
Integrating Formal Methods into Computer
Science Curricula at a University of Applied

Science

Paul Tavolato1 and Friedrich Vogt2

1 University of Applied Sciences, St. Pölten, Austria
2 Visiting Professor at University of Applied Sciences, St. Pölten, Austria

July 22, 2012

Abstract. This paper discusses the topic of integrating formal methods
in computer science curricula at universities of applied sciences on a gen-
eral scale: Why is the teaching of formal methods within such curricula
essential? And how could we do that?
The main points are: Formal methods bring essential improvements to
the daily practice of software development. Alumni from universities of
applied sciences are the most important messengers in this field. Moti-
vating these students to realize the importance of formal methods for
real world problems is therefore an important educational challenge.
Our approach to this challenge comprises three different courses in a
master program: Theoretical Foundations of Computer Science, Soft-
ware Engineering and Model Checking. It comprises ideas with regard
to contents as well as ideas with regard to didactic questions. We are cur-
rently on the way to implement these ideas within a master program in
Information Security at the University of Applied Sciences at St. Pölten,
Austria where Model Checking is grounded on the TLA+ Language and
the recent version of the Toolbox.

1 Introduction

At universities of applied sciences there are usually limiting factors regarding
the didactic concept one has to choose for teaching formal methods:

– Students have only very limited theoretical background from their bachelor
program (not very much math, nearly no computer science theory).

– The curriculum is very job oriented.
– Students are strongly focused on the direct applicability of the knowledge

they are taught.

On the other side why do we want to teach formal methods in such an en-
vironment? Computer science as a subject is characterized by rapid changes in
nearly every aspect: Things you learn today are doomed to be obsolete tomor-
row. The only exceptions from this terribly speedy trend are the theoretical
foundations of computer science. So there is a great need for a sound scientific



background which enables the students to cope with future challenges. The bet-
ter this scientific and theoretical background the easier the students will be able
to learn new versions of the technology coming up every year. We are responsible
to equip our students not only with knowledge and skills readily applicable in
a vocational environment, but also to enable them to cope with future require-
ments. Model checking and hence the mastering of formal methods like TLA+
[4] is a technology at the fringe of becoming a practical skill and is therefore a
very good example for what we mean.

Our goal in this educational project was the integration of formal methods
into a curriculum that is mainly based on the applicability of the skills and
the knowledge taught. This includes teaching the fundamentals of theoretical
computer science, showing how formal methods could be used in software engi-
neering, teaching formal specification methods such as TLA+ [4], and showing
the way how such formal methods can be applied to practical problems and how
this knowledge gives a deeper understanding of the subject and therefore will
help to anticipate future directions in computer science.

2 Requirements for teaching formal methods

Taking into account the before mentioned constraints we found the following
critical factors that we must solve in order to achieve our goals:

– We must teach at least some fundamentals of theoretical computer science
to enable the students to deal with formal methods. This includes mainly
modeling skills using various formal possibilities (say formal languages, logic,
mathematical domains such as graph theory, and similar things).

– The practical applicability of the theory taught must be understandable to
students. This means we must not drift away too far from everyday problems
which the students will accept as being a vital part of their future working
environment.

– Instruction must be problem oriented. This is a consequence from the last
requirement: Why not attach the formal methods to real problems and so
show in advance that the acquisition of theoretical knowledge is a necessary
must in order to be able to solve the problem.

– Motivation is a key factor in any teaching process. If the students do not
know why they have to learn something, they will not learn it (or only
acquire a minimum of semi-useless temporary knowledge just sufficient to
pass the exam). And compulsory measures such as tough exams with serious
consequences of failures are not achieving the desired effects. The philosopher
Karl Popper brought it to the point when saying ”Answers to questions not
asked cannot be understood”.

Satisfying all these requirements will only be possible in an ideal situation; but
in practice we often have to deal with situations that are restricted by various
limitations such as time constraints. In our special situations we additionally
have to deal with the strong focus on security coming from the overall goal of



the study course. Choosing appropriate examples inevitably leads into the
discussion whether to limit ourselves to simple toy examples (which make
explanations easier but are much more difficult for motivation) or to try real
world examples (which have a strong positive potential on motivation but are
usually voluminous and therefore harder to understand).

3 Proposal for an integration of formal methods

We will now describe how we implement these ideas in a real setting. We are
teaching in a master course “Information Security” at the University of
Applied Science in St. Pölten, Austria. Students in this master course usually
have a bachelor in IT Security or some other computer science related program.

We define our teaching goals as follows:

– Students should acquire a fundamental understanding of the usefulness of
formal methods as a basis for practical work.

– Students should be able to explore relevant theoretical material on their
own.

– Students should be able to apply formal methods such as (TLA+) to real
world problems.

3.1 Contents

3 courses within the first 2 semesters of the master program are coordinated
tightly to achieve the goals:

– Theoretical Foundations of Computer Science,
– Software Engineering,
– Model Checking and Testing.

The course “Theoretical Foundations of Computer Science” focuses on mod-
eling and tries to convince students that technology as well as science is based on
the building of some kind of model – and that you need some kind of language
for describing these models. Especially in computer science these languages are
required to be formal. One of the examples for such a language taught in this
course is logic. Propositional calculus is only touched upon as students are well
acquainted with it; predicate calculus is done in more depth; one of the main
ideas is to communicate to the students that there are different kinds of logic,
such as tri-valued logic (which they should know from SQL), fuzzy logic or tem-
poral logic. Another main focus of this course is the distinction between syntax,
semantics and pragmatics of a language. So this course lays the ground for using
formal methods.

Further topics include the classical area of formal languages and automata
with the Chomsky hierarchy of languages and the corresponding automata; ele-
mentary results about (un)decidability and the complexity of algorithms.



The course “Software Engineering” gives a rather standard view of the field,
using UML notation for the analysis and design of systems. The course starts
out with an overview of process models for software development (waterfall life
cycle, prototyping, Unified Process, agile methods and Scrum). Project planning
and project management are not treated as there is a special course on project
management in the curriculum. The next chapter focuses on systems analysis and
gives a first introduction to UML as a tool to describe the results of the analysis.
This is followed by a large chapter on systems design covering architectural
design as well as detailed design and going deeper into UML. Here we also give a
short introduction to OCL to show how more formal definitions of requirements
and system behavior could be integrated into a design.

The lecture on Model Checking is designed as a block lecture with six three
hour blocks within two weeks. On the first day a general survey is given includ-
ing a first look and feel of the features of the TLA+ Toolbox [1] explaining a
simple example as e.g. the OneBitClock. The content of each of the following
block lectures consists of two parts. The first part consists of an introduction
to logic with the emphasis of natural deduction for propositional and predicate
logic, temporal logic and some discussion of the possibility to specify liveness
properties in TLA+ [4]. The second part at all five remaining block lectures em-
phasizes the TLA+ Toolbox [1] by explaining several examples like HourClock
(more on TLA+), Fowler (translating a FSM description into a TLA+ descrip-
tion), PurchaseOrder (emphasizing message exchange in a simple protocol) and
CarTalkPuzzle vs. WeightSelect to emphasize the difference between Behavior
and No-Behavior specifications.

3.2 Didactical and methodological considerations

A special framework condition of our curriculum is that within the mentioned
programs all instruction is organized by topics, which means that there is only
one subject taught at a time (for a period of say 2 or 3 weeks). Subjects are
assigned lecture hours (say 45 hours, which would be equivalent to a 3-hour-per-
week lecture for a 15-week semester) and an estimated amount of time for self-
study (in the example above that might be 75 hours). So put together 45 + 75 =
120 that amounts to a 3 weeks period assuming that students’ workload is a 40-
hours week. Of course this is an average value varying from student to student (as
we all know some students are smarter than others. . . ). The number of students
in the courses is 20. This concept has been implemented on an experimental
basis last year accompanied by a scientific evaluation. The consistently positive
results of this evaluation [2] led to the decision to implement this framework
throughout the whole study program starting with the fall semester 2012.

3.3 Theoretical Foundations of Computer Science

The course is scheduled for 9 workdays in a row with an extra day for the final
exam afterwards.



The course starts with an overview of modeling concentrating on scientific
models and on languages used to describe models. Main points here are the as-
pects of syntax, semantics and pragmatics as defining constituents of a language.
Simple examples shall give an introduction to the road of formal modeling: Start-
ing with simple problems different possibilities of formal models to express these
problems are discussed. Hand in hand with it goes the choice of a language
to describe the model, including the difference of syntax and semantics of the
description.

After this introduction a set of problems/projects is explained and groups of
4-5 students are assigned to each problem. The problems are very different and
reflect modeling tasks in different areas of computer science with an emphasis
on information security. Examples for such tasks are:

– Complexity of specific algorithms (such as algorithms to crack passwords or
various encryption methods)

– Formal language theory with special applications to vulnerabilities of soft-
ware interfaces (such as described in [5])

– Modeling of security constraints with logic constructs (such as defining pro-
tocols by logic formulae [3])

(Note that model checking is not part of the problems as a special lecture
course for this topic is available.)

This happens on the first day of the course. On the second day of the course
the students must specify their problem precisely and develop a plan about what
knowledge is necessary to solve the problem and where to get the information
from. This work is guided by the lecturer who moves between the groups, gives
hints and provides learning material. At the end of the day every group should
have a clear plan about their work for the next days.

The next 2 days are devoted to autonomous work of the students. They
gather the information needed and try to apply it to their problem.

The next 2 days are again tutored work: The lecturer helps the students to
complete the problem solution and to prepare a presentation of the solution and
the underlying formal methods. These presentations are given the next day.

When working on the tasks the students must engage in the corresponding
theoretic topic. In case of the complexity task they have to acquire information
about computational models and models of algorithms and try to find a reason-
able measure (complexity classes); in case of the formal language task they have
to engage in syntax theory and the Chomsky hierarchy of languages, the fun-
damentals of automata including the notion of Turing machines; the constraint
modeling forces the students to work with the fundamentals of logic.

So each group has to acquire knowledge in a different field of formal modeling.
Note that the emphasis is not on the knowledge acquired but on the way how to
acquire knowledge. Of course this will not lead to a thorough treatment of the
subject – but it will give an idea on how to apply formal methods to a problem
in step with vocational practice. The main teaching problem here is to find a
balance between the necessary amount of fundamentals and a naive use of formal



methods. Too much of the fundamentals will take too much time and has often
negative consequences on students’ motivations; too less fundamentals will limit
the students’ abilities to apply the formal methods to problems not equal but
only similar to the ones where they have used it first. The goal is to prove that
formal methods can be used successfully to solve real world problems, and to
enable the students to dive into a subject if necessary.

At the end of the course each group has to present its solution to the problem
as well as the principal points of the theoretic topic acquired.

3.4 Software Engineering

The software engineering course is held in a more traditional way. Its main
emphasis is on analysis and design of systems (and not on the programming
part). Normal lecture is complemented by exercises where the students in groups
have to do the requirements analysis of a not too small software project. Here the
size of the problem is essential: Nearly all of the methods and techniques used in
software engineering only make sense when applied to sufficiently large projects.
Small toy projects will never convince students of the necessity to apply analysis
and design methods in a strict engineering manner. So the projects used for
analysis are real world problems taken from professional work. Typical projects
include a hotel reservation system, administration of a doctor’s office, software
system for a bus company, organization of a symphonic orchestra, traffic control
for river navigation or a system for gross sales of special products.

For parts of this project a design has to be accomplished, too. We use a
commercial UML tool for developing the requirements and the design document.
The possibility of incorporating more or less formal definitions of requirements
and constraints is explained. In the setting of the course this can be done by
writing OCL expressions in the slots provided by the UML tool. Normally it’s
hard to convince students of the usefulness of such early formalization - but this
is the moment where one has to be persuasive, especially as this could create a
motivating ground for the course on model checking.

Generally we must face a problem here: Software engineering is essentially a
discipline that teaches methods for solving a formalization problem: From vague
problem descriptions to programs written in completely formal programming
languages. These methods usually lead the software developer in a step by step
mode from the informal to the formal, because doing the formalization is a very
hard task and doing it in one big leap is impossible or at least very error prone.
Usually requirements are defined in an early stage of the development process
using natural language sentences and are therefore not very formal. Only later
on through functional specification, design and coding more and more formal
versions of the system are produced.

We must emphasize here that formalizing requirements at an early stage
of the development process has different reasons: We want to provide a formal
basis independent of the real programming process that will enable us to prove
automatically that the requirements stated early in the process are fully met by



the implementation. The more independent this formalization of requirements
is from the actual programming process the better.

For practical reasons these formalizations can only be done for small parts
of the project as full size practical problems are much too large to be done
within the strict time limits of a university course. So we choose small parts
of the overall system and have the students design the class structure. And for
some of the methods of these classes preconditions, postconditions and invariants
must be expressed in OCL. But as small toy problems can hardly show the
usefulness of the approach we are still in search of appropriate examples. In our
case of a study program in Information Security we will try to develop examples
from fields where security and safety is an important part and hope to produce
something useful for the upcoming semester.

Our experience so far with this course is that students appreciate the use of
real world problems and usually understand that rigorous methods have to be
applied to cope with the complexity of such problems. But it’s much harder to
get them doing a good job on the constraint definition in OCL.

3.5 Model Checking with TLA+

The introduction in Model Checking emphasizes first that in engineering usually
systems are built upon some model. Later in the process it may be realized
that the system implemented may be not quite what was envisioned right from
the beginning of the undertaking and very often the system is revised but not
reflected why the initial model was insufficient or failed. The result of this is that
the cost of development is higher and the quality of the system is significantly
lower.

Furthermore it is told that a much better way to support the development
process is to start with a model with which one is able to check the important
properties before the system is built and to change the model in case of failure
and/or changes of system requirements at the model level. At this point the
Batson (Intel) quote from 2002 (at the last cover page of [4]) which says that
“TLA+ represents the only effective methodology I’ve seen for visualizing and
quantifying algorithmic complexity in a way that is meaningful to engineers”
is stressed, which then leads directly to dynamics of TLA+ [4] by demoing
examples using the Toolbox [1].

The lecture continues by outlining some of the major system bugs caused
by software failures to further enforce the motivation for the subject of Model
Checking. After some state machine examples and their “translation” in TLA+
together with the checking features of the Toolbox we first try to emphasize
the practical side of the Toolbox before giving some insight in the underlying
mathematical concepts.

The experiences gained so far are:

– Over time the theory part became smaller and the focus successively went to
the “discussion and demo” part based on the examples using the Toolbox.



– In particular, starting with simple examples right away (e.g. in the general
introduction session at the first day!) has turned out to be an effective way
to keep up students interest.

– These observations lead to the design change by adding a “discussion and
demo” part at every block following the introduction.

Although a majority of students appreciate the shift from the lesser em-
phasize of the foundation towards the practical use of the Toolbox in demoing
small examples, many have still difficulties to see the relevance for real world
system development. Bridging the gap between examples useful for teaching and
learning the basic concepts on the one hand, to there relevance for system de-
velopment in general on the other hand seems to be a too big step for some
students. This fact makes it even harder to get the necessary attention to the
quite restricted minimal theoretical background on the mathematics seen to be
required.

Recent feedback data from students highlighted the following items:

– Awareness of the limited mathematical background, but instead of proposing
deepening the background more practical applications and more examples
look to them as a better way to overcome this drawback.

– Examples presented are well understood, however the relevance to current
industrial applications is lacking. Which companies are engaged in TLA+
projects? One asked, to what extend Microsoft is using TLA+ in their de-
velopments processes?

– One mentioned the lack of understanding, how TLC works “inside”? To what
extent a deeper insight, a kind of look “under the hood” is important for
understanding the Toolbox is currently under discussion.

– All emphasized a much stronger focus on practical examples leading to a
better understanding to what extend TLA+ is or should be useful in and for
industry.

Viewing the feedback as the current state so far (at least for universities of
applied science!), the question is up, what has to be done next to reach a better
understanding, by fully realizing the circumstances and drawbacks outlined?

Some of the above mentioned points may be covered by the following topics
which are also most likely fruitful for teaching/learning in general:

– Extend the set of available examples by exchanging them within the TLA+
community, in order to widen basis for the “teaching by example” approach
successively.

– Gain experience by applying the TLA+ Toolbox [1] to teach/learn the re-
quired mathematical foundations (e.g. by following and extending the ap-
proach already taken in the Hyper-Book!).

– Gain and evaluate feedbacks upon the self-learning experiences made by
using the Hyper-Book (in conjunction with the Toolbox [1]).

The experience shortly tackled tells, that the Toolbox [1] is of great help in
teaching and learning Model Checking with TLA+ [4], but should be used even



more in providing the basics of the underlying mathematics in a very practical
“hands on” fashion (e.g. by using a further version of Hyper-Book as a very
useful step to foster self learning even more!). How to bridge the gap between
the “worlds” of small examples to the real world is another issue for further
study in general.

4 Summary

The key feature of teaching formal methods in universities of applied sciences
is to raise an understanding of the necessity of theoretical concepts with the
students. This can only be accomplished when theoretical and practical courses
are tightly coordinated to give insight into the problems and the baselines of the
techniques to their solution. Our approach tries to coordinate theoretical courses
(Theoretical Foundations of Computer Science) and practical courses (Software
Engineering) to provide a motivational basis for the course on Model Checking
where we then combine theoretical knowledge with problems as close as possible
to the future vocational practice of our students.

We are right in the implementation process of our course designs. We gained
some experience within the last 2 years and we are now reworking the concept
a bit and will put this reworked concept described here in execution this fall
semester.

The ultimate goal of the approach is to convince students of the necessity of
using formal methods and to enable them to apply these methods to real world
problems when they go out into their profession. They are our ambassadors out
there and the most important agents for enhancing the vocational practice. Or
with the words of Kurt Lewin: “There is nothing so practical as a good theory”
[6].

References

1. http://www.tlaplus.net/tools/tla-toolbox/. accessed: 2012-05-11.
2. Johann Haag Christiane Metzler. Effekte von Blockunterricht im Studiengang BSc

IT Security. Neue Wege gehen - Strategien und Modelle für Studien-, Lehr- und
Lerninnovationen an der Fachhochschule St. Pölten.

3. Michael Fisher Wiebe van der Hoek Clare Dixon, Mari-Carmen Fernández Gago.
Temproral logics of knowledge and their applications in security. Electronic Notes
in Theoretical Computer Science, 186:27–42, 2007.

4. Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Pearson Education, Inc., 2003.

5. Sergey Bratus Michael E. Locasto Anna Shubina Len Sassaman, Meredith L. Pat-
terson. Security applications of formal language theory. Technical report, 2001.

6. Kurt Lewin. Problems of Research in Social Psychology, in: Field Theory in Social
Science. In D. Cartwright (Hrsg.), editor, Selected Theoretical Papers, page 169,
1951.


