Harnessing SMT solvers for TLA ${ }^{+}$Proofs

Stephan Merz and Hernán Vanzetto

TLA ${ }^{+}$Workshop, Paris, France
August 27th, 2012

Introduction

TLA ${ }^{+}$proof language:

- Hierarchical proof structure
- Top-down development: users refine assertions until they are "obvious"
- Leaf steps verified by automatic backend provers
- invoke proof method
- cite necessary assumptions and facts
- expand definitions

TLA ${ }^{+}$Proof System:

- Mechanically checks TLA ${ }^{+}$proofs
- Currently proves only non-temporal fragment
- Supported by the TLA ${ }^{+}$Toolbox

Architecture of TLAPS

Current backend provers

- Isabelle/TLA ${ }^{+}$
- Faithful encoding of TLA+ over Isabelle's meta-logic
- Calls predefined Isabelle automatic proof methods
- Used to certify proofs of other backend provers

Current backend provers

- Isabelle/TLA ${ }^{+}$
- Faithful encoding of TLA+ over Isabelle's meta-logic
- Calls predefined Isabelle automatic proof methods
- Used to certify proofs of other backend provers
- Zenon
- Tableau prover for first-order logic with equality
- Includes extensions for TLA ${ }^{+}$on sets, functions, ...
- Backend called by default ; proofs certified by Isabelle

Current backend provers

- Isabelle/TLA ${ }^{+}$
- Faithful encoding of TLA ${ }^{+}$over Isabelle's meta-logic
- Calls predefined Isabelle automatic proof methods
- Used to certify proofs of other backend provers
- Zenon
- Tableau prover for first-order logic with equality
- Includes extensions for TLA ${ }^{+}$on sets, functions, ...
- Backend called by default ; proofs certified by Isabelle
- SimpleArithmetic (obsolete)
- Cooper's algorithm for Presburger arithmetic

Current backend provers

- Isabelle/TLA ${ }^{+}$
- Faithful encoding of TLA ${ }^{+}$over Isabelle's meta-logic
- Calls predefined Isabelle automatic proof methods
- Used to certify proofs of other backend provers
- Zenon
- Tableau prover for first-order logic with equality
- Includes extensions for TLA ${ }^{+}$on sets, functions, ...
- Backend called by default ; proofs certified by Isabelle
- SimpleArithmetic (obsolete)
- Cooper's algorithm for Presburger arithmetic
- SMT
- Available since the last public version of TLAPS (v1.0)
- Based on type inference

Motivation

Typical proof obligations usually contain a mix of arithmetic, sets, functions, which the older backends were not able to handle at once

SMT solvers offer a combination of:

+ First-order reasoning
+ Decision procedures for other theories (=, linear arithmetic, ...)
SMT input languages:
- Based on many-sorted first-order logic
- Predefined Bool and integer sorts
- Uninterpreted functions, if-then-else function

Table of Contents

(1) Introduction
(2) First approach: SMT backend based on type inference
(3) Second approach: untyped encoding
(4) Experimental results
(5) Conclusions

First approach: a backend based on type inference

First approach: a backend based on type inference

- Inference algorithm recurses over TLA ${ }^{+}$expressions
- Ad-hoc type system for TLA ${ }^{+}$terms
(unspecified type \perp, integer type, sets, functions, ...)

First approach: a backend based on type inference

- Inference algorithm recurses over TLA ${ }^{+}$expressions
- Ad-hoc type system for TLA ${ }^{+}$terms (unspecified type \perp, integer type, sets, functions, ...)
- Soundness: incorrect typing can make invalid theorems provable
- $x \notin \operatorname{Int} \Rightarrow x+0=x \quad ; \quad(\neg \neg X)=X$

First approach: a backend based on type inference

- Inference algorithm recurses over TLA^{+}expressions
- Ad-hoc type system for TLA ${ }^{+}$terms (unspecified type \perp, integer type, sets, functions, ...)
- Soundness: incorrect typing can make invalid theorems provable

$$
x \notin \operatorname{Int} \Rightarrow x+0=x \quad ; \quad(\neg \neg X)=X
$$

- Safe types: \perp, set (\perp), set $(\operatorname{set}(\perp)), \ldots$
- Typing hypotheses are available facts of the form $x \approx \exp$ and $\forall \vec{y} \in \vec{S}: f(\vec{y}) \approx \exp \quad$ with $\approx \in\{=, \in, \subseteq\}$

First approach: a backend based on type inference

Well-typed TLA ${ }^{+}$formulas are translated to SMT input formats

- Basic TLA ${ }^{+}$expressions contain only operators that have a direct representation in SMT formats (logical, arithm. and IFs)
- Sets, functions, records, tuples encoded as uninterpreted functions

Example

$$
\begin{array}{cll}
x:: \mathbb{Z} \quad \vdash x \in \ln t \Rightarrow x+0=x & \longrightarrow x+0=x \\
a:: \perp ; S, T:: \operatorname{set}(\perp) \vdash a \in S \cup T & \longrightarrow S(a) \vee T(a)
\end{array}
$$

Type information for variables usually provided by type invariants

Toy example

AXIOM NatInduction \equiv ASSUME NEW $P(-)$,
$P(0)$,
$\forall n \in N a t: P(n) \Rightarrow P(n+1)$
Prove $\quad \forall n \in N a t: P(n)$

Toy example

AXIOM NatInduction \equiv ASSUME NEW $P(-)$, $P(0)$, $\forall n \in$ Nat: $P(n) \Rightarrow P(n+1)$ prove $\quad \forall n \in N a t: P(n)$

THEOREM GeneralNatInduction \equiv ASSUME NEW $P(-)$,
$\forall n \in$ Nat : $P(n) \in$ BOOLEAN, (typing hypothesis)
$\forall n \in N a t:(\forall m \in 0 . .(n-1): P(m)) \Rightarrow P(n)$
PROVE $\quad \forall n \in N a t: P(n)$
$\langle 1\rangle$. DEFINE $Q(n) \equiv \forall m \in 0 . . n: P(m)$
〈1〉1. $Q(0)$
By SMT
$\langle 1\rangle 2 . \forall n \in N a t: Q(n) \Rightarrow Q(n+1)$ BY $S M T$
$\langle 1\rangle$ 3. $\forall n \in$ Nat $: Q(n) \quad$ BY $\langle 1\rangle 1,\langle 1\rangle 2$, NatInduction, SMT
$\langle 1\rangle 4$. QED
BY $\langle 1\rangle 3, S M T$

Second approach: untyped encoding

Second approach: untyped encoding

- TLA $^{+}$terms are mapped to a unique SMT sort U
- Operators are uninterpreted functions or predicates
- union: $U \times U \rightarrow U \quad$ in : $U \times U \rightarrow$ Bool
- Operators' semantics are defined axiomatically
- Axiom for $\cup: ~ \forall x, S, T: U .(x \in S \cup T)=(x \in S \vee x \in T)$
- Primitive operators ($\in, f[x]$, DOMAIN) are left uninterpreted
- Functions are related to its argument by apply : $U \times U \rightarrow U$

Encoding arithmetic

- Arithmetic expressions are lifted to elements on sort U
- Embedding function ϕ : Int $\rightarrow U$ (uninterpreted and injective)
- 42 is encoded as $\phi(42)$
$x \in \operatorname{Int}$ is encoded as $\exists n: \operatorname{Int} . x=\phi(n)$

Encoding arithmetic

- Arithmetic expressions are lifted to elements on sort U
- Embedding function $\phi: \operatorname{Int} \rightarrow U$ (uninterpreted and injective)
- 42 is encoded as $\phi(42)$
$x \in \operatorname{Int}$ is encoded as $\exists n:$ Int. $x=\phi(n)$
- Arithmetic operators are homomorphically embedded using ϕ

$$
+U: U \times U \rightarrow U
$$

Axiom for +: $\forall m, n$: Int. $\phi(m)+u \phi(n)=\phi(m+n)$

Example

$$
\begin{gathered}
\forall x \in \operatorname{In} t: x+0=x \\
\longrightarrow \quad \forall x: U \cdot(\exists n: \ln t . x=\phi(n)) \Rightarrow x+u \phi(0)=x
\end{gathered}
$$

Normalisation: removing non-basic operators

(1) Grounding expressions: rewrite based on operator semantics
$-\llbracket x \in e \rrbracket \equiv \llbracket x \rrbracket \in \llbracket e \rrbracket \quad \llbracket e_{1} \vee e_{2} \rrbracket \equiv \llbracket e_{1} \rrbracket \vee \llbracket e_{2} \rrbracket$

- $\llbracket x \in e_{1} \cup e_{2} \rrbracket \equiv \llbracket x \in e_{1} \vee x \in e_{2} \rrbracket$
- $\llbracket S \subseteq T \rrbracket \equiv \llbracket \forall x: x \in S \Rightarrow x \in T \rrbracket$

Normalisation: removing non-basic operators

(1) Grounding expressions: rewrite based on operator semantics
$-\llbracket x \in e \rrbracket \equiv \llbracket x \rrbracket \in \llbracket e \rrbracket \quad \llbracket e_{1} \vee e_{2} \rrbracket \equiv \llbracket e_{1} \rrbracket \vee \llbracket e_{2} \rrbracket$

- $\llbracket x \in e_{1} \cup e_{2} \rrbracket \equiv \llbracket x \in e_{1} \vee x \in e_{2} \rrbracket$
- $\llbracket S \subseteq T \rrbracket \equiv \llbracket \forall x: x \in S \Rightarrow x \in T \rrbracket$
(2) Disambiguation of equalities by inferred kinds
- $\llbracket S=T \rrbracket \equiv \forall x: \llbracket x \in S \Leftrightarrow x \in T \rrbracket \quad$ (when S, T are sets)
- $S=\{a\} \cup\{ \} \quad \longrightarrow \quad \forall x: x \in S \Leftrightarrow x=a \vee$ FALSE

Normalisation: removing non-basic operators

(1) Grounding expressions: rewrite based on operator semantics
$-\llbracket x \in e \rrbracket \equiv \llbracket \times \rrbracket \in \llbracket e \rrbracket \quad \llbracket e_{1} \vee e_{2} \rrbracket \equiv \llbracket e_{1} \rrbracket \vee \llbracket e_{2} \rrbracket$

- $\llbracket x \in e_{1} \cup e_{2} \rrbracket \equiv \llbracket x \in e_{1} \vee x \in e_{2} \rrbracket$
- $\llbracket S \subseteq T \rrbracket \equiv \llbracket \forall x: x \in S \Rightarrow x \in T \rrbracket$
(2) Disambiguation of equalities by inferred kinds
- $\llbracket S=T \rrbracket \equiv \forall x: \llbracket x \in S \Leftrightarrow x \in T \rrbracket \quad$ (when S, T are sets)
- $S=\{a\} \cup\{ \} \quad \longrightarrow \quad \forall x: x \in S \Leftrightarrow x=a \vee$ FALSE
(3) Term-rewriting of top-level equalities
- ASSUME $T=\{1,2\} \quad \longrightarrow \quad \forall x:(x=1 \vee x=2) \Rightarrow x \in \operatorname{Int}$ PROVE $T \subseteq I n t$

Normalisation: removing non-basic operators

(1) Grounding expressions: rewrite based on operator semantics

$$
\begin{aligned}
& \text { - } \llbracket x \in e \rrbracket \equiv \llbracket x \rrbracket \in \llbracket e \rrbracket \quad \llbracket e_{1} \vee e_{2} \rrbracket \equiv \llbracket e_{1} \rrbracket \vee \llbracket e_{2} \rrbracket \\
& \text { - } \llbracket x \in e_{1} \cup e_{2} \rrbracket \equiv \llbracket x \in e_{1} \vee x \in e_{2} \rrbracket \\
& \text { - } \llbracket S \subseteq T \rrbracket \equiv \llbracket \forall x: x \in S \Rightarrow x \in T \rrbracket
\end{aligned}
$$

(2) Disambiguation of equalities by inferred kinds

- $\llbracket S=T \rrbracket \equiv \forall x: \llbracket x \in S \Leftrightarrow x \in T \rrbracket \quad$ (when S, T are sets)
- $S=\{a\} \cup\{ \} \quad \longrightarrow \quad \forall x: x \in S \Leftrightarrow x=a \vee$ FALSE
(3) Term-rewriting of top-level equalities
- ASSUME $T=\{1,2\} \quad \longrightarrow \quad \forall x:(x=1 \vee x=2) \Rightarrow x \in \operatorname{Int}$ PROVE $T \subseteq I n t$
(4) Abstraction of non-basic operators

$$
\begin{aligned}
-\forall a: P(\{a\} \cup\{ \}) \Leftrightarrow P(\{a\}) \longrightarrow \forall a, s_{1}, s_{2} & : \wedge s_{1}=\{a\} \cup\{ \} \\
& \wedge s_{2}=\{a\} \\
& \Rightarrow P\left(s_{1}\right) \Leftrightarrow P\left(s_{2}\right)
\end{aligned}
$$

Experimental results

- N-process Bakery algorithm
- includes some basic arithmetic
- Memoir security architecture
- mostly based on records
- Module Cardinality of finite sets

		Original		Typed-SMT/Z3		Untyped-SMT/Z3	
	size	time	size	time	size	time	
Bakery	120	15.66	3	2.76	4	0.67	
Memoir	424	7.31	14	5.08	14	1.11	
Cardinality	185	2.12	-	-	54	0.88	

(length $=$ number of non-trivial proof-obligations ; time in seconds)

- Original = proof using Zenon, Isabelle/TLA ${ }^{+}$, SimpleArithmetic

Conclusions

	Typed encoding	Untyped encoding
Handled fragment	first-order logic, sets, functions, records, tuples © \times no sets of sets Choose operator	
Efficiency	(2) scales well for large formulas	() more quantifiers
Type inference	©) may fail for valid obligations (2) may require logically unnecessary typing hypotheses	© delegated to the solver (3) no need of typing hypotheses ; preferred by users
Soundness analysis	(2) non-trivial ; relies on type inference	© immediate ; all axioms are theorems

Future work

Work in progress: Merge both encodings

- Based on the untyped encoding
- Instantiate arithmetic expressions using type information

Future work:

- Adapt this translation to use ATPs with arithmetic (Spass+LA)
- Interpret the solvers output and certify it with Isabelle/TLA ${ }^{+}$

Example: how the SMT solver use the axioms

Consider the TLA ${ }^{+}$proof obligation

$$
\forall x \in \operatorname{Int}: x+0=x
$$

which is translated as

$$
\forall x: U .(\exists n: \operatorname{Int} . x=\phi(n)) \Rightarrow x+\cup \phi(0)=x
$$

By Skolemization, the solver introduces a new constant, say n, of sort Int, such that $x=\phi(n)$. It can then reason as follows:

$$
\begin{aligned}
x+u \quad \phi(0) & =\phi(n)+u \\
& =\phi(n+0) \\
& =\phi(n) \\
& =x
\end{aligned}
$$

$$
\phi(0)
$$

$$
(x=\phi(n))
$$

$$
(\text { by axiom of }+u \text {) }
$$

(by the SMT arithmetic procedure)

$$
(x=\phi(n))
$$

Encoding of CHOOSE

(1) Any expression ChOOSE $x: P(x)$ can be abstracted to a new variable s, for which the following equality is asserted:

$$
s=\mathrm{ChOOSE} \quad x: P(x)
$$

(2) Use of the following TLA^{+}theorem to ground the expression

$$
y=(\mathrm{CHOOSE} \quad x: P(x)) \Rightarrow((\exists x: P(x)) \Rightarrow P(y))
$$

(3) Determinacy of CHOOSE . For every pair of expressions CHOOSE $x: P(x)$ and CHOOSE $x: Q(x)$ that appear in the proof obligation, we add the following axiom:

$$
(\forall x: P(x) \Leftrightarrow Q(x)) \Rightarrow(\text { choose } x: P(x))=(\operatorname{choose} x: Q(x))
$$

