it
can sometimes be better to adopt a stronger specification
than strictly necessary in order to make maintenance of
the safety properties easier to prove.

With the TLA+ proof system, the same specification
can be both model checked and augmented with a me-
chanically checked proof. This gives even more confi-
dence that the specification is correct.

References

[1] Trusted Platform Module V1.2 Specification. http://
www.trustedcomputinggroup.org.

D. Challener, K. Yoder, R. Catherman, D. Safford, and
L. Van Doorn. A Practical Guide to Trusted Computing.
IBM Press, Jan 2008.

K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz. Ver-
ifying safety properties with the TLA+ proof system. In
IJCAR, pages 142-148, 2010.

J. R. Douceur, J. R. Lorch, B. Parno, J. Mickens, and J. M.
McCune. Memoir—formal specs and correctness proofs.
Technical Report MSR-TR-2011-19, Microsoft Research,
Feb 2011.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. FElkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Win-
wood. sel4: Formal verification of an OS kernel. In
SOSP, pages 207-220, 2009.

R. Kotla, T. Rodeheffer, I. Roy, P. Steudi, and B. Wester.
Secure offline data access using commodity trusted hard-
ware. To appear in OSDI, 2012.

L. Lamport. The TLA toolbox. http:
//research.microsoft.com/en-us/um/
people/lamport/tla/toolbox.html.

L. Lamport. Specifying Systems: The TLA+ Language and
Tools for Hardware and Software Engineers. Addison-
Wesley, 2002.

J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki. Flicker: An execution infrastructure for TCB

(2]

(3]

(4]

(5]

(6]

(7]

8]

(9]

11

(10]

(1]

minimization. In Eurosys, 2008.

B. Parno, J. R. Lorch, J. R. Douceur, J. Mickens, and J. M.
McCune. Memoir: Practical state continuity for protected
modules. In IEEE Symposium on Security and Privacy,
2011.

T. Rodeheffer. Cyclic commit protocol specifications.
Technical Report MSR-TR-2008-125, Microsoft Re-
search, Sep 2008. http://research.microsoft.
com/apps/pubs/?21d=70631.

A Specification

[MODULE PastureNode

EXTENDS Naturals, Sequences, FiniteSets

Override one of the following definitions to introduce a bug in the specification.

BugObtainAccessNoCheckHappy = FALSE
BugObtainAccessNoCheckSeal = FALSE
BugProveRevokeNoCheckHappy = FALSE
BugProveRevokeNoCheckSeal = FALSE
BugRecovNoCheckApp = FALSE
BugRecovNoCheckCur = FALSE

BugRecouvNoClrCur = FALSE

BugSealNoExt = FALSE

BugChkptNoCheckTsHappy £ FALSE
BugChkptNoCheck’TsSeal = FALSE not actually a safety bug
BugChkptNoCheckTsCtr = FALSE
BugChkptSaveCurApp = FALSE

BugChkptNoIncCtr = FALSE

BugChkptNoSetCur £ FALSE liveness bug; not actually a safety bug
BugAuditNoCheckHappy = FALSE
BugAuditNOCheckSeal = FALSE not actually a safety bug

!

I

PCR INITIALIZATION VALUES

CONSTANT PcriAPPBOQOT reboot initialization of app per

CONSTANT PcriSEMBOOT reboot initialization of sem per

CONSTANT PcriSEMPROTECT secure execution mode entry of sem per
CONSTANT PcriSEALBOQOT reboot initialization of seal per

Peri =
{
PcriAPPBOOT,
PceriSEMBOOT,
PcriSEMPROTECT,
PcriSEALBOOT

}

Initialization of sem pcr via boot and via secure execution mode entry must be different.

ASSUME AssSemProtect = PcriSEMBOOT # PcriSEMPROTECT

12

PCR EXTENSION VALUES

CONSTANT PcrzHAPPY recover is happy

CONSTANT PcrzUNHAPPY recover is unhappy or checkpoint is unhappy/finished
CONSTANT PcrzSEAL seal marker

CONSTANT PcrzOBTAIN obtain access operation

CONSTANT PcrzREVOKE revoke access operation

Perz £
{
PcrzHAPPY |
PcrzUNHAPPY
PcrzSEAL,
PcrzOBTAIN,
PcrtREVOKE

Extension for obtain access and extension for revoke access must be different.
A

ASSUME AssObtainNeqRevoke = PcrzOBTAIN # PcraREVOKE

Extension for happy and extension for unhappy must be different.
A

ASSUME AssSemHappy = PcraHAPPY # PcreUNHAPPY

PCR VALUES

A pcer value is modeled as an initialization followed by a sequence of extensions.
N

Per =
[

it : Peri,
extq : Seq(Pcrx)

]

Initial per value.

Perlnit(i) =
mait — 1,
extq — ()

]

13

Extend a pcr value.
PerExtend(p, ©) =
[
it — p.inat,
extq — Append(p.extq, x)

]

Number of extensions in a pcr value.

PerLen(p) =
Len(p.extq)

Pcr sis < Per t. This means that with zero or more extensions, you can extend s to reach ¢. This is a partial order relation.
A
PerLeq(s, t) =
LET
.. A ..
stnit = s.inat
A
sextq = s.extq
A
sn = Len(sextq)

tinit = t.init
textq = t.extq
tn = Len(textq)

A

uextq = SubSeq(textq, 1, sn)
IN
A sinit = tinit
Nsn < tn

N sextq = uextq

Determine if a pcr value has been extended.

PerHasExtension(p) =
PcrLen(p) > 0

Assuming a per value has been extended, get the prior per value that this one was extended from. We assume the adversary can compute this by
watching all pcr computations.

PerPrior(p) =
CASE PcrHasExtension(p) —
LET
n = Len(p.extq) — 1
IN
[
it — p.init,
extq — SubSeq(p.extq, 1, n)

]

14

Assuming a per value has been extended, get the last extension. We assume the adversary can compute this by watching all pcr computations.
PerLastExtension(p) =

CASE PcrHasExtension(p) —

p.extq[Len(p.extq))

WELL KNOWN PCR VALUES

Value of the application pcr attained by rebooting.
AppReboot = PcrInit(PcriAPPBOOT)

Value of the secure execution mode pcr attained by rebooting.

SemReboot = Perlnit(PcriSEMBOOT)

Value of the secure execution mode pcr attained by entering the protected module in secure execution mode. This value permits access to the
Pasture protected Nv ram.

SemProtect = Perlnit(PcriSEMPROTECT)

Value of the secure execution mode pcr that indicates that Pasture is happy. Recovery has been properly performed and bound keys may be used.
Checkpoint has not yet been invoked.

SemHappy = PcrEztend(SemProtect, PcreHAPPY')

Value of the seal pcr attained by rebooting.

SealReboot = Pecrlnit(PcriSEALBOOT)

PC VALUES

anywhere not in secure execution mode

PcIDLE = “idle”

steps in secure execution mode within recover

PcRECOV1 2 “recovi”
PcRECOV2 = “recov2”
PcRECOV3 2 “recov3”

PcRecov = {PcRECOV1, PcRECOV?2, PcRECOV 3}

steps in secure execution mode within checkpoint

PcCHKPT1 = “chkpt1”

15

PcCHKPT?2 = “chkpt2”
PcCHKPT3 = “chkpt3”
PcCHKPT4 = “chkpt4”
A

PcCHKPT5 = “chkpt5”
PcChkpt = {PcCHKPT1, PcCHKPT2, PcCHKPT3, PcCHKPT4, PcCHKPT5}

Pc = {PcIDLE} U PcRecov U PcChkpt

PROTECTED NV RAM STATE

1>

Nv

[

appPcr : Pcer, copy of the application pcr
current : BOOLEAN copy of application pcr is current

]

InitNv =
[
appPcr — AppReboot,
current — TRUE

SEAL OPERATION TRANSPORT SESSION STATE
‘We model the signed “seal operation” transport session as a record of the input values required in order for the transport session 7'PM signature to
be valid.

SignedTs =
semPcr : Pcr, copy of the secure execution mode pcr on entry
sealPcr : Pcr, copy of the seal pcr on entry
appPcr : Pcr, copy of the application pcr on entry
bootCtr : Nat copy of the reboot counter on entry

]

The adversary cannot forge a correctly signed seal attestation. We model all incorrectly signed ones as the following single value.

NullTs = CHOOSE NullTs : NullTs ¢ SignedTs

16

Ts = SignedTs U { NullTs}

STATE

VARIABLE nv Pasture’s protected NV RAM region
VARIABLE appPcr the application pcr

VARIABLE semPcr the secure execution mode per
VARIABLE sealPcr the seal per

VARIABLE bootCtr the reboot counter

VARIABLE pc pc

VARIABLE chkptts ts passed to sem within checkpoint
VARIABLE tsvalues what ts values are known

VARIABLE obtains decisions to obtain access
VARIABLE revokes decisions to prove revoke access

Tuple of all variables.

vars = (nv, appPcr, semPecr, sealPcr, bootCtr, pc, chkptts, tsvalues,
obtains, revokes)

STATE PREDICATES

The node is currently in secure execution mode.

InSem = pc # PeIDLE

NEXT STATE RELATION

Employ a key binding to obtain access to read a message.

17

If the last extension to the application pcr was an OBTAIN operation, then in full generality there could have been a key bound to this application
per value. So record the information that we obtained access to this key binding.

NexztObtainAccess =
LET
perlo = appPcr current app per
per0 = PerPrior(perlo) prior app per
& = PerLastExtension(pcrlo) presumed OBTAIN extension
IN
A —InSem must not be in secure execution mode
A PerHasEztension(pcerlo) have an extension
ANz = PcrtOBTAIN last extension was OBTAIN
It is a bug to fail to bind the key such that it can be used for decryption only when the secure execution mode pcr is happy.
A IF BugObtainAccessNoCheckHappy THEN TRUE ELSE
semPcr = SemHappy
It is a bug to fail to bind the key such that it can be used for decryption only when the seal pcr is in the reboot value.
A TF BugObtainAccessNoCheckSeal THEN TRUE ELSE
sealPcr = SealReboot
A obtains’ = obtains U {pcrlo}
/A UNCHANGED nv
A UNCHANGED appPcr
A UNCHANGED semPcr
A UNCHANGED sealPcr
A UNCHANGED bootCtr
A UNCHANGED pc
A UNCHANGED chkptts
A UNCHANGED tsvalues
A UNCHANGED revokes

Construct a proof of revocation.

If the last extension to the application pcr was a REVOKE operation, then in full generality there could have been a key bound to the pcr value
in which instead the last extension was an OBTAIN. But by extending with a REVOKE we have instead revoked the key binding. So record the
information that we could construct a proof of revocation.

A proof of revocation consists of the following exhibits:

(a) pcr0, a purported prior application pcr value

(b) pcrlr, a purported current application pcr value

(¢) z, the REVOKE extension satisfying pcrlr = PcrExtend(pcr0, x)

(d) a quote of the application pcr = perlr with the sem pcr = SemHappy and the seal pcr = SealReboot.

These exhibits suffice to prove revocation of any valid key binding to the application pcr value PerExtend(per0, OBTAIN).
A

NeztProveRevoke =
LET
A
perlr = appPer current app per

18

per0 = PcrPrior(perlr) prior app per
¢ = PerLastExtension(perlr) presumed REVOKE extension

IN

A —InSem must not be in secure execution mode

A PcrHasEztension(perlr) have an extension

Az = PcraREVOKE last extension was a REVOKE
It is a bug to fail to require the proof of revocation to quote the fact that the secure execution mode pcr is happy.
A 1F BugProveRevokeNoCheckHappy THEN TRUE ELSE
semPcr = SemHappy
It is a bug to fail to require the proof of revocation to quote the fact that the seal per is in the reboot value.
A 1F BugProveRevokeNoCheckSeal THEN TRUE ELSE
sealPcr = SealReboot

A revokes’ = revokes U {perlr}

/A UNCHANGED nv

A UNCHANGED appPcr

A UNCHANGED semPcr

A UNCHANGED sealPcr

A UNCHANGED bootCtr

A UNCHANGED pc

A UNCHANGED chkptts

A UNCHANGED tsvalues

A UNCHANGED obtains

Reboot the node.

This can happen at absolutely any time, due to adversarial action. However, if it happens without going through the proper seal and checkpoint
actions, liveness may be lost.

Resetting chkptts to its initial value erases information and thus reduces the number of distinct states that model checking has to explore. But note
that the adversary could always remember whatever value chkppts had before and call sem checkpoint with that value.

NexztReboot =
A appPcr’ = AppReboot
A semPcr’ = SemReboot
A sealPcr’ = SealReboot
A pc’ = PcIDLE
A chkptts’ = NullT's
A UNCHANGED nv
A UNCHANGED bootCltr
A UNCHANGED tsvalues
A UNCHANGED obtains
A UNCHANGED revokes

19

Forget one of the seal transport sessions.
This can happen at absolutely any time, and represents a loss of knowledge by the adversary which enables additional execution paths to fall within
the model checking constraints.
NeatForgetSealTs =

Jts € tsvalues :

A tsvalues’ = tsvalues \ {ts}

A\ UNCHANGED nwv

A UNCHANGED appPcr

A UNCHANGED semPcr

A UNCHANGED sealPcr

A UNCHANGED bootCtr

A\ UNCHANGED pc

A UNCHANGED chkptts

A UNCHANGED obtains

A UNCHANGED revokes

Extend application pcr arbitrarily.
In proper execution, this action is performed as necessary after reboot to re-extend the application per to its last checkpoint value.
In proper execution, this action is performed as desired to decide upon reading or deleting messages.

The adversary can perform this action at any idle time.

NeatExtendAppPer =
A —InSem must not be in secure execution mode
Adz € Perx :
A appPer’ = PcrEztend(appPcr, x)
A UNCHANGED nv
A UNCHANGED semPcr
A UNCHANGED sealPcr
A UNCHANGED bootCltr
A UNCHANGED pc
A UNCHANGED chkptts
A UNCHANGED tsvalues
A UNCHANGED obtains
A UNCHANGED revokes

Extend secure execution mode pcr arbitrarily, due to adversarial action.

NextEztendSemPer =
A —InSem must not be in secure execution mode
ANdz € Perx :
A semPer' = PcrExtend(semPer, x)
A\ UNCHANGED nwv

20

A UNCHANGED appPcr
A UNCHANGED sealPcr
A UNCHANGED bootCtr
A UNCHANGED pc

A UNCHANGED chkptts
A UNCHANGED tsvalues
A UNCHANGED obtains
A UNCHANGED revokes

Extend seal pcr arbitrarily, due to adversarial action.

NextExtendSealPer =
A —InSem must not be in secure execution mode
ANdx € Perz :
A sealPer’ = PerExtend(sealPer, x)
/A UNCHANGED nv
A UNCHANGED appPcr
A UNCHANGED semPcr
A UNCHANGED bootCtr
A UNCHANGED pc
A UNCHANGED chkptts
A UNCHANGED tsvalues
A UNCHANGED obtains
A UNCHANGED revokes

Increment reboot counter arbitrarily, due to adversarial action.

NextIncBootCtr =
A —InSem must not be in secure execution mode
A bootCtr' = bootCtr + 1
A UNCHANGED nv
A UNCHANGED appPcr
A UNCHANGED semPcr
A UNCHANGED sealPcr
A UNCHANGED pc
A UNCHANGED chkptts
A UNCHANGED tsvalues
A UNCHANGED obtains
A UNCHANGED revokes

21

Enter secure execution mode within recovery.

In proper execution, this action is performed during system boot after the application pcr has been re-extended to its last checkpoint value. This
re-extension is performed by untrusted code that reads the necessary extension values from a stable log.

The adversary can perform this action at any idle time. But it will not do any good unless the application per contains the last checkpoint value and
the last checkpoint value is marked as current.
NeatEnterSemRecov =
A —InSem must not be in secure execution mode
A semPcr’ = SemProtect
A pc’ = PcRECOV'1
A UNCHANGED nv
A UNCHANGED appPcr
A UNCHANGED sealPcr
A UNCHANGED bootCtr
A UNCHANGED chkptts
A UNCHANGED tsvalues
A UNCHANGED obtains
A UNCHANGED revokes

Predicate for correct entry to secure execution mode within recovery.

EnterSemRecovPredicate =
It is a bug for recovery to fail to check that the application pcr has been restored to the value saved in the nv ram.
A IF BugRecovNoCheckApp THEN TRUE ELSE
nv.appPcr = appPcr
It is a bug for recovery to fail to check that nv ram claims that its saved application pcr is current.
A IF BugRecovNoCheckCur THEN TRUE ELSE
nv.current

Secure execution mode within recovery step 1, when there is corect entry.

NextSemRecovl WhenCorrect =
A pc = PcRECOV1
A EnterSemRecovPredicate
A pc’ = PcRECOV?2
A UNCHANGED nv
A UNCHANGED appPcr
A UNCHANGED semPcr
A UNCHANGED sealPcr
A UNCHANGED bootCtr
A UNCHANGED chkptts
A UNCHANGED tsvalues
A UNCHANGED obtains
A UNCHANGED revokes

22

Secure execution mode within recovery step 1, when there is incorect entry.

NeztSemRecovl WhenIncorrect =
A pc = PcRECOV1
A = EnterSemRecovPredicate
A semPer' = PcrExtend(semPer, PcreUNHAPPY')
A pc' = PcIDLE
/A UNCHANGED nv
A UNCHANGED appPcr
A UNCHANGED sealPcr
A UNCHANGED bootCtr
A UNCHANGED chkptts
A UNCHANGED tsvalues
A UNCHANGED obtains
A UNCHANGED revokes

Secure execution mode within recovery step 2. Record that the nv app pcr might no longer be current.

NextSemRecov2 =
LET
nvcurrentl =
It is a bug for recovery to fail to clear the nv ram current flag.

IF BugRecovNoClrCur THEN nv.current ELSE
FALSE

IN

A pc = PcRECOV?2

A nv' = [nv EXCEPT !.current = nvcurrent]]

A pc’ = PcRECOV 3

A UNCHANGED appPcr

A UNCHANGED semPcr

A UNCHANGED sealPcr

A UNCHANGED bootCltr

A UNCHANGED chkptts

A UNCHANGED tsvalues

A UNCHANGED obtains

A UNCHANGED revokes

Secure execution mode within recovery step 3. Declare correct recovery happiness and exit secure execution mode.

NeztSemRecov3 =
A pc = PcRECOV 3
A semPcr' = PcrExtend(semPer, PcreHAPPY)
A pc’ = PcIDLE
/A UNCHANGED nv
A UNCHANGED appPcr
A UNCHANGED sealPcr

23

A UNCHANGED bootCtr
A UNCHANGED chkptts
A UNCHANGED tsvalues
A UNCHANGED obtains
A UNCHANGED revokes

Perform a “seal operation” and remember the signed transport session.

In proper execution, provided that the secure execution mode pcr shows that recovery was happy, this action is performed as part of checkpoint
during system shutdown. Secure execution mode within checkpoint is then invoked with this transport session as data.

This transport session reads the values of the secure execution mode pcr, the application pcr, and the reboot counter. Then the secure execution
mode pcr is extended so that no key bindings will be available until the next happy recovery.

The adversary can record all of the signed transport sessions and try to replay an earlier one to convince secure execution mode within checkpoint to
save an old application pcr as “current”. Reading the reboot counter here, and incrementing it in secure execution mode within checkpoint, prevents
that.

The adversary might try to advance the application pcr so as to read a message or produce a proof of deletion after the “seal operation” and then
invoke secure execution mode within checkpoint and then reboot to roll back the application pcr. Extending the seal pcr prevents that.

NeatSealTs =
LET
ts

[

semPcr — semPcr, sem pcr on entry
appPcr — appPcr, app per on entry
sealPcr — sealPcr, seal per on entry
bootCtr > bootCtr reboot ctr on entry

1>

]

sealPerl =
It is a bug for the “seal operation” to fail to extend the seal pcr.
IF BugSealNoFExt THEN sealPcr ELSE
PcrEztend(sealPcr, PcroSEAL)
IN
A —InSem must not be in secure execution mode
A tsvalues’ = tsvalues U {ts}
A sealPcr’ = sealPcrl
/A UNCHANGED nv
A UNCHANGED appPcr
A UNCHANGED semPcr
A UNCHANGED bootCtr
A UNCHANGED pc
A UNCHANGED chkptts
A UNCHANGED obtains
A UNCHANGED revokes

24

Enter secure execution mode within checkpoint.
In proper execution, this action is performed during system shutdown following the seal transport session action.

The adversary can perform this action at any idle time, feeding it any known seal transport session value.

NextEnterSemChkpt =
A —InSem must not be in secure execution mode
A dts € tsvalues : any known ts value
A semPcr’ = SemProtect
A pc’ = PcCHKPT1
A chkptts’ = ts
/A UNCHANGED nv
A UNCHANGED appPcr
A UNCHANGED sealPcr
A UNCHANGED bootCtr
A UNCHANGED tsvalues
A UNCHANGED obtains
A UNCHANGED revokes

Predicate for correct entry to secure execution mode within checkpoint.

EnterSemChkptPredicate =
A chkptts € SignedT's
It is a bug to fail to check that the seal operation recorded that the secure execution mode pcr was happy.
A IF BugChkptNoCheckTsHappy THEN TRUE ELSE
chkptts.semPcr = SemHappy

It is a bug to fail to check that the seal operation recorded that the seal pcr was in the reboot value.

A IF BugChkptNoCheckTsSeal THEN TRUE ELSE
chkptts.sealPcr = SealReboot

It is a bug to fail to check that the seal operation recorded a reboot counter value that matches the current reboot counter.

A IF BugChkptNoCheckTsCtr THEN TRUE ELSE
chkptts.bootCtr = bootCtr

Secure execution mode within checkpoint step 1, when there is correct entry.

NextSemChkptl WhenCorrect =
A pc = PcCHKPT1
A EnterSemChkptPredicate
A pc' = PcCHKPT?2
A UNCHANGED nv
A UNCHANGED appPcr
A UNCHANGED semPcr
A UNCHANGED sealPcr
A UNCHANGED bootCltr
A UNCHANGED chkptts

25

A UNCHANGED tsvalues
A UNCHANGED obtains
A UNCHANGED revokes

Secure execution mode within checkpoint step 1, when there is incorrect entry.

NextSemChkpt1l WhenIncorrect =
A pc = PcCHKPT1
N = EnterSem ChkptPredicate
A semPer' = PcrExtend(semPer, PcreUNHAPPY')
A pc' = PcIDLE
/A UNCHANGED nv
A UNCHANGED appPcr
A UNCHANGED sealPcr
A UNCHANGED bootCtr
A UNCHANGED chkptts
A UNCHANGED tsvalues
A UNCHANGED obtains
A UNCHANGED revokes

Secure execution mode within checkpoint step 2. Save in nv appPtr the app ptr recorded at ¢s entry.
NextSemChkpt2 =
LET
N
nvappPcrl =

It is a bug for secure execution mode within checkpoint to save in the nv ram the current application pcr rather than the seal operation’s
recorded application pcr.

IF BugChkptSave CurApp THEN appPcr ELSE
chkptts.appPcr

IN

A pc = PcCHKPT?2

A nv' = [nv EXCEPT !.appPcr = nvappPerl]

A pc’ = PcCHKPT3

A UNCHANGED appPcr

A UNCHANGED semPcr

A UNCHANGED sealPcr

A UNCHANGED bootCtr

A UNCHANGED chkptts

A UNCHANGED tsvalues

A UNCHANGED obtains

A UNCHANGED revokes

Secure execution mode within checkpoint step 3. Prevent a ¢s replay by incrementing the reboot ctr.

26

NeatSemChkpt3 =
LET
bootCtrl =

It is a bug for secure execution mode within checkpoint to fail to increment the reboot counter.

IF BugChkptNoIncCtr THEN bootCtr ELSE
bootCtr + 1
IN
A pc = PcCHKPT3
A bootCtr' = bootCtrl
A pc’ = PcCHKPT4
A UNCHANGED nv
A UNCHANGED appPcr
A UNCHANGED semPcr
A UNCHANGED sealPcr
A UNCHANGED chkptts
A UNCHANGED tsvalues
A UNCHANGED obtains
A UNCHANGED revokes

Secure execution mode within checkpoint step 4. Declare that the nv appPcr is current so that after reboot recovery will be able to succeed.
N
NextSemChkptd =
LET
A
nvcurrentl =
It is a bug for secure execution mode within checkpoint to fail to set the NV RAM current flag.

Actually, this bug does not result in a safety violation.

IF BugChkptNoSetCur THEN nv.current ELSE
TRUE

IN

A pc = PcCHKPT4

A nv' = [nv EXCEPT !.current = nvcurrentl]

A pc’ = PcCHKPT5

A UNCHANGED appPcr

A UNCHANGED semPcr

A UNCHANGED sealPcr

A UNCHANGED bootCtr

A UNCHANGED chkptts

A UNCHANGED tsvalues

A UNCHANGED obtains

A UNCHANGED revokes

Secure execution mode within checkpoint step 5. Extend sem per with unhappy so protected nv ram will be inaccessible.

NextSemChkpts =
A pc = PcCHKPT5

27

A semPer' = PcrExtend(semPer, PcreUNHAPPY')
A pc’ = PcIDLE

A UNCHANGED nv

A UNCHANGED appPcr

A UNCHANGED sealPcr

A UNCHANGED bootCtr

A UNCHANGED chkptts

A UNCHANGED tsvalues

A UNCHANGED obtains

A UNCHANGED revokes

!

I

SPECIFICATION
Init =
A nv = InitNv

A appPcr = AppReboot

A semPcr = SemReboot

A sealPcr = SealReboot

A bootCtr = 0

A pc = PcIDLE

A chkptts = NullTs

A tsvalues = {NUHTS} anybody can create a NullT's
A obtains = {}

A revokes = {}

A

Next =
V NextObtainAccess
V NextProveRevoke
V NextReboot
V NextForgetSealTs
V NextExtendAppPcr
V NextExtendSemPcr
V NextEzxtendSeal Pcr
V NextIncBootCtr
V NextEnterSemRecov
V NextSemRecovl WhenCorrect
V NextSemRecovl WhenlIncorrect
V NezxtSemRecov2
V NezxtSemRecov3

28

V NextSealT's

V NextEnterSemChkpt

V NextSemChkpt1 WhenCorrect
V NextSemChkpt1l WhenlIncorrect
V NextSem Chkpt2

V NextSemChkpt3

V NextSemChkptd

V NextSemChkpt5

Spec = Init A O[Next]yars

!

I

INVARIANTS

Type invariant.
InvType 2
A nv:: nv € Nov
A appPcr:: appPcr € Pcr
A semPcr:: semPcr € Pcr
A sealPcr:: sealPcr € Pcer
A bootCtr:: bootCtr € Nat
A pc:: pc € Pc
A chkptts:: N chkptts € Ts
A pe € PcChkpt \{PcCHKPT1} = chkptts € SignedT's
A tsvalues:: tsvalues € SUBSET Ts
A obtains:: obtains € SUBSET Pcr
A revokes:: revokes € SUBSET Pcr

Nv protection invariant.

Being in secure execution mode is equivalant to saying that the secure execution mode pcr permits access to protected Nv ram.

InvNvProtection =
InSem = (semPcr = SemProtect)

Verifiable revocation invariant. There had better not be any decisions to obtain access for which a proof of revocation was also constructed.

InvVerifiableRevocation =

29

Yo € obtains : last extension was OBTAIN
VY r € revokes : last extension was REVOKE
PcrPrior(o) # PcrPrior(r) cannot have both extended from same place

Access undeniability.

This invariant is modeled as performing an audit on the present state and seeing that all key bindings that have been used to obtain access appear in
the audit report. A key binding o appears in the audit report iff PcrLeq(o, appPcr), which means than there exists a sequence of zero or more
extensions from o that reach appPcr.

However, it might be impossible to generate a valid audit report in the present node state. That is okay.
InvAccessUndeniability =
It is a bug to fail to require the audit to quote SemHappy.
A 1F BugAuditNoCheckHappy THEN TRUE ELSE
semPcr = SemHappy
It is a bug to fail to require the audit to quote SealReboot.
A IF BugAuditNoCheckSeal THEN TRUE ELSE
sealPcr = SealReboot
=
Yo € obtains : PcrLeq(o, appPcr)

30

B Model

MODULE PastureNodeModel

VARIABLE nv Pasture’s protected NV RAM region
VARIABLE appPcr the application per

VARIABLE semPcr the secure execution mode per
VARIABLE sealPcr the seal per

VARIABLE bootCltr the reboot counter

VARIABLE pc pe

VARIABLE chkptts ts passed to sem within checkpoint
VARIABLE tsvalues what ts values are known

VARIABLE obtains decisions to obtain access
VARIABLE revokes decisions to prove revoke access

INSTANCE PastureNode
WITH
PcriAPPBOOT < “boot”,

SEMBOOT and SEMPROTEC'T must be different.

PeriSEMBOOT <« “boot”,
PcriSEMPROTECT <+ “protect”,

PcriSEALBOOT <+ “boot”,

HAPPY and UNHAPPY must be different.

PcrzHAPPY + 0,
PcrzUNHAPPY + 1,

OBTAIN and REVOKE must be different.

PerzOBTAIN <+ 0,
PcrzREVOKE + 1,

PcrzSEAL < 0

MODEL-CHECKING CONSTRAINT

Opverride these definitions to adjust the constraint.

MazAppPerLen = 1
MazSemPcrLen = 1
MazSealPerLen = 1
MazTsValues = 1

MazBootCtr = 1

31

Constrain =
A PerLen(appPer) < MazAppPcrLen
A PcrLen(semPcr) < MazSemPcrLen
A PerLen(sealPer) < MaxSealPcrLen
A Cardinality(tsvalues) < MazTsValues
A bootCtr < MaxzBootCtr

32

C Proof

MODULE PastureNodeProof

EXTENDS PastureNode, TLAPS

STATE FUNCTIONS

We talk about the “log” being in various places. Actually, what is in those places is a cryptographic summary of the log, which is of type Pcr.
However, under the anticollision assumption of PcrExtend, the cryptographic summary is effectively in one-to-one correspondance with the actual
log. So we talk as if the cryptographic summary were the log, rather than merely a reference to the log.

Check that ¢s is a valid seal attestation in the current node state. To be valid it must be a signed attestation and it must record SemHappy,
SealReboot and the current boot counter.

CheckTsIsCurrent(ts) =
A ts € SignedTs
A ts.semPcr = SemHappy
A ts.sealPcr = SealReboot
A ts.bootCtr = bootCtr

All valid seal attestations in the current node state. Seal attestations can be found among the known values (in tsvalues) or in the temporary state
variable chkptts used during the checkpoint sem routine.

AllCurrentTs =
{ts € tsvalues U {chkptts} : CheckTsIsCurrent(ts)}

If there are any valid seal attestations in the current node state, choose one and get its log.

CurrentTsLog =
LET ts = CHOOSE ts € AllCurrentTs : TRUE
IN ts.appPcr

The log is present in the nv ram. This is true iff the nv ram says it is current.
A
LogInNv =
A nv.current

The log is present in the application per. This is true iff the sem pcr contains SemHappy and the seal per contains SealReboot.
LoglnApp =

A semPcr = SemHappy

A sealPcr = SealReboot

33

The log is present in some known seal attestation. This is true iff there exists a valid seal attestation in the current node state.
N
LoginTs =
AllCurrentTs # {}

Assuming the log exists, determine if Pcr p is on it.

The log has a domicile in the nv ram, when the nv ram is marked as current. The log has a domicile in the application pcr when the sem
per contains SemHappy and the seal per contains SealReboot. The log has a domicile in a seal ts attestation when that attestation quotes
SemHappy, SealReboot, and the current bootCtr.

During secure execution mode, the log can also temporarily live in certain places, as it is moved from one domicile to another.

IsOnLog(p) =
Where to find the log at most times.

A LogInNv = PcrLeq(p, nv.appPcr)
A LogInApp = PcrLeq(p, appPcr)
A LogInTs = PcrLeq(p, CurrentTsLog)

Special places to find the log during secure execution mode.

A pc= PcRECOV1 = TRUE

A pc= PcRECOV2 = PecrLeq(p, appPcr)

A pc=PcRECOV3 = PcrLeq(p, appPcr)

A pc= PcCHKPT1 = TRUE

A pc=PcCHKPT2 = PcrLeq(p, chkptts.appPcr)

A pc=PcCHKPT3 = PcrLeq(p, nv.appPcr)

A pc=PcCHKPT4 = PcrLeq(p, nv.appPecr)

A pc=PcCHKPT5 = PcrLeq(p, nv.appPer)
ADDITIONAL INVARIANTS

When the node is in secure execution mode, the secure execution mode pcr contains Sem Protect.
InvInSemProtect =

A InvType

A goal::

InSem = semPcr = SemProtect

When the node is not in secure execution mode, the secure execution mode pcr contains a value from which SemProtect cannot be reached.

InvUnreachableSemProtect =
A InvType
A InvInSemProtect

34

A goal::
—InSem = —PcrLeq(semPcr, SemProtect)

All known signed seal attestations quote a bootCtr that does not exceed the current bootCtr.

InvSigned TsLeqBoot =
A InvType
A goal::
Vs € tsvalues U {chkptts} :
ts € SignedTs = ts.bootCtr < bootCtr

When the node is not in secure execution mode, the secure execution mode pcr contains either (1) SemHappy or (2) a value from which
SemHappy cannot be reached.

InvUnforgeableSemHappy =
A InvType
A InvInSemProtect
A goal::
—InSem =
V semPcr = SemHappy
V = PcrLeq(semPcr, SemHappy)

The seal per contains either (1) SealReboot or (2) a value from which SealReboot cannot be reached.

InvUnforgeableSealReboot =
A InvType
A goal::
V sealPcr = SealReboot
V = PerLeq(sealPcr, SealReboot)

Every entry in obtains and revokes has a last extension of OBTAIN and REVOKE, respectively.

InvProperLastExtension =
A InvType
A goal::
AVY o € obtains : PerHasExtension(o) A PerLastExtension(o) = PcreOBTAIN
AV r € revokes : PerHasExtension(r) A PcrLastExtension(r) = PeraREVOKE

35

There is at most one log.

One Log to rule them all,

One Log to find them,

One Log to bring them all

and in the darkness bind them.
(with apologies to J. R. R. Tolkien)

InvOneLog =
A InvType
A InvSignedTsLeqBoot
A InvInSemProtect
A InvUnforgeableSemHappy
A InvUnforgeableSeal Reboot
A InvProperLastExtension
A goal::
The log can only have at most one domicile at a time.
A LogInNv = —LogInApp N —=LogInTs
A LoginApp = —LogInNv A = LogInTs
A LoginTs = —LogInNv A —LogInApp
Extra requirements during secure execution mode.
pc = PcRECOV1 = TRUE
pc = PcRECOV 2 = LogInNv
pc = PcRECOV 3 = —LogInNv A ~LogInApp AN —LogInTs
pc = PcCHKPT1 = TRUE
pc = PcCHKPT?2 = LogInTs N\ CheckTslsCurrent(chkptts)
pc = PcCHKPT3 = LogInTs N\ CheckTslsCurrent(chkptts)
pc = PcCHKPT4 = —LogInNv A\ = LogInApp N\ = LogInTs
pc = PcCHKPT5 = LogInNv
All seal attestations containing the log must have the same log.
A Visl, ts2 € AllCurrentTs : tsl.appPcr = ts2.appPer
Every entry in obtains (a decision to obtain access) is recorded on the log (assuming there is one).
A obtains:: Y o € obtains : IsOnLog(o)

Every entry in revokes (a decision to prove revocation) is recorded on the log (assuming there is one).

>>>>>> > >

A revokes: ¥ r € revokes : IsOnLog(r)

‘We have verifiable revocation.

A InvVerifiableRevocation

!

r

NECESSARY FACTS ABOUT NATURALS

The SMT prover can prove these easily enough in isolation, but if you ask it to prove them in the middle of other proofs where records and other
complicated things are flying around, it usually aborts with a type inference failure.

36

< is a total order

THEOREM ThmNatLeqIsTotal = Vi, j € Nat: i <jVj<i BY SMT
THEOREM ThmNatLeglsReflexive = Vi € Nat : i < i BY SMT
THEOREM ThmNatLeqlsAntisymmetric = Vi, j € Nat : i <jAj<i=i=] BY SMT

THEOREM ThmNatLegls Transitive = Vi,j, k € Nat : i < jAj <k =i <k BY SMT

< minimum is O

THEOREM ThmNatLeqMinlsZero = Vi € Nat : 0 < i BY SMT

< is the opposite of >
A

THEOREM ThmNatLeqXorGt = Vi,j € Nat: i <j=-(i>j) BY SMT

THEOREM ThmNatMore = Vi, j € Nat:i < i+j BY SMT

THEOREM ThmNatLess = Vi,j € Nat:i—j < i BY SMT

THEOREM ThmNatlne = Vi € Nat:i+1> i BY SMT

THEOREM ThmNatDotDot = Vi, j, k€ Nat:i <jAj<k=jci..kBYSMT

THEOREM ThmNatDecZero = ¥n € Nat:n > 0= n—1 € NatBY SMT
THEOREM ThmNatAddEq = Vi,j, k€ Nat : i+ k=7 +k =i =jBY SMT

THEOREM ThmNatLeqLt = Vi,j, k€ Nat : i <jAj < k=i < kBY SMT

NECESSARY FACTS ABOUT SEQUENCES

I have not been able to figure out how to convince the prover to prove most of these.

Definition of a sequence.

THEOREM ThmSeqDef =
ASSUME
NEW CONSTANT S,
NEW CONSTANT ¢ € Seq(S)
PROVE
gq=1[i €1..Len(q)— q[i]]
PROOF
OMITTED

The empty sequence is a sequence of S, for any S.

37

THEOREM ThmSeqEmptylsSeq =
ASSUME
NEW CONSTANT S
PROVE
() € Seq(S)
PROOF
OMITTED

For any sequence g of S, Len(q) € Nat.

THEOREM ThmSeqLenIsNat =
ASSUME
NEW CONSTANT S,
NEW ¢ € Seq(S)
PROVE
Len(q) € Nat
PROOF
OMITTED

For any non-empty sequence of S, its tail is a sequence of S.

THEOREM ThmSeqTaillsSeq =
ASSUME
NEW CONSTANT S,
NEW CONSTANT ¢ € Seq(S),
q# ()
PROVE
Tail(q) € Seq(S)
PROOF
OMITTED

For any sequence of S, appending z € S yields a sequence of S.

THEOREM ThmSeqAppendIsSeq =
ASSUME
NEW CONSTANT 5,
NEW CONSTANT ¢ € Seq(S5),
NEW CONSTANT z € S
PROVE
Append(q, z) € Seq(S)
PROOF
OMITTED

The result of Append(q, x) is one longer than q.

THEOREM ThmSeqAppendLenl =
ASSUME
NEW CONSTANT 5,
NEW CONSTANT ¢ € Seq(S),
NEW CONSTANT z € §
PROVE
Len(Append(q, z)) = Len(q) + 1
PROOF
OMITTED

The result of Append(q, z) starts with g.

THEOREM ThmSegAppendSubSeq =
ASSUME
NEW CONSTANT S,
NEW CONSTANT ¢ € Seq(S),
NEW CONSTANT z € S
PROVE
SubSeq(Append(q, x), 1, Len(q)) = ¢
PROOF
OMITTED

Appending the last entry onto all but the last of a sequence yields the original sequence.

THEOREM ThmSeqAppendPriorLast =
ASSUME
NEW CONSTANT S,
NEW CONSTANT ¢ € Seq(S),
Len(q) >0
PROVE
Append(SubSeq(q, 1, Len(q) — 1), q[Len(q)]) = ¢
PROOF
OMITTED

The entire initial SubSeq of q is q.

THEOREM ThmSeqEntirelnitialSubSeq =
ASSUME
NEW CONSTANT S,
NEW CONSTANT ¢ € Seq(S)
PROVE
q = SubSeq(q, 1, Len(q))
PROOF
OMITTED

39

Initial SubSeq € sequence.

THEOREM ThmSeqlnitialSubSeqlsSeq =
ASSUME
NEW CONSTANT S,
NEW CONSTANT ¢ € Seq(S),
NEW CONSTANT n € Nat,
n < Len(q)
PROVE
SubSeq(q, 1, n) € Seq(S)
PROOF
OMITTED

Initial SubSeq is antisymmetric.

THEOREM ThmsSeqlnitialSubSeqlsAntisymmetric 2
ASSUME
NEW CONSTANT S,
NEW CONSTANT ¢ € Seq(S),
NEW CONSTANT r € Seq(S),
Len(q) < Len(r),
Len(r) < Len(q),
q = SubSeq(r, 1, Len(q)),
r = SubSeq(q, 1, Len(r))
PROVE
g=r
PROOF
(1) Len(q) = Len(r)
(2) USE ThmSeqLenlIsNat
(2) QED BY ThmNatLeqlsAntisymmetric
(1) QED BY ThmSeqEntirelnitialSubSeq

Initial SubSeq is transitive.

THEOREM ThmSeqlnitialSubSeqls Transitive =
ASSUME
NEW CONSTANT S,
NEW CONSTANT ¢ € Seq(S),
NEW CONSTANT r € Seq(S),
NEW CONSTANT s € Seq(S),
Len(q) < Len(r),
Len(r) < Len(s),
q = SubSeq(r, 1, Len(q)),
r = SubSeq(s, 1, Len(r))
PROVE

q = SubSeq(s, 1, Len(q))
PROOF
OMITTED

Sequence append incompatible.

THEOREM ThmSeqAppendIncompatible =
ASSUME
NEW CONSTANT S,
NEW CONSTANT ¢ € Seq(S5),
NEW CONSTANT sl € §,
NEW CONSTANT s2 € §,
sl # 52
PROVE
Append(q, s1) # Append(q, s2)
PROOF
OMITTED

Sequence append anti-collision.

THEOREM ThmSeqAppendAnticollision =
ASSUME
NEW CONSTANT 5,
NEW CONSTANT g,
NEW CONSTANT ¢1 € Seq(S5),
NEW CONSTANT ¢2 € Seq(S5),
NEW CONSTANT sl € §,
NEW CONSTANT s2 € §,
q = Append(ql, s1),
q = Append(q2, s2)

PROVE
ql = q2 N sl =s2
PROOF
OMITTED
PCR OPERATOR THEOREMS

41

Pcrinit € Pcr

THEOREM ThmPerInitlsPer =

Vi € Pcri : PerInit(i) € Pcr
PROOF

(1) TAKE ¢ € Pcri

(1) USE DEF Pcr Pcrinit

(1) DEFINE p = Perlnit(i)
(1)1. p.init € PcriOBVIOUS
(1)
(1)

2. p.extq € Seq(Pcrz)BY ThmSeqEmptylsSeq

QED BY (1)1, (1)2

PcrExtend € Pcr

THEOREM ThmPcrEztendlsPer =
Vp € Per, x € Perx : PerExtend(p, x) € Per
PROOF
(1) TAKE p € Per, x € Perz
USE DEF Pcr PcerExtend
DEFINE pz = PcrExtend(p, x)

2. pz.extq € Seq(Pcrz)BY ThmSeqAppendlsSeq

(1)
(1)
()1. pz.init € PcriOBVIOUS
(1)
)

QED BY (1)1, (1)2

PcrLen € Nat

THEOREM ThmPecrLenlsNat =
Vp € Per: PerLen(p) € Nat
PROOF
(1) TAKE p € Per
(1) USE DEF PcrLen
(1) USE DEF Pcr
(1) QED BY ThmSeqLenIsNat

p < PcrEztend(p, x)

THEOREM ThmPcrFExtendLeq 2

Vp € Per, x € Perx : PerLeq(p, PerExtend(p,
PROOF

(1) TAKE p € Per, x € Perz
(1) DEFINE pz = PerExtend(p, x)
(1) USE DEF Pcr
(1) USE DEF PcrEzxtend
(1) USE DEF PcrLeq
(1)1. p.init = pz.initOBVIOUS
(1)2. Len(p.extq) < Len(px.extq)

z))

42

(2) Len(p.extq) + 1 = Len(pz.extq)BY ThmSeqAppendLenl

(2) USE ThmSeqLenIsNat

(2) QED BY ThmNatMore

(1)3. p.extq = SubSeq(pz.extq, 1, Len(p.extq))BY ThmSeqAppendSubSeq
)

(1) QeD BY (1)1, (1)2, (1)3

p # PcrEztend(p,)

THEOREM ThmPcrEztendNeq =
Vp € Per, x € Perx : p # PcrExtend(p, ©)
PROOF
(1) TAKE p € Per, x € Perz
DEFINE pz = PerExtend(p, x)
USE DEF Pcr
USE DEF PcrEzxtend
p.extq # px.extq
2) p.extq € Seq(Perz)OBVIOUS
2) px.extq € Seq(Pcrz)BY ThmSeqAppendlsSeq
2) DEFINE pn = Len(p.extq)
2) DEFINE pzn = Len(pz.extq)
2) pn # pan
(3) pn € NatBY ThmSeqLenlIsNat
(
(
(
(
(

(1)
(1)
(1)
{1
(
(
(
(
(

pxn € NatBY ThmSeqLenlIsNat
paxn = pn + 1BY ThmSeqAppendLenl
pxn > pnBY ThmNatInc
—(pzn < pn)BY ThmNatLeqXorGt
QED BY ThmNatLeqlsReflexive

(2) QED OBVIOUS
(1) QED OBVIOUS

W W W W ww
= =

Pcr equality. This would seem to be trivial but the prover cannot seem to figure it out by itself.

THEOREM ThmPcrEqual =
Vp, q € Per:
A p.init = q.init
A p.extq = q.extq
=p=9q
PROOF
(1) TAKE p, q € Per
(1) HAVE p.init = q.init A p.extq = q.extq
(1) USE DEF Pcr
The following fact seems to be necessary to help the prover.
(1) p = [q EXCEPT !.init = p.init, !.exlq = p.extq|OBVIOUS
(1) QED OBVIOUS

43

Anti-collision property.

THEOREM ThmPcrEztendAnticollision =
Vpl, p2 € Per, z1, 22 € Pcrz :
PcrEztend(pl, z1) = PcrEztend(p2, ©2) = pl = p2 Azl = 22

PROOF
(1) TAKE pl, p2 € Pcr, x1, 22 € Pcrz

DEFINE pzl = PerErxtend(pl, z1)

DEFINE pz2 = PerErtend(p2, z2)

HAVE pzxl = pz2

USE DEF Pcr

USE DEF PcrExtend

QED

2) pl.init = p2.initOBVIOUS

2) pl.extq = p2.extqg N z1 = 22

(1)
(1)
(1)
(1)
(1)
{1
(
(

Create definitions for the extq fields and then hide them to prevent overwhelming the prover.

) DEFINE plg =
) DEFINE p2¢ =

) HIDE DEF plg

) HIDE DEF p2g¢

Y Append(plq, x1) = Append(p2q, £2)BY DEF plgq, p2q
)

)

)

)

pl.extq
p2.extq

3
3
3
3

3) plq € Seq(Pcrz)BY DEF plg

3) p2q € Seq(Pcrz)BY DEF p2q
plq = p2q A 21 = 22BY ThmSeqAppendAnticollision
QED BY DEF plgq, p2q
ED BY ThmPcrEqual

(3
(
(
(
(
(
(
(3
(3
) Q

2

If two extensions of the same pcr are both < a target pcr, then the extensions must be the same.

THEOREM ThmPcrExtendLeqAnticollision =
Vp,t € Per,xl, 22 € Perz :
PcrLeq(PerExtend(p, x1), t) A PerLeq(PerEstend(p, ©2), t) = z1 = 22

PROOF
(1) TAKE p, t € Pcr, 21, 22 € Perx
(1) HAVE PcrLeq(PcrE:mfend(p7 z1), t) A PerLeq(PcerExtend(p, x2), t)
(1) USE DEF Pcr
(1) USE DEF PcrEzxtend
(1) USE DEF PcrLeq

(1) DEFINE qp = p.extq

(1) DEFINE gt = t.extq

(1) DEFINE gpzl = Append(qp, z1)

(1) DEFINE qpz2 = Append(qp, 2)

(1) gp € Seq(Pcrz)OBVIOUS

(1) gt € Seq(Pcrz)OBVIOUS

(1) Len(gpzl) < Len(qt)OBVIOUS

(1) Len(gpz2) < Len(qt)OBVIOUS

44

(1) SubSeq(qt, 1, Len(gpzl)) = qpz10BVIOUS

(1) SubSeq(qt, 1, Len(gpz2)) = qpr20BVIOUS

(1) HIDE DEF ¢p

(1) HIDE DEF ¢t

(1) Len(qpzl) = Len(qp) + 1BY ThmSeqAppendLenl
(1) Len(qpz2) = Len(qp) + 1BY ThmSeqAppendLenl
(1) Len(gpzl) = Len(gpxz2)OBVIOUS

(1) gpzl = gpx20BVIOUS

(1)

The prover really needs help to focus its attention.

(2)1. 21 € PcrzOBVIOUS

(2)2. 22 € PcrzOBVIOUS

(2)3. gp € Seq(Pcrz)0OBVIOUS

(2)4. Append(qp, 1) = Append(gp, £2)OBVIOUS

(2) QED BY ONLY (2)1, (2)2, (2)3, (2)4, ThmSeqAppendAnticollision

PcrEztend increases the length by 1.

THEOREM ThmPcrEztendLenl =

Vp € Per, x € Perx : PerLen(PcerExtend(p, ©)) = PerLen(p) + 1
PROOF

(1) TAKE p € Per, x € Perz

(1) DEFINE pz = PcrExtend(p, x)

(1) px € PerBY ThmPcerEztendIsPcr

(1) USE DEF PcrLen

(1) USE DEF PcrEzxtend

(1) USE DEF Pcr
(1) QED BY ThmSeqAppendLenl

PcrLeq implies < on respective PcrLen.

THEOREM ThmPcrLeqLeq 2
V' p, ¢ € Per: PerLeq(p, q) = PerLen(p) < PerLen(q)
PROOF
(1) TAKE p, q € Per
(1) HAVE PcrLeq(p, q)
(1) USE DEF Per
(1) Len(p.extq) < Len(q.extq)BY DEF PcrLeq
(1) PcrLen(p) = Len(p.extq)BY DEF PcrLen
(1) PcrLen(q) = Len(q.extq)BY DEF PcrLen
1)

1) QED OBVIOUS

45

PcrLegq is a partial order.

THEOREM ThmPcrLeglsReflexive =
V' p € Per: PerLeq(p, p)
PROOF
(1) TAKE p € Per
USE DEF PcrlLeq
USE DEF Pcr
1. p.init = p.initOBVIOUS
2. Len(p.extq) < Len(p.extq)
2) USE ThmSeqLenIsNat
2) USE ThmNatLeqlsReflexive
2) QED OBVIOUS
3.
2
2

(1

(1
(1
(1

)
)
)
)
(
(
(
(1)3. p.extq = SubSeq(p.extq, 1, Len(p.extq))
(2) USE TthquntzreImtzalSubSeq

(2) QED OBVIOUS

) QED BY (1)1, (1)2, (1)3

(1

THEOREM ThmPecrLeqlsAntisymmetric =
V' p, ¢ € Per: PerLeq(p, q) A PerLeq(q, p) = p =¢q
PROOF
(1) TAKE p, q € Per
(1)2. HAVE PcrLeq(p, q) A\ PerLeq(q, p)
(1)3. p.init = g.init
(2) USE DEF PcrLeq
(2) QED BY (1)2
(1)4. p.extq = q.extq
(2) USE DEF PcrLeq
(2) USE DEF Pcr
(2) USE ThmSeqInitialSubSeqlsAntisymmetric
(2) QED BY (1)2
(1) QED
(2) USE ThmPcrEqual
(2) QED BY (1)3, (1)4

THEOREM ThmPcrLeqlsTransitive =
V' p, q, v € Per: PerLeq(p, q) A PerLeq(q, v) = PcrLeq(p, 7)
PROOF
(1) TAKE p, ¢, r € Pcr
(1) HAVE PcrLeq(p, q) A PerLeq(q, 7)
(1) USE DEF PcrLeq
(1)1. p.init = r.initOBVIOUS
(1)2. Len(p.extq) < Len(r.extq)
(2) USE DEF Pcr
(2) USE ThmSeqLenIsNat

46

(2) QED BY ThmNatLeqlsTransitive
(1)3. p.extq = SubSeq(r.extq, 1, Len(p.extq))
(2) USE DEF Pcr
(2) QED BY ThmSeqlInitialSubSeqls Transitive
(1) QEp BY (1)1, (1)2, (1)3

An extension of a Pcr p cannot reach p.

THEOREM ThmPcrEztendSelfUnreachable =
V'p € Per, © € Pcrx : = PcrLeq(PerExtend(p,), p)
PROOF
(1) TAKE p € Per, x € Perz
(1) DEFINE pz = PerEzxtend(p, z)
(1) DEFINE isleg = PerLeq(pz, p)
(1) px € PerBY ThmPcrExtendIsPer
Proof by contradiction.
(1)1. CASE —islegBY (1)1
(1)2. CASE isleq
(2)1. PerLen(pz) < PcrLen(p)
(3) USE (1)2
(3) USE ThmPcrLeqLeq
(3) QED OBVIOUS
(2)2. PcrLen(px) > PerLen(p)
(3) PcrLen(pz) = PerLen(p) + 1BY ThmPcrExtendLenl
(3) USE ThmPcrLenIsNat
(3) USE ThmNatInc
(3) QED OBVIOUS
(2) USE ThmPcrLenlIsNat
(2) USE ThmNatLeqXorGt
(2) QED BY (2)1, (2)2
(1) QED BY (1)2, (1)1

If an extension of a Pcr can reach a target, the Pcr itself can reach the target.

THEOREM ThmPcrReachablelfEztend =

Vp, q € Per,x € Perz :

PerLeq(PerExtend(p, z), q) = PerLeq(p, q)

PROOF

(1) TAKE p, q¢ € Pcr, z € Perz

(1) DEFINE pz = PerExtend(p, z)

(1) HAVE PcrLeq(pz, q)

(1) px € PerBY ThmPcerExztendIsPcr

(1) PcrLeq(p, pz)BY ThmPcrExtendLeq

(1) QED BY ThmPcrLeqls Transitive

47

If a target Pcr is not reachable from a source Pcr, then it is not reachable from an extension of the source Pcr.

THEOREM ThmPcrEztendSourceUnreachable =
Vp, q € Per, x € Pcrz :
—PcrLeq(p, q) = —PcrLeq(PcrExtend(p, x), q)
PROOF
(1) QED BY ThmPcrReachablelfExtend

If p equals g or cannot reach g, then an extension of p cannot reach q.

THEOREM ThmPcrExtendFromFEqOrNotleq =

Vp, q € Per,z € Perz :

p = qV —PerLeq(p, q) = —PcrLeq(PcrExtend(p, x), q)

PROOF

(1) TAKE p, q € Per, © € Perx
1) HAVE p = q V —~PerLeq(p, q)
) CASE p = ¢BY ThmPcrExtendSelfUnreachable
) CASE —PcrLeq(p, q)BY ThmPcrReachablelfExtend
) QED OBVIOUS

(
(1
(1
(1

Different extensions of a pcr are incompatible.

THEOREM ThmPcrExtendIncompatible 2

Vp € Per,xl, 22 € Perx :

z1 # x2 = = PcrLeq(PcrExtend(p, 1), PcrExtend(p, x2))

PROOF

(1) TAKE p € Pcr, z1, 22 € Pcrz
(1) HAVE z1 # 22
(1) DEFINE pl = PerExtend(p, z1)
(1) DEFINE p2 = PerExtend(p, z2)
(1)1. CASE —PerLeq(pl, p2)BY (1)1
(1)2. CASE PcrLeq(pl, p2)
2) USE (1)2
2) USE DEF PcrLeq
2) USE DEF PcrExtend
2) USE DEF Pcr
2) pl.extq € Seq(Pcrz)BY ThmSeqAppendIsSeq

)
)
)
|
2) p2.extq € Seq(Pcrz)BY ThmSeqAppendIsSeq
)
(
(
(
)
)

)
)
)
)
)
(
(
(
(
()
(
(2) Len(pl.extq) = Len(p2.extq)
3) Len(pl.extq) = Len(p.extq) + 1BY ThmSeqAppendLenl
3) Len(p2.extq) = Len(p.extq) + 1BY ThmSeqAppendLenl
3) QED OBVIOUS
(2) pl.extq = p2.extqBY ThmSeqEntirelnitialSubSeq
(2) pl.extq # p2.extqBY ThmSeqAppendIncompatible

48

(2) QED OBVIOUS
(1) QeD BY (1)1, (1)2

If a Pcr has an extension, applying PriorPcr to it yields a Pcr.

THEOREM ThmPcrPriorIsPer =
V' p € Per : PcrHasExtension(p) = PerPrior(p) € Per
PROOF
(1) TAKE p € Per
(1) HAVE PcrHasExtension(p)
(1) USE DEF PcrHasExtension
(1) USE DEF PcrPrior
(1) USE DEF PcrLen
(1) USE DEF Pcr
(1) PcrPrior(p).extq € Seq(Perz)
(2) Len(p.extq) € NatBY ThmSeqLenlIsNat
(2) Len(p.extq) — 1 € NatBY ThmNatDecZero
(2) Len(p.extq) — 1 < Len(p.extq)BY ThmNatLess
(2) QED BY ThmSeqlInitialSubSeqlsSeq
(1) QED OBVIOUS

Putting the last extension back on the prior pcr yields the original pcr.

THEOREM ThmPecrEstendPriorLast =
Vp € Per:
PcrHasEztension(p) =
PcrEztend(PerPrior(p), PcrLastExtension(p)) = p
PROOF
) TAKE p € Per
) HAVE PcrHasExtension(p)
)} USE DEF PcrHasExtension
)} USE DEF PcrPrior
)} USE DEF PcrLastExtension
)} USE DEF PcrEatend
) USE DEF PcrLen
) USE DEF Pcr
) DEFINE pO = PcrPrior(p)
) DEFINE z = PerLastExtension(p)
) PcrEa:tend(pO x).init = p.initOBVIOUS
) PcrEztend(pO z).extq = p.extq
(2) DEFINE gp = p.extq
(2) SUFFICES
ASSUME
Len(gqp) > 0,

(1

(1
(1
(1
(1
(1
(1
(1
(1
(1
(1
(1

49

qp € Seq(Pcrz)
PROVE
Append(SubSeq(qp, 1, Len(qp) — 1), qp[Len(qp)]) = qp
OBVIOUS
(2) HIDE DEF ¢p
(2) QED BY ThmSeqAppendPriorLast
(1) QED BY ThmPcrEqual

WELL KNOWN PCR VALUES

Value of the application pcr attained by rebooting.

THEOREM ThmAppRebootIsPer = AppReboot € Per
PROOF

(1) USE DEF AppReboot

(1) USE DEF Pcri

(1) QED BY ThmPecrInitlsPcr

Value of the secure execution mode pcr attained by rebooting.
N

THEOREM ThmSemRebootlsPcr = SemReboot € Per
PROOF

(1) USE DEF SemReboot

(1) USE DEF Pcri

(1) QED BY ThmPcriInitlsPcr

Value of the secure execution mode pcr attained by entering the protected module in secure execution mode.

THEOREM ThmSemProtectIsPer = SemProtect € Per
PROOF

(1) USE DEF SemProtect

(1) USE DEF Pcri

(1) QED BY ThmPcrinitlsPcr

Value of the secure execution mode pcr that indicates that Pasture is happy. Recovery has been properly performed and bound keys may be used.
Checkpoint has not yet been invoked.

THEOREM ThmSemHappylsPcr = SemHappy € Pcr

PROOF

(1) USE DEF SemHappy

50

(1) USE ThmSemProtectlsPcr
(1) USE DEF Pcrx
(1) QED BY ThmPcrExtendIsPcr

Value of the seal pcr attained by rebooting.

THEOREM ThmSealRebootIsPer = SealReboot € Per
PROOF

(1) USE DEF SealReboot

(1) USE DEF Pecri

(1) QED BY ThmPcrInitlsPcr

From SemReboot cannot reach Sem Protect.

THEOREM ThmSemRebootNotlegSemProtect = —PcrLeq(SemReboot, SemProtect)
PROOF

(1) USE DEF Pcrlinit
1
1

) USE DEF SemReboot
)
1) USE AssSemProtect
)

USE DEF SemProtect

1) QED BY DEF PcrlLeq

(
(
(
(

PROTECTED NV RAM STATE

THEOREM ThmInitNvIsNv = InitNv € Nv
PROOF

(1) USE DEF InitNv
(1) USE DEF Nv
(1) USE ThmAppRebootIsPcr
(1)

1) QED OBVIOUS

51

SEAL OPERATION TRANSPORT SESSION STATE

THEOREM ThmNullTsIsTs = NullTs € Ts
PROOF

(1) USE DEF Ts

(1) QED OBVIOUS

THEOREM ThmNullTsIsntSignedTs = NullTs ¢ SignedTs
PROOF

(1) USE DEF NullTs

(1) USE NoSetContainsEverything

(1) QED OBVIOUS

PROOF OF INVARIANT InvType

It holds in the initial state.

THEOREM ThmiInitInvType =
Init = InvType
PROOF
1) HAVE Init
) USE DEF Init
) USE DEF Pc, PcRecov, PcChkpt
) USE DEF PcIDLE
) USE DEF PcRECOV'1, PcRECOV2, PcRECOV 3
) USE DEF PcCHKPT1, PcCHKPT2, PcCHKPT3, PcCHKPT4, PcCHKPT5

Just walk through each variable.

1) InvType ! nv BY ThmlInitNvIsNv

{
(1
(1
(1
(1
(1

1)
1) InvType!semPcr BY ThmSemRebootlsPcr
1) InvType!sealPcr BY ThmSealRebootIsPcr
1) InvType ! bootCtr OBVIOUS

1) InvType ! pc OBVIOUS

1) InvType ! chkptts BY ThmNullTsIsTs

1) InvType ! tsvaluesOBVIOUS

1) InvType!obtains OBVIOUS

1) InvType ! revokes OBVIOUS

1) QED BY DEF InvType

52

If it holds in the current state, and we perform a Nezt action, then it will hold in the next state.
Note that none of the Bug* definitions are needed anywhere in this proof, so this proof goes through no matter what intentional bugs are introduced.

THEOREM ThmNeztInvType =
InvType A [Next]yars = InvType’
PROOF
(1) HAVE InvType A [Next]yars
(1) USE DEF InvType
(1) USE DEF Pc, PcRecov, PcChkpt
(1) USE DEF PcIDLE
(1) USE DEF PcRECOV'1, PcRECOV?2, PcRECOV 3
(1) USE DEF PcCHKPT1, PcCHKPT?2, PcCHKPT3, PcCHKPT4, PcCHKPT5

Say QED here so that the rest of the proof has an indentation level. This creates a place where I can use the user interface renumbering operation
to renumber all of the alternatives below.

(1) QED
Stutter step.
(2)1. CASE vars’ = vars
(3) USE (2)1
(3) USE DEF wvars
(3) QED OBVIOUS

Walk through all Nezt alternatives.

(2)2. CASE NextObtainAccess
3) USE NextObtainAccess
3) USE DEF NextObtainAccess
3) QED OBVIOUS

(2)3. CASE NextProveRevoke
3) USE NextProveRevoke
3) USE DEF NextProveRevoke
3) PcrPrior(appPcr) € PerBY ThmPcrPriorIsPcr
3) QED BY ThmPcrExtendIsPcrDEF Pcrz

(

(

(

)

(

(

(

(

(2)4. CASE NextReboot
(3) USE NextReboot
(3) USE DEF NextReboot

(3) InvType! appPcr’ BY ThmAppRebootlsPcr
(3) InvType! semPecr’ BY ThmSemRebootlsPer
(3) InvType! sealPcr'BY ThmSealRebootlsPer
(3) InvType! chkptts'BY ThmNullTsIsTs

(3)

)
(
(
(

3) QED OBVIOUS

(2)5. CASE NextForgetSealT's
3) USE NextForgetSealTs
3) USE DEF NextForgetSealTs
3) QED OBVIOUS

53

(2)6. CASE NextExtendAppPcr

3) USE NextExtendAppPcr

3) USE DEF NextEztendAppPer

3) appPcr’ € PcrBY ThmPcerExtendIsPcrDEF Perx
3)

QED OBVIOUS

CASE NextExtendSemPcr
} USE NextExtendSemPcr
) USE DEF NextExtendSemPer
)
)

(2

InvType! semPcr'BY ThmPcrExtendIsPcrDEF Pcrx
QED OBVIOUS

CASE NextFExtendSeal Per
) USE NextExtendSealPer
) USE DEF NextExtendSealPcr
Y InvType ! sealPcr'BY ThmPcrExtendIsPcrDEF Perz
} QED OBVIOUS

2

7.
3
3
3
3
8.
3
3
3
3
(2)9. CASE NextIncBootCtr
3) USE NextIncBootCtr
3) USE DEF NextIncBootCtr
3) bootCtr' € Nat
(4)1. bootCtr + 1 € NatBY SMT
(4)2. bootCtr’ = bootCtr + 10BVIOUS
(4) QED BY (4)1, (4)2

QED OBVIOUS

6.
(
(
(
(
)
(
(
(
(
)
(
(
(
(
)
(
(
(

3

)

(2)10. CASE NextEnterSemRecov

3) USE NextEnterSemRecov

3) USE DEF NextEnterSemRecov

3) InvType! semPcr’ BY ThmSemProtectIsPcr
3) InvType! pc’ OBVIOUS

3) InvType! chkptts' OBVIOUS

3) QED OBVIOUS

(2)11. CASE NextSemRecovl WhenCorrect
3) USE NextSemRecovl WhenCorrect

3) USE DEF NextSemRecovl WhenCorrect
3) QED OBVIOUS

(2)12. CASE NextSemRecovl WhenlIncorrect

3) USE NextSemRecovl WhenlIncorrect

3) USE DEF NextSemRecovl WhenlIncorrect

3) semPcr’ € PerBY ThmPcrEztendIsPcrDEF Perz
3) QED OBVIOUS
3. CASE NextSemRecov2
} USE NextSemRecov2

(
)
(
(
(
(
(
(
)
(
(
(
)
(
(
(
(
(2)1
(3

54

(3) USE DEF NexztSemRecov2

(3y nv' € Nv

(4)1. nv € NvOBVIOUS

(4)2. nv'.current € BOOLEAN BY DEF Nv

(4)3. nv’ = [nv EXCEPT !.current = nv’.current]OBVIOUS
(4) QED BY ONLY (4)1, (4)2, (4)3 DEF Nv

3) QED OBVIOUS

)

(2)14. CASE NextSemRecov3

3) USE NextSemRecov3

3) USE DEF NextSemRecov3

3) semPcr’ € PcrBY ThmPcrExtendIsPcrDEF Perx
3) pc’ € PcBY DEF Pc, PcRecov

3) QED OBVIOUS
5.
)

)

)

)

(

(2)15. CASE NextSealTs
USE NextSealTs
USE DEF NextSealT's
sealPcr’ € PcrBY ThmPcrExtendIsPcrDEF Pcrx
tsvalues’ € SUBSET T's
4)1. tsvalues € SUBSET TsOBVIOUS
(4) DEFINE ts = NextSealTs! : !ts
(4)2. ts € TsBY DEF Ts, SignedTs

)
)
(4)3. tsvalues’ = tsvalues U {ts}OBVIOUS
)
Q

(
)
(
(
(
(
(
)
(
(
(
(

1
3
3
3
3

(4) QED BY (4)1, (4)2, (4)3

3) QED OBVIOUS

)

(2)16. CASE NextEnterSemChkpt

3) USE NextEnterSemChkpt

3) USE DEF NextEnterSemChkpt

3) semPcr’ € PcrBY ThmSemProtectIsPer
3) QED OBVIOUS
7.
)
)
)
(

(2)17. CASE NextSemChkpt1l WhenCorrect
USE NextSemChkpt1l WhenCorrect
USE DEF NextSemChkptl WhenCorrect
chkptts’ € SignedTs

4) USE DEF EnterSemChkptPredicate

(4) USE DEF T's

(4) QED OBVIOUS

QED OBVIOUS

{
)
{
(
{
{
)1
(3
(3
(3

3

)
(2)18. CASE NextSemChkptl WhenlIncorrect
} USE NextSemChkpt1 WhenlIncorrect
) USE DEF NextSemChkptl WhenIncorrect
) semPcr’ € PerBY ThmPcrExtendIsPcrDEF Perx
)

QED OBVIOUS

(
)1
(3
(3
(3
(3

55

(2)19. CASE NextSemChkpt2

(3) USE NextSemChkpt2
(3) USE DEF NextSemChkpt2
(3) nv' € Nv

(4) DEFINE nvappPcrl £ NextSemChkpt2! : | nvappPerl

(4)1. nvappPecrl € PcrBY DEF SignedT's

(4) QED BY (4)1 DEF Nv

)

3) QED OBVIOUS

(
(2)20. CASE NextSemChkpt3
(3) USE NextSemChkpt3
(3) USE DEF NextSemChkpt3

(3) bootCtr' € Nat

(4)1. bootCtr € NatOBVIOUS

(4)2. bootCtr + 1 € NatBY ONLY (4)1, SMT
(4) QED BY (4)1, (4)2
)

3) QED OBVIOUS

(2)21. CASE NextSemChkptd
(3) USE NextSem Chkptd
(3) USE DEF NextSemChkpt4
(3) nv’ € NuBY DEF Nv
(3) QED OBVIOUS
Y22

(2)22. CASE NextSemChkpth

3) USE NextSemChkpth

3) USE DEF NextSemChkpth

3) semPcr’ € PcrBY ThmPcerExtendIsPcrDEF Perx
} QED OBVIOUS

(2) QED
BY (2)1,
(2)2, (23, (24, (2)5, (2)6, (2)7, (2)8, (2)9, (2)10,
(2)11, (2)12, (2)13, (2)14, (2)15, (2)16, (2)17, (2)18,
(2)19, (2)20, (2)21, (2)22

DEF Next

It is an invariant of the specification.

THEOREM ThmInvType =
Spec = OlInvType
PROOF
(1) Init = InvTypeBY ThmlInitInvType
(1) InvType A [Next]yars = InvType'BY ThmNextInvType
(1) QED

56

PROOF OF INVARIANT InvInSemProtect

It holds in the initial state.

THEOREM ThmInitInvInSemProtect =
Init = InvInSemProtect
PROOF
(1) HAVE Init
(1) InvTypeBY ThmlInitInvType
(1) USE DEF Init
(1) USE DEF InSem
(1) QED BY DEF InvInSemProtect

If it holds in the current state, and we perform a Next action, then it will hold in the next state.

Note that none of the Bug* definitions are needed anywhere in this proof, so this proof goes through no matter what intentional bugs are introduced.

THEOREM ThmNeztInvInSemProtect =
InvInSemProtect A [Next]yars = InvInSemProtect’
PROOF
(1) HAVE InvInSemProtect A [Next]yars
1) USE DEF InvInSemProtect
1) USE DEF InSem

(1)
(1)
(1) InvType’'BY ThmNextInvType
(1) InvInSemProtect ! goal’
(2) USE DEF PcIDLE
(2) USE DEF PcRECOV'1, PcRECOV?2, PcRECOV 3
(2) USE DEF PcCHKPT1, PcCHKPT2, PcCHKPT3, PcCHKPT4, PcCHKPT5

Stutter step.

(2)1. CASE vars’ = vars
(3) USE (2)1
(3) USE DEF wvars
(3) QED OBVIOUS

Walk through all Nezt alternatives.
(2)2. CASE NextObtainAccess
(3) USE NextObtainAccess
(3) USE DEF NextObtainAccess
(3) QED OBVIOUS
)
(

(2)3. CASE NextProveRevoke
3) USE NextProveRevoke

57

) USE DEF NeztProveRevoke
} QED OBVIOUS

3
3
(2)4. CASE NextReboot
3) USE NextReboot
3) USE DEF NextReboot
3) USE DEF PcrLeq
3) USE DEF SemProtect
3) USE DEF SemReboot
3) USE DEF Pcrilnit
3) USE DEF Pcri
3) USE AssSemProtect
3) QED OBVIOUS

(2)5. CASE NextForgetSealTs

3) USE NextForgetSealT's

3) USE DEF NextForgetSealTs
3

7

) QED OBVIOUS

(2)6. CASE NeatExtendAppPcr

) USE NextExtendAppPcr

)} USE DEF NeztEztendAppPer
) QED OBVIOUS

3

3

3

(2)7. CASE NextExtendSemPcr

3) USE NextExtendSemPer

3) USE DEF NextExtendSemPer
3

3

3

3

) QED OBVIOUS

. CASE NextExtendSealPer

} USE NextExtendSealPer

) USE DEF NextExtendSealPcr
) QED OBVIOUS

(2

(2)9. CASE NextIncBootCtr

3) USE NextIncBootCtr

3) USE DEF NextIncBootCtr
3) QED OBVIOUS

(2
USE NextEnterSemRecov
USE DEF NextEnterSemRecov

)
)
)
0. CASE NextEnterSemRecov
)
)
} QED OBVIOUS

1
3
3
3
(2)11. CASE NeatSemRecovl WhenCorrect
3) USE NextSemRecovl WhenCorrect

3) USE DEF NextSemRecovl WhenCorrect
3) QED OBVIOUS

(
(
)
(
(
(
(
(
(
(
(
(
)
(
(
(
)
(
(
(
)
(
(
(
)
(
(
(
)
(
(
(
)
(
(
(
)
(
(
(

58

CASE NextSemRecovl WhenlIncorrect
USE NextSemRecovl WhenIncorrect
USE DEF NextSemRecovl WhenlIncorrect
USE DEF PcrExtend
QED OBVIOUS

(2

1
3
3
3
3

CASE NextSemRecov2
USE NeztSemRecov?2
USE DEF NextSemRecov2
QED OBVIOUS

(2)1
3
3
3
(2)14. CASE NextSemRecov3
3) USE NextSemRecov3
3) USE DEF NextSemRecov3
3) USE DEF PcrExtend
3) QED OBVIOUS

CASE NextSealTs
USE NextSealTs

USE DEF NextSealTs
QED OBVIOUS

2.

)

)

)

)

3.

)

)

)

4.

)

)

)

)

(2)15.

3)

3)

3)

(2)16. CASE NextEnterSemChkpt
3) USE NextEnterSemChkpt

3) USE DEF NextEnterSemChkpt
3) QED OBVIOUS

(2)17. CASE NextSemChkptl WhenCorrect
3) USE NextSemChkpt1 WhenCorrect

3) USE DEF NextSem Chkpt1l WhenCorrect
3) QED OBVIOUS

(2)18. CASE NextSemChkptl WhenlIncorrect
3) USE NextSemChkptl WhenlIncorrect

3) USE DEF NextSemChkptl WhenlIncorrect
3) USE DEF PcrExtend

3) QED OBVIOUS

9.
)
)
)
0.
)
)
)

(2)19. CASE NextSemChkpt2
3) USE NextSemChkpt2
3) USE DEF NextSemChkpt2
3) QED OBVIOUS

CASE NextSemChkpt3
USE NextSemChkpt3
USE DEF NextSemChkpt3

QED OBVIOUS

(2

)
(
(
(
(
)
(
(
(
)
(
(
(
(
)
(
(
(
)
(
(
(
)
(
(
(
)
(
(
(
(
)
(
(
(
)2
(3
(3
(3
)

(2)21. CASE NextSemChkpt4

59

(3) USE NextSemChkpt4
(3) USE DEF NextSemChkpt4
(

)
)
3) QED OBVIOUS
(2)22. CASE NextSemChkpth
(3) USE NeztSemChkpth
(3) USE DEF NextSemChkpt5
(3) USE DEF PcrExtend
(3) QED OBVIOUS
(2) QED
BY (2)1,
(2)2, (2)3, (2)4, (2)5, (2)6, (2)7, (2)8, (2)9, (2)10,
(2)11, (2)12, (2)13, (2)14, (2)15, (2)16, (2)17, (2)18,
(2)19, (2)20, (2)21, (2)22

(1) QED OBVIOUS

It is an invariant of the specification.

THEOREM ThmInvInSemProtect =
Spec = OInvInSemProtect

(1) Init = InvInSemProtectBY ThmInitInvInSemProtect
(1) InvInSemProtect A [Next]yars = InvinSemProtect’
BY ThmNextInvInSemProtect

(1) USE DEF Spec

(1) Qep

!

I

PROOF OF INVARIANT InvUnreachableSemProtect

It holds in the initial state.

THEOREM ThmInitInvUnreachableSemProtect =
Init = InvUnreachableSemProtect

PROOF
(1) HAVE Init
(1) InvTypeBY ThmlInitInvType

60

InvInSemProtectBY ThmlinitInvInSemProtect
USE DEF Init

USE DEF InSem

1) =InSemOBVIOUS

1) =PcrLeq(semPcr, SemProtect)

2) USE DEF PcrLeq

1)
1)
1)
)
)
(
(2) USE DEF SemProtect
(
(
(
(
)

(
(
(
(
(

2) USE DEF SemReboot
2) USE DEF Pcrilnit
2) USE DEF Pecri
2) QED BY AssSemProtect
(1) QED BY DEF InvUnreachableSemProtect

If it holds in the current state, and we perform a Next action, then it will hold in the next state.
Note that none of the Bug* definitions are needed anywhere in this proof, so this proof goes through no matter what intentional bugs are introduced.

THEOREM ThmNeztInvUnreachableSemProtect =
InvUnreachableSemProtect A\ [Next]yars = InvUnreachableSemProtect
PROOF
(1) HAVE InvUnreachableSemProtect N\ [Next]yqars
1) USE DEF InvUnreachableSemProtect
1) USE DEF InSem
1) USE DEF InvinSemProtect

(1)

(1)

1)

(1) InvType’'BY ThmNextInvType

(1) InvInSemProtect’'BY ThmNextInvInSemProtect
(1) InvUnreachableSemProtect ! goal’

(

(

(

2) USE DEF PcIDLE
2) USE DEF PcRECOV'1, PcRECOV?2,; PcRECOV3
2) USE DEF PcCHKPT1, PcCHKPT?2, PcCHKPT3, PcCHKPT4, PcCHKPT5

Stutter step.

(2)1. CASE vars’ = vars
(3) USE (2)1
(3) USE DEF vars
(3) QED OBVIOUS

Walk through all Next alternatives.

(2)2. CASE NextObtainAccess
(3) USE NextObtainAccess
(3) USE DEF NextObtainAccess
(3) QED OBVIOUS
)

(2)3. CASE NextProveRevoke

61

3) USE NextProveRevoke
3) USE DEF NextProveRevoke
3) QED OBVIOUS

(2)4. CASE NextReboot

3) USE NextReboot

3) USE DEF NextReboot
3) USE DEF PcrLeq

3) USE DEF SemProtect
3) USE DEF SemReboot
3) USE DEF Pcrinit

3) USE DEF Pcri

3) USE AssSemProtect
3) QED OBVIOUS

5. CASE NextForgetSealTs

3) USE NextForgetSealTs

3) USE DEF NextForgetSealTs
3) QED OBVIOUS

(2)6. CASE NeatExtendAppPcr

} USE NextExtendAppPcr

) USE DEF NeztEztendAppPcr
) QED OBVIOUS

. CASE NextEzxtendSemPcr

) USE NextExtendSemPer

) USE DEF NextExtendSemPcr

)} USE DEF InvType

y = PerLeq(semPcr’, SemProtect)
(

(

)

(
(
(
)
(
(
(
(
(
(
(
(
(
(2)
(
(
(
)
(
(
(
(2)

(

(

(

(

3
3
3
7
3
3
3
3

4) SemProtect € PerBY ThmSemProtectIsPcr
4) QED BY ThmPcrEaxtendSourceUnreachable

3) QED OBVIOUS

(2)8. CASE NextExtendSealPer
) USE NextExtendSealPer
) USE DEF NextExtendSealPcr

} QED OBVIOUS

8

3

3

3
(2)9. CASE NextIncBootCtr
3) USE NextIncBootCtr
3) USE DEF NextIncBootCtr
3

QED OBVIOUS

(2
USE NextEnterSemRecov
USE DEF NextEnterSemRecov
QED OBVIOUS

(
)
(
(
(
)
(
(
(
)
(
(
(

)
)
)
0. CASE NextEnterSemRecov
)
)
)

1
3
3
3

62

1. CASE NezxztSemRecovl WhenCorrect
USE NextSemRecovl WhenCorrect
USE DEF NextSemRecovl WhenCorrect
QED OBVIOUS

(2)1
3
3
3

2. CASE NextSemRecovl WhenlIncorrect
USE NextSemRecovl WhenIncorrect

USE DEF NextSemRecovl WhenlIncorrect
USE DEF InvType

USE DEF Pcrz

—PerLeq(semPcr’, SemProtect)
4) QED BY ThmPcrExtendSelfUnreachable
QED OBVIOUS

)
(
(
(
(2)
(
(
(
(
(

1
3
3
3
3
3

3

(

(2)13. CASE NextSemRecov2
(3) USE NextSemRecov2
(3) USE DEF NextSemRecov2
(3) QED OBVIOUS

(2)14. CASE NextSemRecov3

(3) USE NexztSemRecov3

(3) USE DEF NextSemRecov3

(3

(3

(3y = PcrLeq(semPcr’, SemProtect)

4) QED BY ThmPcrExtendSelfUnreachable

3) QED OBVIOUS

(2)15. CASE NextSealTs

3) USE NextSealTs

3) USE DEF NextSealT's

3) QED OBVIOUS
(2)16. CASE NextEnterSemChkpt

3) USE NextEnterSemChkpt

3) USE DEF NextEnterSemChkpt

3) QED OBVIOUS
(2)17. CASE NextSemChkptl WhenCorrect
USE NextSemChkptl WhenCorrect
USE DEF NextSemChkptl WhenCorrect
QED OBVIOUS

)

)

)

)

)

)

)

)

(

)

)

)

)

)

)

) USE DEF InvType
) USE DEF Pcrz

)

(

)

)

)

)

)

)

)

)

)

)
)
)
)

1
3
3
3

(2)18. CASE NextSemChkptl WhenIncorrect

) USE NextSemChkpt1 WhenIncorrect
USE DEF NextSemChkptl WhenlIncorrect
USE DEF InvType
USE DEF Pcrz

(
)
(
(
(
)
(
(
(
)
(
(
(
)
(
(
(
(

1
3
3
3
3

63

(3) = PcrLeq(semPer’, SemProtect)
(4) QED BY ThmPcrEztendSelfUnreachable
3) QED OBVIOUS

(2)19. CASE NextSemChkpt2
3) USE NextSemChkpt2

3) USE DEF NextSemChkpt2
3)

QED OBVIOUS

(2)20. CASE NextSemChkpt3
3) USE NextSemChkpt3
)} USE DEF NextSemChkpt3

3
3) QED OBVIOUS

3) USE NextSemChkptd
3) USE DEF NextSemChkpt4
3) QED OBVIOUS

2

(2)22. CASE NextSemChkpth

) USE NextSemChkpt5

USE DEF NextSemChkpt5

USE DEF InvType

USE DEF Pcrz
—PcrLeq(semPer’, SemProtect)

(4) QED BY ThmPcrEztendSelfUnreachable
)

(
)
(
(
(
)
(
(
(
(2)21. CASE NextSemChkpt4
(
(
(
)
(3
(3
(3
(3
(3

)
)
)
)

(3) QED OBVIOUS
(2) QED
BY (2)1,
(2)2, (2)3, (2)4, (2)5, (2)6, (2)7, (2)8, (2)9, (2)10,
(2)11, (2)12, (2)13, (2)14, (2)15, (2)16, (2)17, (2)18,
(2)19, (2)20, (2)21, (2)22

DEF Next
(1) QED OBVIOUS

It is an invariant of the specification.

THEOREM ThmInvUnreachableSemProtect =
Spec = OInvUnreachableSemProtect

PROOF
(1) Init = InvUnreachableSemProtectBY ThmlinitInvUnreachableSemProtect
(1) InvUnreachableSemProtect A [Next]yors = InvUnreachableSemProtect’
BY ThmNextInvUnreachableSemProtect
(1) USE DEF Spec
(1) QED

64

PROOF OF INVARIANT InvNwvProtection

It is an invariant of the specification.

THEOREM ThmInvNvProtection =

Spec = OInvNvProtection
PROOF

(1) InvInSemProtect A InvUnreachableSemProtect = InvNvProtection
(2) HAVE InvInSemProtect A InvUnreachableSemProtect
(2) USE DEF InvInSemProtect
(2) USE DEF InvUnreachableSemProtect
(2) USE DEF InvNvProtection
(2)
(2)

2)1. CASE InSemBY (2)1

2)2. CASE —InSem

Proof by contradiction.

(3)1. CASE semPcr # SemProtectBY (3)1
(3)2. CASE semPcr = SemProtect
(4)1. = PerLeq(semPcr, SemProtect)BY (2)2
(4)2. PcrLeq(semPcr, SemProtect)
(5) semPcr € PerBY InvTypeDEF InvType
(5) QED BY (3)2, ThmPcrLeqlsReflexive
(4) QED BY (4)1, (4)2
(3) QED BY (3)2, (3)1
2) QED BY (2)2, (2)1

Spec = OInvInSemProtectBY ThmlInvinSemProtect
Spec = OInvUnreachableSemProtectBY ThmInvUnreachableSemProtect
QED

—~
—_
~ ~— ~ o~

!

I
PROOF OF INVARIANT InvSignedTsLeqBoot

65

It holds in the initial state.

THEOREM ThmInitInvSigned T'sLeqBoot =
Init = InvSigned TsLeqBoot
PROOF
(1) HAVE Init
(1) InvTypeBY ThmlInitInvType
(1) USE DEF Init
(1) USE DEF InuSignedTsLeqBoot
(1) InvSignedTsLeqBoot ! goal
(2) TAKE ts € tsvalues U {chkptts}
(2) QED BY ThmNullTsIsntSignedTs
(1) QED OBVIOUS

If it holds in the current state, and we perform a Nezt action, then it will hold in the next state.

Note that none of the Bug* definitions are needed anywhere in this proof, so this proof goes through no matter what intentional bugs are introduced.

THEOREM ThmNextInvSignedTsLeqBoot =

InvSigned TsLeqBoot N [Next]yars = InvSignedTsLeqBoot’
PROOF

(1) HAVE InvSigned TsLeqBoot N [Next]yars

1) USE DEF InvSignedTsLeqBoot

(1)
(1) InvType’BY ThmNextInvType
(1) InvSignedTsLeqBoot ! goal’

Stutter step.

(2)1. CASE vars’ = vars
(3) USE (2)1
(3) USE DEF wvars
(3) QED OBVIOUS

Walk through all Next alternatives.

(2)2. CASE NextObtainAccess

3) USE NextObtainAccess

3) USE DEF NextObtainAccess
3) QED OBVIOUS

(2)3. CASE NextProveRevoke
3) USE NextProveRevoke
3) USE DEF NextProveRevoke

3) QED OBVIOUS

(2)4. CASE NextReboot
3) USE NextReboot

3) USE DEF NextReboot

o~~~ o~ o~~~ o~~~

66

3) QED BY ThmNullTsIsntSignedTs

(2)5. CASE NeatForgetSealT's

3) USE NexatForgetSealTs
3) USE DEF NextForgetSealTs
3) QED OBVIOUS

(2)6. CASE NextExtendAppPcr

3) USE NextExtendAppPcr

3) USE DEF NextEztendAppPcr
3) QED OBVIOUS

CASE NextExtendSemPcr
} USE NextExtendSemPcr
)} USE DEF NeztEztendSemPcr
) QED OBVIOUS

(2

7.
3
3
3
(2)8. CASE NextExtendSealPer
3) USE NextExtendSealPcr
3) USE DEF NextExtendSealPcr
3) QED OBVIOUS
(2)9. CASE NextIncBootCtr
3) USE NextIncBootCtr
3) USE DEF NextIncBootCtr
3) USE DEF InvType
3) USE DEF SignedTs
3) bootCtr < bootCtr + 1BY ThmNatMore
3

)
)
)
)
)
) QED BY ThmNatLeqlsTransitive
0.
)
)
)

(2)10. CASE NextEnterSemRecov

3) USE NextEnterSemRecov

3) USE DEF NextEnterSemRecov
3) QED OBVIOUS

(2)11. CASE NextSemRecovl WhenCorrect
3) USE NextSemRecovl WhenCorrect

3) USE DEF NextSemRecovl WhenCorrect
3) QED OBVIOUS

(2)12. CASE NextSemRecovl WhenlIncorrect
3) USE NextSemRecovl WhenlIncorrect

3) USE DEF NextSemRecovl WhenlIncorrect
3) QED OBVIOUS

3.

)

)

)

(2)13. CASE NextSemRecov2
USE NextSemRecov2
USE DEF NextSemRecov?2

QED OBVIOUS

(
)
(
(
(
)
(
(
(
)
(
(
(
)
(
(
(
)
(
(
(
(
(
(
)
(
(
(
)
(
(
(
)
(
(
(
)
(
(
(

1
3
3
3

67

(2)14. CASE NextSemRecov3
3) USE NextSemRecov3

3) USE DEF NextSemRecov3
3) QED OBVIOUS

CASE NextSealTs
) USE NextSealT's
)} USE DEF NextSealTs
) DEFINE ts = NextSealTs! : s
)
(

)
(
(
(

(2)15.
(3
(3
(3
(3) ts.bootCtr < bootCtr

4) USE DEF InvType

(4) USE ThmNatLeqlsReflexive

(4) QED OBVIOUS

3) QED OBVIOUS

(2)16. CASE NextEnterSemChkpt

3) USE NextEnterSemChkpt

3) USE DEF NextEnterSemChkpt
3) QED OBVIOUS

(2)17. CASE NextSemChkpt1l WhenCorrect

3) USE NextSemChkptl WhenCorrect

3) USE DEF NextSemChkptl WhenCorrect
3) QED OBVIOUS

(2)1
3) USE NextSemChkptl WhenlIncorrect

3) USE DEF NextSemChkpt1l Whenlncorrect
3) QED OBVIOUS

(2)19. CASE NextSemChkpt2
USE NextSemChkpt2
USE DEF NeztSemChkpt2

QED OBVIOUS

)
6.
)
)
)
7.
)
)
)
8. CASE NextSemChkptl WhenlIncorrect
)
)
)
19.
3)
3)
3)
20.

(2)20. CASE NextSemChkpt3
USE NeatSemChkpt3
USE DEF NextSemChkpt3
USE DEF InvType

USE DEF SignedTs

3)
3)
3)
3)
3) bootCtr < bootCtr’
(
(
(
)

(
)
(
(
(
)
(
(
(
)
(
(
(
)
(
(
(
)
(
(
(
E
4) USE ThmNatLeqlsReflexive
4) USE ThmNatMore

4) QED OBVIOUS

(3) USE ThmNatLeqlsTransitive
(3) QED OBVIOUS

(2)21. CASE NextSemChkpt4

68

3) USE NextSemChkpt4

3) USE DEF NextSemChkptd

3) QED OBVIOUS

(2

} USE NextSemChkpth
USE DEF NextSemChkptb

)
22. CASE NextSemChkpth
)
) QED OBVIOUS

3
3
3

~ o~~~ — o~~~

(1) QED OBVIOUS

PROOF OF INVARIANT InvUnforgeableSemHappy

It holds in the initial state.

THEOREM ThmInitInvUnforgeableSemHappy =
Init = InvUnforgeableSemHappy

PROOF

1) HAVE Init

InvTypeBY ThmlInitInvType

InvinSemProtectBY ThmiInitInvinSemProtect

USE DEF Init

USE DEF InSem

—InSemOBVIOUS

—PerLeq(semPcr, SemHappy)

2) USE DEF PcrLeq

2) USE DEF Pcrlinit

2) USE DEF PcrExtend

2) USE DEF SemHappy

)

)

)

{
(1
(1
(1
(1
(1
(1

2) USE DEF SemReboot
2) USE DEF SemProtect
2) USE AssSemProtect

)
)
)
)
)
)
(
(
(
(
(
(
(

69

(2) QED OBVIOUS
(1) QED BY DEF InvUnforgeableSemHappy

If it holds in the current state, and we perform a Next action, then it will hold in the next state.
Note that none of the Bug* definitions are needed anywhere in this proof, so this proof goes through no matter what intentional bugs are introduced.

THEOREM ThmNeztInvUnforgeableSemHappy =
InvUnforgeableSemHappy A [Next]yqrs = InvUnforgeableSemHappy'
PROOF
(1) HAVE InvUnforgeableSemHappy A [Next]yqrs
USE DEF InvUnforgeableSemHappy

1) USE DEF InSem

InvType'BY ThmNextInvType
InvinSemProtect’'BY ThmNextInvInSemProtect
InvUnforgeableSemHappy ! goal’

(1
(
(1
(1
(1

)
)
)
)
)
(2) USE DEF PcIDLE

(2) USE DEF PcRECOV'1, PcRECOV?2, PcRECOV 3

(2) USE DEF PcCHKPT1, PcCHKPT2, PcCHKPT3, PcCHKPT4, PcCHKPT5

Stutter step.

(2)1. CASE vars’ = vars
(3) USE (2)1
(3) USE DEF vars
(3) QED OBVIOUS

Walk through all Next alternatives.

(2)2. CASE NextObtainAccess
3) USE NextObtainAccess
3) USE DEF NextObtainAccess
3) QED OBVIOUS

(2)3. CASE NeatProveRevoke
3) USE NextProveRevoke
3) USE DEF NextProveRevoke
3) QED OBVIOUS

3) USE NextReboot

3) USE DEF NextReboot

3) USE DEF PcrlLeq

3) USE DEF Pcrlinit
) USE DEF PcrExtend
) USE DEF SemHappy
)

USE DEF SemReboot

(
(
(
)
(
(
(
(2)4. CASE NextReboot
(
(
(
(
(3
(3
(3

70

3) USE DEF SemProtect
3) USE AssSemProtect
3) QED OBVIOUS

(2)5. CASE NeatForgetSealT's
3) USE NextForgetSealT's
3) USE DEF NextForgetSealT's

3) QED OBVIOUS

(
(
(
)
(
(
(
(2)6. CASE NextExtendAppPcr
(3) USE NeatExtendAppPcr

(3) USE DEF NextExtendAppPcr
(3) QED OBVIOUS

)
(
(
(
(
(

(2)7. CASE NextExtendSemPcr
3) USE NextExtendSemPer
3) USE DEF NexztEztendSemPcr
3) USE DEF InvType
3) HAVE —InSem/’
3)1. CASE semPcr = SemHappy
(4 sk (3)1
(4) QED BY ThmPcrEztendSelfUnreachable
(3)2. CASE —PerLeq(semPcr, SemHappy)
(4) Usk (3)2
(4) SemHappy € PcerBY ThmSemHappylsPcr
(4) = PcrLeq(semPer’, SemHappy)BY ThmPcrExtendSourceUnreachable
(4) QED OBVIOUS
)

3) QED BY (3)1, (3)2

(2)8. CASE NextExtendSeal Per
) USE NextExtendSealPer
) USE DEF NeztEztendSealPcr

) QED OBVIOUS

(2
USE NextIncBootCtr

8.

3

3

3

9. CASE NextIncBootCtr
3

3) USE DEF NextIncBootCtr
3

QED OBVIOUS

)
)
)
0. CASE NextEnterSemRecov
)
)
)

(2)1
3) USE NextEnterSemRecov
3) USE DEF NextEnterSemRecov
3) QED OBVIOUS
(2 CASE NextSemRecovl WhenCorrect

11.
3) USE NextSemRecovl WhenCorrect

3) USE DEF NextSemRecovl WhenCorrect
3) QED OBVIOUS

(
)
(
(
(
)
(
(
(
)
(
(
(
)
(
(
(

71

. CASE NextSemRecovl WhenlIncorrect

USE NextSemRecovl WhenIncorrect

USE DEF NextSemRecovl WhenlIncorrect

USE DEF InvType

USE DEF Pcrx

semPcr = SemProtectBY DEF InvInSemProtect
USE DEF SemHappy

USE AssSemHappy

USE ThmPcrExtendIncompatible

QED OBVIOUS

(2)1
3
3
3
3
3
3
3
3
3

(2)13. CASE NextSemRecov2

3) USE NextSemRecov2

3) USE DEF NextSemRecov?2
3) QED OBVIOUS

(2)14. CASE NextSemRecov3

3) USE NextSemRecov3

3) USE DEF NextSemRecov3

3) semPcr = SemProtectBY DEF InvInSemProtect
3) USE DEF SemHappy

3) QED OBVIOUS

(2)1
3) USE NextSealTs

3) USE DEF NextSealT's
3) QED OBVIOUS
(2)16. CASE NextEnterSemChkpt

3) USE NextEnterSemChkpt

3) USE DEF NextEnterSemChkpt
3) QED OBVIOUS

(2)17. CASE NextSemChkpt1l WhenCorrect

3) USE NextSemChkptl WhenCorrect

3) USE DEF NextSemChkptl WhenCorrect

3) QED OBVIOUS

. CASE NextSemChkpt1 WhenlIncorrect

USE NeatSemChkptl WhenlIncorrect

USE DEF NextSemChkpt1 WhenlIncorrect

USE DEF InvType

USE DEF Pcrz

semPcr = SemProtectBY DEF InvInSemProtect
USE DEF SemHappy

USE AssSemHappy

USE ThmPcrExtendIncompatible

QED OBVIOUS

2
)
)
)
)
)
)
)
)
)
3
)
)
)
4
)
)
)
)
)
5. CASE NextSealTs
)
)
)
6
)
)
)
7
)
)
)
(2)18
)
)
)
)
)
)
)
)
)

)
(
(
(
(
(
(
(
(
(
)
(
(
(
)
(
(
(
(
(
)
(
(
(
)
(
(
(
)
(
(
(
)
(
(
(
(
(
(
(
(
(

1
3
3
3
3
3
3
3
3
3

72

(2)19. CASE NextSemChkpt2
(3) USE NeztSemChkpt2
(3) USE DEF NextSemChkpt2
(3) QED OBVIOUS

(2)20. CASE NextSemChkpt3
(3) USE NextSemChkpt3
(3) USE DEF NextSemChkpt3
(3) QED OBVIOUS

(2)21. CASE NextSemChkpt4
(3) USE NextSem Chkptd
(3) USE DEF NextSemChkptd
(3) QED OBVIOUS
3) USE NextSemChkpth
3) USE DEF NextSemChkpt5
3) USE DEF InvType
3) USE DEF Pcrz
3) semPcr = SemProtectBY DEF InvInSemProtect
3) USE DEF SemHappy
3) USE AssSemHappy
)
)

)

(2)22. CASE NextSemChkpth
3) USE ThmPcrEzrtendIncompatible
) Q

(
(
(
(
(
(
(
(
(
Y

3) QED OBVIOUS
(2) QED
BY (2)1,
(2)2, (2)3, (2)4, (2)5, (2)6, (2)7, (2)8, (2)9, (2)10
(2)11, (2)12, (2)13, (2)14, (2)15, (2)16, (2)17, (2)18
(2)19, (2)20, (2)21, (2)22

DEF Next
(1) QED OBVIOUS

It is an invariant of the specification.

THEOREM ThmlInvUnforgeableSemHappy =
Spec = OInvUnforgeableSemHappy

PROOF
(1) Init = InvUnforgeableSemHappyBY ThmlInitInvUnforgeableSemHappy
(1) InvUnforgeableSemHappy N [Next]yars = InvUnforgeableSemHappy'
BY ThmNextInvUnforgeableSemHappy
(1) USE DEF Spec
(1) QED

73

PROOF OF INVARIANT InvUnforgeableSealReboot

It holds in the initial state.

THEOREM ThmInitInvUnforgeableSealReboot =
Init = InvUnforgeableSealReboot
PROOF
(1) HAVE Init
(1) InvTypeBY ThmlInitInvType
(1) sealPcr = SealRebootBY DEF Init
(1) QED BY DEF InvUnforgeableSeal Reboot

If it holds in the current state, and we perform a Nezt action, then it will hold in the next state.

Note that none of the Bug* definitions are needed anywhere in this proof, so this proof goes through no matter what intentional bugs are introduced.

THEOREM ThmNeztInvUnforgeableSealReboot =
InvUnforgeableSealReboot A [Next)]yors = InvUnforgeableSeal Reboot’
PROOF
(1) HAVE InvUnforgeableSealReboot N [Next]yqrs
1) USE DEF InvUnforgeableSealReboot

(1)
(1) InvType'BY ThmNextInvType
(1) InvUnforgeableSealReboot ! goal’
(2) USE DEF PcIDLE
(2) USE DEF PcRECOV'1, PcRECOV?2, PcRECOV 3
(2) USE DEF PcCHKPT1, PcCHKPT2, PcCHKPT3, PcCHKPT4, PcCHKPT5

Stutter step.

(2)1. CASE vars’ = vars
(3) USE (2)1
(3) USE DEF wvars
(3) QED OBVIOUS

Walk through all Next alternatives.

(2)2. CASE NextObtainAccess
3) USE NextObtainAccess
3) USE DEF NextObtainAccess
3) QED OBVIOUS

3) USE NextProveRevoke
3) USE DEF NextProveRevoke

{
{
(
(2)3. CASE NextProveRevoke
(
(
(3) QED OBVIOUS

74

4. CASE NextReboot
) USE NextReboot
)} USE DEF NextReboot
} QED OBVIOUS

) USE NextForgetSealT's
) USE DEF NextForgetSealT's

3
3
3
5. CASE NextForgetSealTs
3
3
3) QED OBVIOUS

6. CASE NextFExtendAppPcr

} USE NextExtendAppPcr

)} USE DEF NeztEztendAppPer
) QED OBVIOUS

. CASE NextExtendSemPcr

) USE NextExtendSemPer

) USE DEF NeztEztendSemPcr
) QED OBVIOUS

SealReboot € PcrBY ThmSealRebootIsPcr

)

)

) sealPcr € PcrBY DEF InvType

)

) QED BY ThmPcrExtendFromEqOrNotleq

USE NextIncBootCtr
USE DEF NexztIncBootCtr
QED OBVIOUS

USE NextEnterSemRecov
USE DEF NextEnterSemRecov

)
)
)
0. CASE NextEnterSemRecov
)
)
) QED OBVIOUS

11. CASE NeatSemRecovl WhenCorrect
3) USE NextSemRecovl WhenCorrect

3) USE DEF NextSemRecovl WhenCorrect
3) QED OBVIOUS

12. CASE NextSemRecovl WhenlIncorrect
3) USE NextSemRecovl WhenlIncorrect

3) USE DEF NextSemRecovl WhenIncorrect
3) QED OBVIOUS

(2)13. CASE NextSemRecov?2

3) USE NextSemRecov2

75

) USE DEF NeztSemRecov2
) QED OBVIOUS

(2)14. CASE NextSemRecov3
3) USE NextSemRecov3

3) USE DEF NextSemRecov3
3) QED OBVIOUS

(2)15. CASE NextSealTs

3) USE NextSealTs

3) USE DEF NextSealT's

3) USE DEF Pcrz

3) sealPcr € PcrBY DEF InvType

3) SealReboot € PcrBY ThmSealRebootlsPcr
3) QED BY ThmPcrExtendFromFEqOrNotleq

)

5.

)

)

)

)

)

)

(2)16. CASE NextEnterSemChkpt
3) USE NextEnterSemChkpt
3) USE DEF NextEnterSemChkpt
3) QED OBVIOUS

(2)17. CASE NextSemChkpt1 WhenCorrect
3) USE NextSemChkpt1 WhenCorrect
3) USE DEF NextSemChkptl WhenCorrect
3) QED OBVIOUS

8.

)

)

)

9.

)

)

)

0.

)

)

)

(2)18. CASE NextSemChkptl Whenlncorrect

3) USE NextSemChkpt1l WhenIncorrect

3) USE DEF NextSemChkptl WhenlIncorrect
3) QED OBVIOUS

(2)19. CASE NextSemChkpt2
3) USE NextSemChkpt2

3) USE DEF NeztSemChkpt2
3) QED OBVIOUS

(2)20. CASE NextSemChkpt3
3) USE NextSemChkpt3

3) USE DEF NextSemChkpt3
3) QED OBVIOUS

(2)21. CASE NextSemChkpt4
3) USE NextSemChkpt4

3) USE DEF NeztSemChkpt4
3) QED OBVIOUS

(2
USE NextSemChkptb
USE DEF NextSemChkpt5

(3
(3
)
(
(
(
)
(
(
(
(
(
(
)
(
(
(
)
(
(
(
)
(
(
(
)
(
(
(
)
(
(
(
)
(
(
(
)
(3
(3

)
)
)
22. CASE NextSemChkpth
)
)

76

(3) QED OBVIOUS
(2) QED
BY (2)1,
(2)2, (2)3, (2)4, (2)5, (2)6, (2)7, (2)8, (2)9, (2)10,
(2)11, (2)12, (2)13, (2)14, (2)15, (2)16, (2)17, (2)18,
(2)19, (2)20, (2)21, (2)22
DEF Next

(1) QED OBVIOUS

It is an invariant of the specification.

THEOREM ThmInvUnforgeableSealReboot =
Spec = OInvUnforgeableSealReboot

PROOF
(1) Init = InvUnforgeableSealRebootBY ThmlInitInvUnforgeableSealReboot
(1) InvUnforgeableSealReboot A [Next]yqrs = InvUnforgeableSealReboot’
BY ThmNextInvUnforgeableSeal Reboot
(1) USE DEF Spec
(1) QED

PROOF OF INVARIANT InvProperLastExtension

It holds in the initial state.
THEOREM ThmiInitInvProperLastExtension =
Init = InvProperLastExtension
PROOF
(1) HAVE Init
(1) InvTypeBY ThmlInitInvType
(1) QED BY DEF InvProperLastExtension, Init

If it holds in the current state, and we perform a Next action, then it will hold in the next state.

THEOREM ThmNeztInvProperLastExtension =
InvProperLastExtension A [Next]yqrs = InvProperLastExtension’

71

PROOF
(1) HAVE InvProperLastExtension A [Next]|yars
1) USE DEF InvProperLastExtension

(1)
(1) InvType’BY ThmNextInvType
(1) InvProperLastExtension ! goal’

‘Wow, this is an easy one.

2) USE DEF vars

2) USE DEF NextObtainAccess

2) USE DEF NextProveRevoke

2) USE DEF NextReboot

2) USE DEF NextForgetSealT's

2) USE DEF NexztEztendAppPer

2) USE DEF NextExtendSemPer

2) USE DEF NeztEztendSealPcr

2) USE DEF NextIncBootCtr

2) USE DEF NextEnterSemRecov

2) USE DEF NextSemRecovl WhenCorrect
2) USE DEF NextSemRecovl WhenlIncorrect
2) USE DEF NextSemRecov2

2) USE DEF NeztSemRecov3

2) USE DEF NextSealT's

2) USE DEF NextEnterSemChkpt

2) USE DEF NeztSemChkptl WhenCorrect
2) USE DEF NextSemChkptl WhenIncorrect
2) USE DEF NextSemChkpt2

2) USE DEF NextSemChkpt3

2) USE DEF NextSemChkpt4

2) USE DEF NextSemChkpt5

2) QED BY DEF Next
(1) QED OBVIOUS

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
)

It is an invariant of the specification.

THEOREM ThmInvProperLastExtension =
Spec = OInvProperLastErtension

PROOF
(1) Init = InvProperLastExztensionBY ThmlinitInvProperLastExtension
(1) InvProperLastExtension A [Next]yqrs = InvProperLastExtension’
BY ThmNextInvProperLastErtension
(1) USE DEF Spec
(1) QED

78

PROOF OF INVARIANT InvOneLog

It holds in the initial state.

THEOREM ThmlInitInvOneLog =
Init = InvOneLog

PROOF
(1) HAVE Init
InvType BY ThmlInitInvType
InvSigned TsLeqBoot BY ThmlInitInvSignedTsLeqBoot
InvInSemProtect BY ThmlInitInvInSemProtect

(1)
(1)
(1)
(1) InvUnforgeableSemHappy BY ThmlInitInvUnforgeableSemHappy
(1) InvUnforgeableSealReboot BY ThmlInitInvUnforgeableSealReboot
(1) InvProperLastExtension BY ThmlInitInvProperLastExtension
(1) USE DEF Init
(1) USE DEF InitNv
(1) USE DEF PcIDLE
(1) USE DEF PcRECOV1, PcRECOV 2, PcRECOV3
(1) USE DEF PcCHKPT1, PcCHKPT?2, PcCHKPT3, PcCHKPT4, PcCHKPT5
(1) LogInNvBY DEF LogInNv
(1) = LogInApp
(2 semPer # SemHappy
(3) semPer.init # SemHappy.init
(4) semPer.init # SemProtect.init
(5) USE DEF SemReboot
(5) USE DEF SemProtect
(5) USE DEF Perlinit
(5) QED BY AssSemProtect
)
)

1
1
1
1

(4) USE DEF SemHappy
(4) QED BY DEF PcrEztend
(3) QED BY DEF Pecr
(2) QED BY DEF LogInApp
(1) =LogInTs N AllCurrentTs = {}
(2) = CheckTsIsCurrent(chkptts)
) USE DEF CheckTsIsCurrent

(3
(3) QED BY ThmNullTsIsntSignedTs
)

(2) USE DEF AllCurrentTs
(2) QED BY DEF LogInTs
(1) InvOneLog! goal! obtains BY DEF IsOnLog
(1) InvOneLog! goal ! revokes BY DEF IsOnLog
(1) InvVerifiable Revocation BY DEF InvVerifiable Revocation
(1) QED BY DEF InvOneLog

79

If it holds in the current state, and we perform a Nezt action, then it will hold in the next state.

THEOREM ThmNeztInvOneLog =
InvOneLog N [Next]pars = InvOneLog’

PROOF

) HAVE InvOneLog A [Next]yars

(1
(1) InvType BY DEF InvOneLog
(1) InvSignedTsLeqBoot BY DEF InvOneLog
(1) InvInSemProtect BY DEF InvOneLog
(1) InvUnforgeableSemHappy BY DEF InvOneLog
(1) InvUnforgeableSealReboot BY DEF InvOneLog
(1) InvProperLastExtension ~ BY DEF InvOneLog
(1) InvType’ BY ThmNextInvType
(1) InvSignedTsLeqBoot’ BY ThmNextInvSignedTsLeqBoot
(1) InvInSemProtect’ BY ThmNextInvInSemProtect
(1) InvUnforgeableSemHappy' BY ThmNextInvUnforgeableSemHappy
(1) InvUnforgeableSealReboot’ BY ThmNextInvUnforgeableSealReboot
(1) InvProperLastExtension’ BY ThmNextInvProperLastExtension
(1) InvOneLog! goal’
(2) USE DEF PcIDLE
(2) USE DEF PcRECOV'1, PcRECOV?2, PcRECOV 3
(2) USE DEF PcCHKPT1, PcCHKPT2, PcCHKPT3, PcCHKPT4, PcCHKPT5

Stutter step.

(2)1. CASE vars’ = vars
(3) UsE (2)1
(3) USE DEF wvars
(3) UNCHANGED CheckTsIsCurrent(chkptts)BY DEF CheckTslsCurrent
(3) UNCHANGED AllCurrentTs
(4) USE DEF AllCurrentTs
(4) USE DEF CheckTsIsCurrent
(4) QED BY DEF LogInTs
3) UNCHANGED CurrentTsLog BY DEF ClurrentTsLog
3) UNCHANGED LogInNv BY DEF LogInNv
3) UNCHANGED LogInApp BY DEF LogInApp
3) UNCHANGED LogInTs BY DEF LogInTs
3) InvOneLog! goal! obtains’ BY DEF IsOnLog, InvOneLog
3) InvOneLog! goal ! revokes’ BY DEF IsOnLog, InvOneLog
3) InvVerifiableRevocation’ BY DEF InvVerifiable Revocation, InvOneLog
3) QED BY DEF InvOneLog

(
(
(
(
(
(
(
(

80

NextObtainAccess or NextProveRevoke

(2)2. CASE NextObtainAccess V NextProveRevoke
(3) USE (2)2

(3) USE DEF NextObtainAccess

(3) USE DEF NextProveRevoke

(

(

3
3

)

)

)

) UNCHANGED CheckTslsCurrent(chkptts)BY DEF CheckTsIsCurrent
) UNCHANGED AllCurrentTs
(4) USE DEF AllCurrentTs

(4) USE DEF CheckTsIsCurrent
(4) QED BY DEF LogInTs

)

)

)

)

)

(4

(3) UNCHANGED CurrentTsLog BY DEF ClurrentTsLog
(3) UNCHANGED LogInNv BY DEF LogInNv

(3) UNCHANGED LogInApp BY DEF LogInApp

(3) UNCHANGED LogInTs BY DEF LogInTs

(3) LogInApp

) CASE NexatObtainAccess
NextObtainAccess is predicated on the fact that the log is in the application pcr.
This depends on N
A Bu_qObt(u'nAccessNoC’heckHappyA = FALSE
A BugObtainAccessNoCheckSeal = FALSE
(5) BugObtainAccessNoCheckHappy = FALSEBY DEF BugObtainAccessNoCheckHappy
(5) BugObtainAccessNoCheckSeal = FALSEBY DEF BugObtainAccessNoCheckSeal
(5) QED BY DEF LogInApp
) CASE NextProveRevoke
NextProveRevoke is predicated on the fact that the log is in the application pcr.

(4

This depends on N
A Bu_qProveRevolceNoC’heckHappyA = FALSE
A BugProveRevokeNoCheckSeal = FALSE
(5) BugProveRevokeNoCheckHappy = FALSEBY DEF BugProveRevokeNoCheckHappy
(5) BugProveRevokeNoCheckSeal = FALSEBY DEF BugProveRevokeNoCheckSeal
(5) QED BY DEF LogInApp
(4) QED OBVIOUS
(3) InuOneLog ! goal! obtains’ A InuvOneLog ! goal! revokes’

Since the log is in the application pcr, putting a copy of the application pcr into obtains or into revokes preserves the invariant that
everything in obtains U revokes can reach the log.

(4) PerLeq(appPer, appPcr)BY ThmPcrLeqlsReflexiveDEF InvType
(4) QED BY DEF IsOnLog, InvOneLog
(3) InvVerifiable Revocation’

Since we only add an element to obtainsUrevokes when the log is in the application pcr, we know that all elements in obtainsUrevokes
in the new state must be on the log, which we can check as < app pcr.

So we proceed with proof by contradiction. Assuming that verifiable deletion will be violated in the new state, we pick the o € obtains
and r € revokes whose PcrPrior’s are the same. But since both o and » must be < app per, this means that their last extension must
be the same. This contradicts the assumption that OBTAIN is different from REVOKE.

(4) CASE InvVerifiable Revocation’ OBVIOUS
(4) cASE —~InvVerifiableRevocation’

81

5) PICK o € obtains’, r € revokes’ : PcrPrior(o) = PcrPrior(r)
BY DEF InvVerifiable Revocation
) DEFINE p = PcrPrior(o)
DEFINE 20 = PerLastExtension(o)
DEFINE zr = PerLastExtension(r)
p € PcrBY ThmPcrPriorlsPcrDEF InvType, InvProperLastEztension

appPcr’ € PcrBY DEF InvType
QED BY ThmPcrEztendLegAnticollision
(5) PcrtOBTAIN +# PerxREVOKEBY AssObtainNeqRevoke
(5) QED OBVIOUS
(4) QED OBVIOUS
(3) QED BY DEF InvOneLog

(

(6)

(6) HIDE DEF ar
(6)

(6)

NextReboot

(2)3. CASE NextReboot
(3) USE NextReboot
(3) USE DEF NextReboot
(3) UNCHANGED LogInNv BY DEF LogInNv
Cancels SemHappy if we had it, which erases any log that had been in the application pcr.
(3y = LogInApp’
(4) semPcr’ # SemHappy
(5) semPcr’.init # SemHappy.init
(6) semPer’.init # SemProtect.init
7) USE DEF SemReboot
7) USE DEF SemProtect
7) USE DEF Pcrlnit
7) QED BY AssSemProtect
(6) USE DEF SemHappy
(6) QED BY DEF PcrExtend
(5) QED BY DEF Pecr
(4) QED BY DEF LogInApp

(
(
(
(
)
)

82

Overwrites chkptts with an unsigned s, which might erase a log that had been in the seal attestations.
(3) LogInTs' = LogInTs
(4) HAVE LogInTs'
(4)y AllCurrentTs' # {}BY DEF LogInTs
(4) USE DEF AllCurrentTs
(4) USE DEF CheckTslsCurrent
(4) = CheckTsIsCurrent(chkptts)'BY ThmNullTsIsntSignedTs
(4y T ts € tsvalues’ : CheckTslsCurrent(ts)OBVIOUS
(4) QED BY DEF LogInTs

Any remaining current seal attestations existed previously, so they must contain the same log.

(3yVisl, ts2 € AllCurrentTs’ : ts1.appPecr = ts2.appPer
(4) TAKE ts1, ts2 € AllCurrentTs’
(4) USE DEF AllCurrentTs
(4) USE DEF CheckTsIsCurrent
(4) =~ CheckTsIsCurrent(chkptts)'BY ThmNullTsIsntSignedTs
(4) ts1 € AllCurrentTsOBVIOUS
(4) ts2 € AllCurrentTsOBVIOUS
(4) QED BY DEF InvOneLog

If there are any remaining current seal attestations, the log in them has to be the same as before.

(3) LogInTs' = UNCHANGED CurrentTsLog
(4) HAVE LogInTs'

)
) USE DEF CheckTsIsCurrent

5) = CheckTsIsCurrent(chkptts)'BY ThmNullTsIsntSignedTs

5)Vits € AllCurrentTs' : ts € AllCurrentTsOBVIOUS

5) QED OBVIOUS

4y Vsl € AllCurrentTs’ :

Vts0 € AllCurrentTs :

tsl.appPcr = tsO.appPcr

BY DEF InvOneLog

(4) QED BY DEF CurrentTsLog

InvOneLog! goal ! obtains’ BY DEF IsOnLog, InvOneLog

InvOneLog! goal ! revokes’ BY DEF IsOnLog, InvOneLog
InvVerifiableRevocation’ BY DEF InvVerifiableRevocation, InvOneLog
QED BY DEF InvOneLog

(3)
(3)
(3)
(3)

NextForgetSealTs

(2)4. CASE NextForgetSealTs
(3) USE NextForgetSealT's

(3) USE DEF NextForgetSealTs

(3) UNCHANGED LogInNv BY DEF LogInNv

(3) UNCHANGED LogInApp BY DEF LogInApp

83

(3) UNCHANGED CheckTsIsCurrent(chkptts)BY DEF CheckTslsCurrent

Forgets a seal attestation, which might erase a log that had been in the seal attestations.

(3) LogInTs' = LogInTs
(4) HAVE LogInTs’
(4)y AllCurrentTs' # {}BY DEF LogInTs
(4) USE DEF AllCurrentTs
(4) USE DEF CheckTslsCurrent
(4) QED BY DEF LogInTs

Any remaining current seal attestations existed previously, so they must contain the same log.

(3y Vs, ts2 € AllCurrentTs' : ts1.appPer = ts2.appPer
(4) TAKE ts1, ts2 € AllCurrentTs’
(4) USE DEF AllCurrentTs
(4) USE DEF CheckTsIsCurrent
(4) ts1 € AllCurrentTsOBVIOUS
(4) ts2 € AllCurrentTsOBVIOUS
(4) QED BY DEF InvOneLog

If chkptts contains a current seal attestation, then the log is in the seal attestations.

(3) CheckTsIsCurrent(chkptts) = LogInTs'
(4) USE DEF LogInTs
(4) USE DEF AllCurrentTs
(4) USE DEF CheckTslsCurrent
(4) QED OBVIOUS
If there are any remaining current seal attestations, the log in them has to be the same as before.

(3) LogInTs' = UNCHANGED CurrentTsLog
(4) HAVE LogInTs'
(4)y Its € AllCurrentTs’ : ts € AllCurrentTs
5) USE DEF LogInTs
5) USE DEF AllCurrentTs
5) USE DEF CheckTsIsCurrent
5YVits € AllCurrentTs' : ts € AllCurrentTsOBVIOUS
5) QED OBVIOUS
(4)Visl € AllCurrentTs’ :
Vts0 € AllCurrentTs :
tsl.appPcr = ts0.appPcr
BY DEF InvOneLog
(4) QED BY DEF CurrentTsLog
(3) InvOneLog! goal! obtains’ BY DEF IsOnLog, InvOneLog
(3) InvOneLog ! goal ! revokes’ BY DEF IsOnLog, InuvOneLog
(3)
(3)

4)
(
(
(
(
(

3) InvVerifiableRevocation’ BY DEF InvVerifiableRevocation, InvOneLog
3) QED BY DEF InvOneLog

NextExtendAppPcr

84

(2)5. CASE NextExtendAppPcr
(3) USE NextExtendAppPcr
(3) USE DEF NextExtendAppPcr
(3) UNCHANGED CheckTsIsCurrent(chkptts)BY DEF CheckTslsCurrent
(3) UNCHANGED AllCurrentT's
(4) USE DEF AllCurrentTs
(4) USE DEF CheckTsIsCurrent
(4) QED BY DEF LogInTs
(3) UNCHANGED CurrentTsLogBY DEF CurrentTsLog
(3) UNCHANGED LogInNv BY DEF LogInNv
(3) UNCHANGED LogInApp BY DEF LogInApp
(3) UNCHANGED LogInTs
(4) USE DEF AllCurrentTs
(4) USE DEF CheckTslsCurrent
(4) QED BY DEF LogInTs
} InvVerifiableRevocation’ BY DEF InvVerifiableRevocation, InvOneLog
Y InvOneLog ! goal! obtains’ A InvOneLog! goal ! revokes’
(4) CASE = LogInApp
(5) USE DEF LogInApp
(5) USE DEF IsOnLog, InvOneLog

NextEztendAppPcr is predicated on not being in sem, so none of the sem clauses apply.

(5) USE DEF InSem
(5) QED OBVIOUS

(4) CASE LogInApp
(5) USE DEF LogInApp

If the log is in the application pcr, extending the application per preserves the fact that all entries in obtains U revokes can reach it.

(3
(3

(5) V' p € obtains U revokes : LogInApp = PcrLeq(p, appPer’)

) UNCHANGED (obtains U revokes)OBVIOUS
6) TAKE p € obtains U revokes
Y HAVE LogInApp
} PcrLeq(p, appPcr)BY DEF IsOnLog, InvOneLog
Y PerLeq(appPer, appPer’)BY ThmPcrExtendLegDEF InvType
Y QED BY ThmPcrLeqls TransitiveDEF InvType

(5) QED BY DEF IsOnLog, InvOneLog

(4) QED OBVIOUS

(3) QED BY DEF InvOneLog

(6
(
(6
(6
(6
(6

NextExtendSemPcr

(2)6. CASE NextEztendSemPcr
(3) USE NeztExtendSemPcr
(3) USE DEF NextExtendSemPer
(3) UNCHANGED CheckTsIsCurrent(chkptts)BY DEF CheckTslsCurrent
(3) UNCHANGED AllCurrentTs
(4) USE DEF AllCurrentTs

85

(4) USE DEF CheckTsIsCurrent
(4) QED BY DEF LogInTs
(3) UNCHANGED CurrentTsLog BY DEF CurrentTsLog
(3) UNCHANGED LogInNv BY DEF LogInNv
Cancels SemHappy if we had it, which erases any log that had been in the application pcr.
(3) = LogInApp’
(4) semPer’ # SemHappy
(5) semPcr = SemHappy V - PcrLeq(semPcr, SemHappy)
BY DEF InvUnforgeableSemHappy
(5) semPcr € PcrBY DEF InvType
(5) SemHappy € PcrBY ThmSemHappylsPcr
(5) mPcrLeq(semPer’, SemHappy)BY ThmPcrExtendFromEqOrNotleq
(5) QED BY ThmPcrLeqlsReflexive
(4) QED BY DEF LogInApp
(3) UNCHANGED LogInTs
(4) USE DEF AllCurrentTs
(4) USE DEF CheckTslsCurrent
(4) QED BY DEF LogInTs
} InvOneLog ! goal! obtains’ BY DEF IsOnLog, InvOneLog
Y InuOneLog ! goal ! revokes’ BY DEF IsOnLog, InvOneLog
} InvVerifiableRevocation’ BY DEF InvVerifiableRevocation, InvOneLog
3) QED BY DEF InvOneLog

(3
(3
(3
(

NextExtendSeal Pcr

(2)7. CASE NextExtendSealPcr

) USE NextExtendSealPcr

) USE DEF NextExtendSealPcr

) UNCHANGED CheckTsIsCurrent(chkptts)BY DEF CheckTsIsCurrent
) UNCHANGED AllCurrentTs
(
(
(
)

(3) UNCHANGED CurrentTsLog BY DEF CurrentTsLog
(3) UNCHANGED LogInNv BY DEF LogInNv
Cancels SealReboot if we had it, which erases any log that had been in the application pcr.
(3) = LogInApp’
(4) sealPer’ # SealReboot
(5) sealPer = SealReboot V —PerLeq(sealPcr, SealReboot)
BY DEF InvUnforgeableSeal Reboot
(5) sealPcr € PcrBY DEF InvType
(5) SealReboot € PerBY ThmSealRebootIsPcr
(5) = PcrLeq(sealPecr’, SealReboot)BY ThmPcrExtendFromEqOrNotleq
(5) QED BY ThmPcrLeqlsReflexive
(4) QED BY DEF LogInApp

86

(3) UNCHANGED LogInTs
(4) USE DEF AllCurrentTs
(4) USE DEF CheckTslsCurrent
(4) QED BY DEF LogInTs
(3) InuOneLog ! goal! obtains’ BY DEF IsOnLog, InvOneLog
(3) InvOneLog! goal ! revokes’ BY DEF IsOnLog, InvOneLog
(3) InvVerifiableRevocation’ BY DEF InvVerifiableRevocation, InvOneLog
(3) QED BY DEF InvOneLog

NextIncBootCtr

(2)8. CASE NextIncBootCtr
(3) USE NexatIncBootCtr
(3) USE DEF NeztincBootCtr
(3) UNCHANGED LogInNv BY DEF LogInNv
(3) UNCHANGED LogInApp BY DEF LogInApp

Since no signed ts seal can have a bootCtr greater than the current bootCtr, incrementing bootCtr erases any log that had been in a seal
attestation.
(3) = LogInTs'
(4) USE DEF AllCurrentTs
(4) USE DEF CheckTsIsCurrent
4y Vits € tsvalues’ U {chkptts'} : ts € SignedTs = ts.bootCtr # bootCtr’
5) TAKE ts € tsvalues’ U {chkptts'}
5) ts € tsvalues U {chkptts}OBVIOUS
5) HAVE ts € SignedTs
5) ts.bootCtr < bootCtrBY DEF InuSignedTsLeqBoot
5) ts.bootCtr € NatBY DEF SignedTs
5) bootCtr € NatBY DEF InvType
5) bootCtr’ € NatBY DEF InvType
5) bootCtr < bootCtr'BY ThmNatInc
5) ts.bootCtr < bootCtr'BY ThmNatLeqLt
5) QED BY ThmNatLeqXorGt, ThmNatLeqlsReflexive
(4) QED BY DEF LogInTs

Erases all current t¢s seal attestations.

(3 AllCurrentTs’ = {} A = CheckTsIsCurrent(chkptts)’

(4) USE DEF AllCurrentTs

(4) USE DEF CheckTsIsCurrent

(4) QED BY DEF LogInTs

) USE DEF InSem

) InvOneLog ! goal ! obtains’ BY DEF IsOnLog, InvOneLog
)

)

)

)
)
(
(
(
(
(
(
(
(
(
(

InvOneLog! goal ! revokes’ BY DEF IsOnLog, InuvOneLog
InvVerifiableRevocation’ BY DEF InvVerifiableRevocation, InvOneLog

(3
(3
(3
(3
(3) QED BY DEF InvOneLog

87

NexztEnterSemRecov

(2)9. CASE NextEnterSemRecov
(3) USE NextEnterSemRecov
(3) USE DEF NeztEnterSemRecov
(3) USE DEF InSem
(3) UNCHANGED CheckTsIsCurrent(chkptts)BY DEF CheckTsIsCurrent
(3) UNCHANGED AllCurrentTs
(4) USE DEF AllCurrentTs
(4) USE DEF CheckTslsCurrent
(4) QED BY DEF LogInTs
(3) UNCHANGED CurrentTsLogBY DEF CurrentTsLog
(3) UNCHANGED LogInNv BY DEF LogInNv
Cancels SemHappy if we had it, which erases any log that had been in the application pcr.
(3y = LogInApyp’
(4) semPer’ # SemHappy
(5) USE DEF SemHappy
(5) USE DEF SemProtect
(5) USE DEF Pcri
(5) USE DEF Pcrx
(5) USE ThmPcrInitIsPcr
(5) USE ThmPcrEaxtendIsPer
(5) PerLeq(SemProtect, SemHappy)BY ThmPcrExtendLeq
(5) = PcrLeq(SemHappy, SemProtect)BY ThmPcrExtendSelfUnreachable
(5) QED BY ThmPcrLeqlsAntisymmetric
(4) QED BY DEF LogInApp
(3) UNCHANGED LogInTs
(4) USE DEF AllCurrentTs
(4) USE DEF CheckTsIsCurrent
(4) QED BY DEF LogInTs
) InuOneLog ! goal ! obtains’ BY DEF IsOnLog, InvOneLog
Y InuOneLog ! goal ! revokes’ BY DEF IsOnLog, InvOneLog
}y InvVerifiableRevocation’ BY DEF InvVerifiableRevocation, InvOneLog
)

3) QED BY DEF InvOneLog

(3
(3
(3
(

NextSemRecovl WhenCorrect

(2)10. CASE NextSemRecovl WhenCorrect
(3) USE NeztSemRecovl WhenCorrect
(3) USE DEF NextSemRecovl WhenCorrect
(3) UNCHANGED CheckTsIsCurrent(chkptts)BY DEF CheckTsIsCurrent
(3) UNCHANGED AllCurrentTs
(4) USE DEF AllCurrentTs
(4) USE DEF CheckTsIsCurrent
(4) QED BY DEF LogInTs
(3) UNCHANGED CurrentTsLog BY DEF CurrentTsLog

88

(3) UNCHANGED LogInNv BY DEF LogInNv
(3) UNCHANGED LogInApp BY DEF LogInApp
(3) UNCHANGED LogInTs BY DEF LogInTs
EnterSemRecovPredicate guarantees that the log is in the nv ram.
This depends on BugRecovNoCheckCur £ FALSE
(3) LogInNv
(4) USE DEF EnterSemRecovPredicate
(4) BugRecovNoCheckCur = FALSEBY DEF BugRecovNoCheckCur
(4) QED BY DEF LogInNv
EnterSemRecovPredicate guarantees that the application pcr equals the log saved in the nv ram.
This depends on BugRecovNoCheckApp £ FALSE
(3) appPcr = nv.appPcr
(4) USE DEF EnterSemRecovPredicate
(4) BugRecovNoCheckApp = FALSEBY DEF BugRecovNoCheckApp
(4) QED OBVIOUS
3) InuOneLog ! goal! obtains’ BY DEF IsOnLog, InvOneLog
3) InvOneLog! goal ! revokes’ BY DEF IsOnLog, InvOneLog
) InvVerifiableRevocation’ BY DEF InvVerifiable Revocation, InvOneLog
} QED BY DEF InvOneLog

(
(
(3
(3

NextSemRecovl WhenlIncorrect

(2)11. CASE NextSemRecovl WhenlIncorrect
} USE NextSemRecovl WhenlIncorrect
) USE DEF NextSemRecovl Whenlncorrect
) UNCHANGED CheckTslsCurrent(chkptts)BY DEF CheckTsIsCurrent
3) UNCHANGED AllCurrentTs
(4) USE DEF AllCurrentTs
(4) USE DEF CheckTsIsCurrent
(4) QED BY DEF LogInTs
(3) UNCHANGED CurrentTsLog BY DEF CurrentTsLog
(3) UNCHANGED LogInNv BY DEF LogInNv
Extending sem pcr with Unhappy results in something other than SemHappy, which indicates that the log is not in the application pcr.
(3) = LogInApp’
(4)y semPer’ # SemHappy
(5) USE DEF SemHappy
(5) USE DEF SemProtect
(5) USE DEF Pcri
(5) USE DEF Pcrx
(5) USE ThmPcrInitlsPer
(5)
(5)
(5)
(5)

(3
(3
(3
{

5) USE ThmPcrExtendlsPcr

5) semPcr = SemProtectBY DEF InvInSemProtect, InSem
5) USE AssSemHappy

5) QED BY ThmPcrExtendAnticollision

&9

(4) QED BY DEF LogInApp

(3) UNCHANGED LogInTs

(4) USE DEF AllCurrentTs

(4) USE DEF CheckTsIsCurrent

(4) QED BY DEF LogInTs

(3) InuvOneLog ! goal ! obtains’ BY DEF IsOnLog, InvOneLog

(3) InuOneLog! goal ! revokes’ BY DEF IsOnLog, InvOneLog

(3) InvVerifiableRevocation’ BY DEF InvVerifiableRevocation, InvOneLog
(3) QED BY DEF InvOneLog

NextSemRecov2

(2)12. CASE NextSemRecov2
(3) USE NextSemRecov2
(3) USE DEF NextSemRecov2
(3) UNCHANGED CheckTsIsCurrent(chkptts)BY DEF CheckTslsCurrent
(3) UNCHANGED AllCurrentTs
(4) USE DEF AllCurrentTs
(4) USE DEF CheckTslsCurrent
(4) QED BY DEF LogInTs
(3) UNCHANGED CurrentTsLogBY DEF CurrentTsLog
Clearing nv current erases the log from the nv ram.
This depends on BugRecovNo ClrCur 2 FALSE
(3) = LogInNv'
(4) ~nv'.current

(5) BugRecovNoClrCur = FALSEBY DEF BugRecovNoClrCur
(5) QED BY DEF InvType, Nv

(4) QED BY DEF LogInNv
UNCHANGED LogInApp BY DEF LogInApp
3 LogInA LogInA
(3) UNCHANGED LogInTs BY DEF LogInTs
(3) InvOneLog! goal! obtains’ BY DEF IsOnLog, InvOneLog
(3) InvOneLog! goal ! revokes’ BY DEF IsOnLog, InvOneLog
nvVerifiableRevocation’ BY DEF InvVerifiableRevocation, InvOneLog

3) InvVerifiableR tion’ InvVerifiable R tion, InvOneL
(3) QED BY DEF InvOneLog

NextSemRecov3

(2)13. CASE NeatSemRecov3
(3) USE NextSemRecov3
(3) USE DEF NextSemRecov3
(3) UNCHANGED CheckTsIsCurrent(chkptts)BY DEF CheckTslsCurrent
(3) UNCHANGED AllCurrentT's
(4) USE DEF AllCurrentTs
(4) USE DEF CheckTsIsCurrent

90

(4) QED BY DEF LogInT's
(3) UNCHANGED CurrentTsLog BY DEF CurrentTsLog
(3) UNCHANGED LogInNv BY DEF LogInNv
Extending sem per to SemHappy puts the log in the application per, provided that the seal pcr contains SealReboot.
But in the current state the log has no domicile. So the fact that its domicile might be the application pcr in the next state does not require a
proof that it is not living anywhere else, since we get that for free.
(3) LogInApp’ € BOOLEAN BY DEF LogInApp
(3) UNCHANGED LogInTs BY DEF LogInTs
(3) InuOneLog ! goal ! obtains’ BY DEF IsOnLog, InvOneLog
(3) InvOneLog! goal ! revokes’ BY DEF IsOnLog, InvOneLog
(3) InvVerifiableRevocation’ BY DEF InvVerifiable Revocation, InvOneLog
(3) QED BY DEF InvOneLog

NextSealT's

(2)14. CASE NextSealTs
(3) USE NewtSealTs
(3) USE DEF NextSealT's
(3) UNCHANGED CheckTsIsCurrent(chkptts)BY DEF CheckTslsCurrent
(3) UNCHANGED LogInNv BY DEF LogInNv
Cancels SealReboot if we had it, which erases any log that had been in the application pcr.
This depends on BugSealNoExt £ FALSE
(3) = LogInApp’
(4) sealPer’ # SealReboot
(5) sealPcr = SealReboot V = PerLeq(sealPcr, SealReboot)
BY DEF InvUnforgeableSeal Reboot
(5) sealPer € PcrBY DEF InvType
(5) SealReboot € PerBY ThmSealRebootIsPcr
(5) = PcrLeq(sealPer’, SealReboot)
(6) sealPcr’ = PerEatend(sealPcr, PerzSEAL)
(7) BugSealNoExt = FALSEBY DEF BugSealNoFEzt
(7) QED OBVIOUS
(6) USE DEF Pcrx
(6) QED BY ThmPcrExtendFromEqOrNotleq
(5) QED BY ThmPcrLeqlsReflexive
(4) QED BY DEF LogInApp
(3) InvVerifiableRevocation’ BY DEF InvVerifiableRevocation, InvOneLog
If the log was not in the application pcr, the resulting seal attestation will not be valid, so there is no change in AllCurrentTs or
LogSummaryInTs.
(3) CASE —LogInApp
(4) UNCHANGED AllCurrentTs
(5) USE DEF AllCurrentTs
(5) USE DEF CheckTslsCurrent
Use PICK to make ts a CONSTANT so that = CheckT'sIsCurrent(ts)’ means the ts picked now evaluated with CheckTsIs Current
in the next state.

91

(5) PICK ts € SignedTs : ts = NextSealTs! : 'tsBY DEF InvType, SignedTs
(5) Vsl € tsvalues’ : CheckTsIsCurrent(tsl)’ = tsl € tsvalues

(6) tsvalues’ = tsvalues U {ts}OBVIOUS

(6) ~CheckTsIsCurrent(ts)'BY DEF LogInApp

(6) QED OBVIOUS
(5) QED OBVIOUS
(4) UNCHANGED LogInTs BY DEF LogInTs
(4) UNCHANGED CurrentTsLog BY DEF CurrentT'sLog
(4) InvOneLog! goal! obtains’ BY DEF IsOnLog, InvOneLog
(4) InvOneLog ! goal ! revokes’ BY DEF IsOnLog, InvOneLog
(4) QED BY DEF InvOneLog

If the log was in the application pcr, the resulting seal attestation will be valid. But then the old AllCurrentT's had to be empty, since the
log could not have been in the seal attestations.

(3) CASE LogInApp

Use PICK to make ¢s a CONSTANT so that CheckTsIsCurrent(ts)’ means the ts picked now evaluated with CheckT'sIsCurrent in
the next state.

(4) PICK ts € SignedTs : ts = NextSealTs! : 1tsBY DEF InvType, SignedTs
(4) CheckTslsCurrent(ts)’
(5) CheckTslsCurrent(ts)BY DEF CheckTsIsCurrent, LogInApp
(5) QED BY DEF CheckTslsCurrent
4y AllCurrentTs' = {ts}
(5 Vtsl € tsvalues U {chkptts'} : = CheckTsIsCurrent(tsl)’
(6) AllCurrentTs = {}
(7) = LogInTsBY DEF InvOneLog
(7) QED BY DEF LogInTs
(6) =~ CheckTsIsCurrent(chkptts)’
(7) = CheckTsIsCurrent(chkptts)BY DEF AllCurrentTs
(7) QED BY DEF CheckTsIsCurrent
(6) Vsl € tsvalues : ~CheckTsIsCurrent(tsl)’
(7Y Vtsl € tsvalues : = CheckTsIsCurrent(ts1)BY DEF AllCurrentTs
(7) QED BY DEF CheckTsIsCurrent
(6) QED BY DEF CheckTsIsCurrent
(5) tsvalues’ = tsvalues U {ts}OBVIOUS
(5) ts € AllCurrentTs'BY DEF AllCurrentTs
(5) QED BY DEF AllCurrentTs
(4) Vs, ts2 € AllCurrentTs’ : tsl.appPcr = ts2.appPcrOBVIOUS
(4) LogInTs’ BY DEF LogInTs
(4) CurrentTsLog’ = ts.appPcr BY DEF CurrentTsLog
(4) InvOneLog! goal! obtains’ BY DEF IsOnLog, InvOneLog
(4) InvOneLog! goal ! revokes’ BY DEF IsOnLog, InvOneLog
(4) QED BY DEF InvOneLog
(3) QED OBVIOUS

NeztEnterSemChkpt

92

(2)15. CASE NeatEnterSemChkpt
(3) USE NextEnterSemChkpt
(3) USE DEF NextEnterSemChkpt
(3) USE DEF InSem
(3) UNCHANGED LogInNv BY DEF LogInNv
Cancels SemHappy if we had it, so erases any log that might have been in the application pcr.
(3) = LogInApp’
(4) semPer’ # SemHappy
(5) USE DEF SemHappy
(5) USE DEF SemProtect
(5) USE DEF Pcri
(5) USE DEF Pcrx
(5) USE ThmPcrInitlsPcr
(5) USE ThmPcrExtendIsPer
(5) PcrLeq(SemProtect, SemHappy)BY ThmPcrExtendLeq
(5) = PcrLeq(SemHappy, SemProtect)BY ThmPcrExtendSelfUnreachable
(5) QED BY ThmPcrLeqlsAntisymmetric
(4) QED BY DEF LogInApp
Overwrites chkptts with a value from tsvalues, so if chkptts had been the only seal log, we just erased it.
(3) LogInTs' = LogInTs
(4) HAVE LogInTs'
(4)y AllCurrentTs' # {}BY DEF LogInTs
(4) USE DEF AllCurrentTs
(4) USE DEF CheckTsIsCurrent
(4) chkptts’ € tsvalues’OBVIOUS
(4y I ts € tsvalues’ : CheckTsIsCurrent(ts)OBVIOUS
(4) QED BY DEF LogInTs

Any remaining current seal attestations existed previously, so they must contain the same log.

(3yVisl, ts2 € AllCurrentTs’ : ts1.appPcr = ts2.appPer
(4) TAKE ts1, ts2 € AllCurrentTs’

(4) USE DEF AllCurrentTs

(4) USE DEF CheckTsIsCurrent

(4) chkptts’ € tsvaluesOBVIOUS

(4) ts1 € AllCurrentTsOBVIOUS

(4) ts2 € AllCurrentTsOBVIOUS

(4) QED BY DEF InvOneLog

If there are any remaining current seal attestations, the log in them has to be the same as before.

(3) LogInTs" = UNCHANGED CurrentTsLog
(4) HAVE LogInTs'
(4) Its € AllCurrentTs’ : ts € AllCurrentTs
(5) USE DEF LogInTs
(5) USE DEF AllCurrentTs
(5) USE DEF CheckTsIsCurrent
(5) Vs € AllCurrentTs’ : ts € AllCurrentTsOBVIOUS

93

(5) QED OBVIOUS
(4)Visl € AllCurrentTs’ :
Vts0 € AllCurrentTs :
tsl.appPcr = tsO.appPcr
BY DEF InvOneLog
(4) QED BY DEF CurrentTsLog
(3) InuvOneLog ! goal ! obtains’ BY DEF IsOnLog, InvOneLog
(3) InuOneLog ! goal ! revokes’ BY DEF IsOnLog, InvOneLog
(3) InvVerifiableRevocation’ BY DEF InvVerifiable Revocation, InvOneLog
(3) QED BY DEF InvOneLog

NextSemChkptl WhenCorrect

(2)16. CASE NextSemChkptl WhenCorrect
(3) USE NextSemChkptl WhenCorrect
(3) USE DEF NextSemChkptl WhenCorrect
(3) UNCHANGED CheckTsIsCurrent(chkptts)BY DEF CheckTslsCurrent
(3) UNCHANGED AllCurrentTs
(4) USE DEF AllCurrentTs
(4) USE DEF CheckTsIsCurrent
(4) QED BY DEF LogInTs
3) UNCHANGED CurrentTsLogBY DEF CurrentTsLog
3) UNCHANGED LogInNv BY DEF LogInNv
3) UNCHANGED LogInApp BY DEF LogInApp
3) UNCHANGED LogInTs BY DEF LogInTs
EnterSemChkptPredicate guarantees that the log is in the seal attestations (in particular, in chkptts).

o~ o~~~

This depends on
A Bu_thlcptNoC’heckTsHa;opyA 2 FALSE
A BugChkptNoCheckTsSeal N FALSE
A BugChkptNoCheckTsCtr = FALSE
(3) LogInTs N CheckTsIsCurrent(chkptts) A CurrentTsLog = chkptts.appPcr
(4) USE DEF EnterSemChkptPredicate
(4) BugChkptNoCheckTsHappy = FALSEBY DEF BugChkptNoCheckTsHappy
(4) BugChkptNoCheckTsSeal = FALSEBY DEF BugChkptNoCheckTsSeal
(4) BugChkptNoCheckTsCtr = FALSEBY DEF BugChkptNoCheckTsCtr
(4) CheckTslsCurrent(chkptts)BY DEF CheckTsIsCurrent
(4) AllCurrentTs # {}BY DEF AllCurrentTs
(4) CurrentTsLog = chkptts.appPer
(5y Vts € AllCurrentTs : ts.appPcr = chkptts.appPcr
BY DEF AllCurrentTs, InvOneLog
(5) QED BY DEF CurrentTsLog
(4) QED BY DEF LogInTs
(3) InvOneLog! goal! obtains’ BY DEF IsOnLog, InvOneLog
(3) InvOneLog! goal ! revokes’ BY DEF IsOnLog, InvOneLog
(3) InvVerifiableRevocation’ BY DEF InvVerifiableRevocation, InvOneLog

94

(3) QED BY DEF InvOneLog

NextSemChkptl WhenlIncorrect

(2)17. CASE NextSemChkptl WhenlIncorrect
(3) USE NextSem Chkptl WhenlIncorrect
(3) USE DEF NextSemChkpt1l WhenlIncorrect
(3) UNCHANGED CheckTsIsCurrent(chkptts)BY DEF CheckTsIsCurrent
(3) UNCHANGED AllCurrentTs
(4) USE DEF AllCurrentTs
(4) USE DEF CheckTslsCurrent
(4) QED BY DEF LogInTs
(3) UNCHANGED CurrentTsLogBY DEF CurrentTsLog
(3) UNCHANGED LogInNv BY DEF LogInNv
Extending sem pcr with Unhappy results in something other than SemHappy, which indicates that the log is not in the application pcr.
(3) = LogInApp’
(4) semPcr’ # SemHappy
(5) USE DEF SemHappy
(5) USE DEF SemProtect
(5) USE DEF Pecri
(b) USE DEF Perz
(5) USE ThmPcrInitlsPer
(5) USE ThmPcrExtendIsPcr
(5) semPcr = SemProtectBY DEF InvinSemProtect, InSem
(5) USE AssSemHappy
(5) QED BY ThmPcrExtendAnticollision

UL Ut Ut Ut

4) QED BY DEF LogInApp

) USE DEF AllCurrentTs
4) USE DEF CheckTsIsCurrent

InvOneLog! goal ! obtains’
nvOneLog! goal ! revokes’
InvVerifiable Revocation’

(
)
(
(
(4) QED BY DEF LogInTs
)
) I
)
} QED BY DEF InvOneLog

NextSem Chkpt2

(2)18. CASE NeatSemChkpt2
(3) USE NextSemChkpt2
(3) USE DEF NeztSemChkpt2
(3
(3

)
)
) UNCHANGED AllCurrentTs
(4) USE DEF AllCurrentTs

(

BY DEF IsOnLog, InvOneLog
BY DEF IsOnLog, InuvOneLog
BY DEF InvVerifiableRevocation, InvOneLog

UNCHANGED CheckTsIsCurrent(chkptts)BY DEF CheckTsIsCurrent

4) USE DEF CheckTsIsCurrent

95

(4) QED BY DEF LogInT's
) UNCHANGED CurrentTsLogBY DEF CurrentTsLog
) UNCHANGED LogInNv

(3
(3
(4) USE DEF InvType
(4) USE DEF Nv
(4) QED BY DEF LogInNv
(3) UNCHANGED LogInApp BY DEF LogInApp
(3) UNCHANGED LogInTs BY DEF LogInTs
Storing the log from chkptts to the nv ram.
This depends on BugChkptSave CurApp 2 FALSE
(3) nv'.appPcr = chkptts.appPcr
(4) BugChkptSaveCurApp = FALSEBY DEF BugChkptSave CurApp
(4) QED BY DEF InvType, Nv
(3) InuOneLog ! goal ! obtains’ BY DEF IsOnLog, InvOneLog
(3) InuOneLog ! goal ! revokes’ BY DEF IsOnLog, InvOneLog
(3) InvVerifiableRevocation’ BY DEF InvVerifiable Revocation, InvOneLog
(3) QED BY DEF InvOneLog

NextSemChkpt3

(2)19. CASE NexatSemChkpt3
(3) USE NextSemChkpt3
(3) USE DEF NextSemChkpt3
(3) UNCHANGED LogInNv BY DEF LogInNv
(3) UNCHANGED LogInApp BY DEF LogInApp
Since no signed ¢s seal can have a bootCtr greater than the current bootCtr, incrementing bootCtr erases any log that might have been in
a seal attestation.
This depends on BugChkptNolncCtr £ FALSE
(3) = LogInTs'
(4) USE DEF AllCurrentTs
(4) USE DEF CheckTslsCurrent
4y Vts € tsvalues’ U {chkptts'} : ts € SignedTs = ts.bootClr # bootCtr’
5) TAKE ts € tsvalues’ U { chkptts'}
5) ts € tsvalues U { chkptts }OBVIOUS
5) HAVE ts € SignedTs
5) ts.bootCtr < bootCtrBY DEF InvSignedTsLeqBoot
5) ts.bootCtr € NatBY DEF SignedT's
5) bootCtr € NatBY DEF InvType
5) bootCtr’ € NatBY DEF InvType
5Y bootCtr < bootCtr’
(6) BugChkptNoIncCtr = FALSEBY DEF BugChkptNolncCtr
(6) QED BY ThmNatInc
(5) ts.bootCtr < bootCtr'BY ThmNatLeqLt
(5) QED BY ThmNatLeqXorGt, ThmNatLeqlsReflexive

)
)
(
(
(
(
(
(
(
(

96

(4) QED BY DEF LogInT's

Erases all current t¢s seal attestations.

(3) AllCurrentTs’ = {} A = CheckTslsCurrent(chkptts)’
(4) USE DEF AllCurrentTs
(4) USE DEF CheckTslsCurrent
(4) QED BY DEF LogInTs
(3) InuvOneLog ! goal! obtains’ BY DEF IsOnLog, InvOneLog
(3) InvOneLog! goal ! revokes’ BY DEF IsOnLog, InvOneLog
(3) InvVerifiableRevocation’ BY DEF InvVerifiable Revocation, InvOneLog
(3) QED BY DEF InvOneLog

NextSem Chkpt4

(2)20. CASE NextSemChkpt4
(3) USE NextSemChkptd
(3) USE DEF NextSemChkpt4
(3) UNCHANGED CheckTsIsCurrent(chkptts)BY DEF CheckTsIsCurrent
(3) UNCHANGED AllCurrentT's
(4) USE DEF AllCurrentTs
(4) USE DEF CheckTslsCurrent
(4) QED BY DEF LogInTs
(3) UNCHANGED CurrentTsLogBY DEF CurrentTsLog
Setting nv current indicates that the log is in the nv ram.
This depends on BugChkptNoSetCur 2 FALSE
(3) LogInNv'
(4) nv'.current
(5) BugChkptNoSetCur = FALSEBY DEF BugChkptNoSetCur
(5) QED BY DEF InvType, Nv
(4) QED BY DEF LogInNv

(3) UNCHANGED LogInApp BY DEF LogInApp

(3) UNCHANGED LogInTs BY DEF LogInTs

Since nv.current was changed, the prover needs to see the type of nv to know that the appPcr field did not change.
(3) UNCHANGED nv.appPcr BY DEF InvType, Nv

(3) InuOneLog ! goal! obtains’ BY DEF IsOnLog, InvOneLog

(3) InvOneLog! goal ! revokes’ BY DEF IsOnLog, InvOneLog

(3) InvVerifiableRevocation’ BY DEF InvVerifiable Revocation, InvOneLog

(3) QED BY DEF InvOneLog

NextSemChkptb
(2)21. CASE NextSemChkpth
(3) USE NextSem Chkptb
(3) USE DEF NeztSemChkpth
(3) UNCHANGED CheckTsIsCurrent(chkptts)BY DEF CheckTslsCurrent

97

(3) UNCHANGED AllCurrentTs
(4) USE DEF AllCurrentTs
(4) USE DEF CheckTslsCurrent
(4) QED BY DEF LogInTs
(3) UNCHANGED CurrentTsLogBY DEF CurrentTsLog
(3) UNCHANGED LogInNv BY DEF LogInNv
Extending sem pcr with Unhappy results in something other than Sem Happy, which indicates that the log is not in the application pcr.
(3y = LogInApp’
(4) semPer’ # SemHappy
(5) USE DEF SemHappy
(5) USE DEF SemProtect
(5) USE DEF Pcri
(5) USE DEF Pcrx
(5) USE ThmPcrInitlsPecr
(5) USE ThmPcrEaxtendIsPer
(5) semPcr = SemProtectBY DEF InvInSemProtect, InSem
(5) USE AssSemHappy
5) QED BY ThmPcrExtendAnticollision
4) QED BY DEF LogInApp

3) UNCHANGED LogInTs BY DEF LogInTs
3) InvOneLog! goal! obtains’ BY DEF IsOnLog, InvOneLog
InvOneLog! goal ! revokes’ BY DEF IsOnLog, InvOneLog

InvVerifiableRevocation’ BY DEF InvVerifiableRevocation, InvOneLog
QED BY DEF InvOneLog

o~~~ o~~~
T~

(2) QED
BY (2)1,
(2)2, (2)3, (2)4, (2)5, (2)6, (2)7. (2)8, (2)9,
(210, (2)11, (2)12, (2)13, (2)14, (2)15, (2)16, (2)17,
(2)18, (2)19, (2)20, (2)21
DEF Next
(1) QED BY DEF InvOneLog

It is an invariant of the specification.

THEOREM ThmInvOneLog =
Spec = OInvOneLog

PROOF
(1) Init = InvOneLogBY ThmiInitInvOneLog
(1) InvOneLog A [Next]yars = InvOneLog’
BY ThmNextInvOneLog
(1) QED BY RuleINV 1DEF Spec

98

PROOF OF INVARIANT InvAccess Undeniability

It is an invariant of the specification.

THEOREM ThmlinvAccessUndeniability =
Spec = OlInvAccessUndeniability
PROOF
(1) InvOneLog = InvAccessUndeniability
(2) HAVE InvOneLog
(2) USE DEF InvOneLog
(2) USE DEF InvAccessUndeniability
(2) BugAuditNoCheckHappy = FALSEBY DEF BugAuditNoCheckHappy
(2) BugAuditNoCheckSeal = FALSEBY DEF BugAuditNoCheckSeal
(2) CASE = LogInApp BY DEF LogIlnApp unable to audit
(2) CASE LogInApp BY DEF IsOnLog audit
(2) QED OBVIOUS
1)
1)

(
(

Spec = OInvOneLogBY ThmlInvOneLog
QED

PROOF OF INVARIANT [nv Verifiable Revocation

It is an invariant of the specification.

THEOREM ThmlInvVerifiable Revocation =
Spec = OlInvVerifiable Revocation
PROOF
(1) InvOneLog = InvVerifiable Revocation
(2) HAVE InvOneLog
(2) USE DEF InvOneLog
(2) QED OBVIOUS
)

(1) Spec = OInvOneLogBY ThmlInvOneLog

99

(1) QED

100

