Harnessing SMT solvers for TLA⁺ Proofs

Stephan Merz and Hernán Vanzetto

TLA⁺ Workshop, Paris, France August 27th, 2012

Introduction

TLA⁺ proof language:

- Hierarchical proof structure
- Top-down development: users refine assertions until they are "obvious"
- Leaf steps verified by automatic backend provers
 - invoke proof method
 - cite necessary assumptions and facts
 - expand definitions
- TLA⁺ Proof System:
 - Mechanically checks TLA⁺ proofs
 - Currently proves only non-temporal fragment
 - \bullet Supported by the TLA+ Toolbox

Architecture of TLAPS

• Isabelle/TLA⁺

- ► Faithful encoding of TLA⁺ over Isabelle's meta-logic
- Calls predefined Isabelle automatic proof methods
- Used to certify proofs of other backend provers

- Isabelle/TLA⁺
 - ► Faithful encoding of TLA⁺ over Isabelle's meta-logic
 - Calls predefined Isabelle automatic proof methods
 - Used to certify proofs of other backend provers
- Zenon
 - Tableau prover for first-order logic with equality
 - Includes extensions for TLA⁺ on sets, functions, ...
 - Backend called by default ; proofs certified by Isabelle

- Isabelle/TLA⁺
 - ► Faithful encoding of TLA⁺ over Isabelle's meta-logic
 - Calls predefined Isabelle automatic proof methods
 - Used to certify proofs of other backend provers
- Zenon
 - Tableau prover for first-order logic with equality
 - Includes extensions for TLA⁺ on sets, functions, ...
 - Backend called by default ; proofs certified by Isabelle
- SimpleArithmetic (obsolete)
 - Cooper's algorithm for Presburger arithmetic

- Isabelle/TLA⁺
 - ► Faithful encoding of TLA⁺ over Isabelle's meta-logic
 - Calls predefined Isabelle automatic proof methods
 - Used to certify proofs of other backend provers
- Zenon
 - Tableau prover for first-order logic with equality
 - Includes extensions for TLA⁺ on sets, functions, ...
 - Backend called by default ; proofs certified by Isabelle
- SimpleArithmetic (obsolete)
 - Cooper's algorithm for Presburger arithmetic
- SMT
 - Available since the last public version of TLAPS (v1.0)
 - Based on type inference

Typical proof obligations usually contain a mix of arithmetic, sets, functions, which the older backends were not able to handle at once

SMT solvers offer a combination of:

- + First-order reasoning
- + Decision procedures for other theories (=, linear arithmetic, \dots)

SMT input languages:

- Based on many-sorted first-order logic
- Predefined Bool and integer sorts
- Uninterpreted functions, if-then-else function

Table of Contents

Introduction

2 First approach: SMT backend based on type inference

3 Second approach: untyped encoding

4 Experimental results

- Inference algorithm recurses over TLA⁺ expressions
 - Ad-hoc type system for TLA⁺ terms (unspecified type ⊥, integer type, sets, functions, ...)

• Inference algorithm recurses over TLA⁺ expressions

Ad-hoc type system for TLA⁺ terms

(unspecified type \perp , integer type, sets, functions, ...)

• Soundness: incorrect typing can make invalid theorems provable

►
$$x \notin Int \Rightarrow x + 0 = x$$
 ; $(\neg \neg X) = X$

- Inference algorithm recurses over TLA⁺ expressions
 - Ad-hoc type system for TLA⁺ terms

(unspecified type \perp , integer type, sets, functions, ...)

• Soundness: incorrect typing can make invalid theorems provable

•
$$x \notin Int \Rightarrow x + 0 = x$$
 ; $(\neg \neg X) = X$

- Safe types: \bot , set(\bot), set(set(\bot)), ...
- Typing hypotheses are available facts of the form $x \approx exp$ and $\forall \vec{y} \in \vec{S} : f(\vec{y}) \approx exp$ with $\approx \in \{=, \in, \subseteq\}$

Well-typed TLA⁺ formulas are translated to SMT input formats

- **Basic TLA**⁺ expressions contain only operators that have a direct representation in SMT formats (logical, arithm. and IFs)
- Sets, functions, records, tuples encoded as uninterpreted functions

Example

$$x :: \mathbb{Z} \qquad \vdash x \in Int \Rightarrow x + 0 = x \implies x + 0 = x$$

 $a :: \bot; S, T :: set(\bot) \vdash a \in S \cup T \implies S(a) \lor T(a)$

Type information for variables usually provided by type invariants

Toy example

AXIOM NatInduction \equiv ASSUME NEW $P(_)$, P(0), $\forall n \in Nat : P(n) \Rightarrow P(n+1)$ PROVE $\forall n \in Nat : P(n)$

Toy example

AXIOM NatInduction \equiv ASSUME NEW $P(_)$, P(0), $\forall n \in Nat : P(n) \Rightarrow P(n+1)$ PROVE $\forall n \in Nat : P(n)$

THEOREM GeneralNatInduction \equiv ASSUME NEW $P(_)$, $\forall n \in Nat : P(n) \in BOOLEAN,$ (typing hypothesis) $\forall n \in Nat : (\forall m \in 0..(n-1) : P(m)) \Rightarrow P(n)$ PROVE $\forall n \in Nat : P(n)$ $\langle 1 \rangle$. DEFINE $Q(n) \equiv \forall m \in 0..n : P(m)$ $\langle 1 \rangle 1. Q(0)$ BY SMT $\langle 1 \rangle 2$. $\forall n \in Nat : Q(n) \Rightarrow Q(n+1)$ BY SMT $\langle 1 \rangle 3. \ \forall n \in Nat : Q(n)$ BY $\langle 1 \rangle 1, \langle 1 \rangle 2, NatInduction, SMT$ $\langle 1 \rangle 4.$ QED BY $\langle 1 \rangle 3$, SMT

Second approach: untyped encoding

Second approach: untyped encoding

- TLA⁺ terms are mapped to a **unique SMT sort** U
- Operators are uninterpreted functions or predicates
 - union: $U \times U \rightarrow U$ in: $U \times U \rightarrow Bool$
- Operators' semantics are defined axiomatically
 - ▶ Axiom for \cup : $\forall x, S, T : U$. $(x \in S \cup T) = (x \in S \lor x \in T)$
 - ▶ Primitive operators (\in , f[x], DOMAIN) are left uninterpreted
- Functions are related to its argument by apply : $U \times U \rightarrow U$

Encoding arithmetic

- Arithmetic expressions are lifted to elements on sort U
- Embedding function $\phi: Int \rightarrow U$ (uninterpreted and injective)
- 42 is encoded as $\phi(42)$

 $x \in Int$ is encoded as $\exists n : Int. x = \phi(n)$

Encoding arithmetic

- Arithmetic expressions are lifted to elements on sort U
- Embedding function $\phi: Int \rightarrow U$ (uninterpreted and injective)
- 42 is encoded as $\phi(42)$
 - $x \in Int$ is encoded as $\exists n : Int. x = \phi(n)$
- $\bullet\,$ Arithmetic operators are homomorphically embedded using $\phi\,$

 $+_U: U \times U \to U$

Axiom for +: $\forall m, n : Int. \phi(m) +_U \phi(n) = \phi(m+n)$

Example

$$\forall x \in Int : x + 0 = x$$

 $\longrightarrow \forall x : U. (\exists n : Int. x = \phi(n)) \Rightarrow x +_U \phi(0) = x$

- **O** Grounding expressions: rewrite based on operator semantics
 - $\bullet \quad \llbracket x \in e \rrbracket \equiv \quad \llbracket x \rrbracket \in \llbracket e \rrbracket \qquad \quad \llbracket e_1 \lor e_2 \rrbracket \equiv \quad \llbracket e_1 \rrbracket \lor \llbracket e_2 \rrbracket$

$$\bullet \llbracket x \in e_1 \cup e_2 \rrbracket \equiv \llbracket x \in e_1 \lor x \in e_2 \rrbracket$$

 $[S \subseteq T] \equiv [\forall x : x \in S \Rightarrow x \in T]$

- Grounding expressions: rewrite based on operator semantics
 - $\bullet \quad \llbracket x \in e \rrbracket \ \equiv \ \llbracket x \rrbracket \in \llbracket e \rrbracket \qquad \llbracket e_1 \lor e_2 \rrbracket \ \equiv \ \llbracket e_1 \rrbracket \lor \llbracket e_2 \rrbracket$

$$\bullet \llbracket x \in e_1 \cup e_2 \rrbracket \equiv \llbracket x \in e_1 \lor x \in e_2 \rrbracket$$

$$[[S \subseteq T]] \equiv [[\forall x : x \in S \Rightarrow x \in T]]$$

② Disambiguation of equalities by inferred kinds

$$\bullet \ \llbracket S = T \rrbracket \ \equiv \ \forall x : \llbracket x \in S \Leftrightarrow x \in T \rrbracket \qquad (\text{when } S, T \text{ are sets})$$

•
$$S = \{a\} \cup \{\} \longrightarrow \forall x : x \in S \Leftrightarrow x = a \lor \text{False}$$

- Grounding expressions: rewrite based on operator semantics
 - $\bullet \quad \llbracket x \in e \rrbracket \equiv \quad \llbracket x \rrbracket \in \llbracket e \rrbracket \qquad \quad \llbracket e_1 \lor e_2 \rrbracket \equiv \quad \llbracket e_1 \rrbracket \lor \llbracket e_2 \rrbracket$

$$\bullet \llbracket x \in e_1 \cup e_2 \rrbracket \equiv \llbracket x \in e_1 \lor x \in e_2 \rrbracket$$

 $[S \subseteq T] \equiv [\forall x : x \in S \Rightarrow x \in T]$

② Disambiguation of equalities by inferred kinds

$$\bullet \ \llbracket S = T \rrbracket \ \equiv \ \forall x : \llbracket x \in S \Leftrightarrow x \in T \rrbracket \qquad (\text{when } S, T \text{ are sets})$$

►
$$S = \{a\} \cup \{\}$$
 \longrightarrow $\forall x : x \in S \Leftrightarrow x = a \lor \text{False}$

Iterm-rewriting of top-level equalities

► ASSUME $T = \{1,2\} \longrightarrow \forall x : (x = 1 \lor x = 2) \Rightarrow x \in Int$ PROVE $T \subseteq Int$

- **1** Grounding expressions: rewrite based on operator semantics
 - $\bullet \quad \llbracket x \in e \rrbracket \equiv \quad \llbracket x \rrbracket \in \llbracket e \rrbracket \qquad \quad \llbracket e_1 \lor e_2 \rrbracket \equiv \quad \llbracket e_1 \rrbracket \lor \llbracket e_2 \rrbracket$

$$\bullet \ \llbracket x \in e_1 \cup e_2 \rrbracket \equiv \ \llbracket x \in e_1 \lor x \in e_2 \rrbracket$$

$$[[S \subseteq T]] \equiv [[\forall x : x \in S \Rightarrow x \in T]]$$

② Disambiguation of equalities by inferred kinds

•
$$\llbracket S = T \rrbracket \equiv \forall x : \llbracket x \in S \Leftrightarrow x \in T \rrbracket$$
 (when S, T are sets)

•
$$S = \{a\} \cup \{\} \longrightarrow \forall x : x \in S \Leftrightarrow x = a \lor \text{False}$$

Ierm-rewriting of top-level equalities

► ASSUME $T = \{1,2\} \longrightarrow \forall x : (x = 1 \lor x = 2) \Rightarrow x \in Int$ PROVE $T \subseteq Int$

Abstraction of non-basic operators

$$\forall a : P(\{a\} \cup \{\}) \Leftrightarrow P(\{a\}) \longrightarrow \forall a, s_1, s_2 : \land s_1 = \{a\} \cup \{\} \\ \land s_2 = \{a\} \\ \Rightarrow P(s_1) \Leftrightarrow P(s_2)$$

Experimental results

- N-process Bakery algorithm
 - includes some basic arithmetic
- Memoir security architecture
 - mostly based on records
- Module Cardinality of finite sets

	Original		Typed-SMT/Z3		Untyped-SMT/Z3	
	size	time	size	time	size	time
Bakery	120	15.66	3	2.76	4	0.67
Memoir	424	7.31	14	5.08	14	1.11
Cardinality	185	2.12	-	-	54	0.88

(length = number of non-trivial proof-obligations ; time in seconds)

- Original = proof using Zenon, Isabelle/TLA⁺, SimpleArithmetic

Conclusions

	Typed encoding	Untyped encoding			
Handled	first-order logic, sets, functions, records, tuples				
fragment	🙁 no sets of sets	© CHOOSE operator			
Efficiency	© scales well for large	© more quantifiers			
	formulas				
Type inference	🙁 may fail for valid obli-	\odot delegated to the solver			
	gations				
	🙁 may require logically	☺ no need of typing hy-			
	unnecessary typing hy-	potheses ; preferred by			
	potheses	users			
Soundness	contrivial ; relies on	ⓒ immediate ; all axioms			
analysis	type inference	are theorems			

Work in progress: Merge both encodings

- Based on the untyped encoding
- Instantiate arithmetic expressions using type information

Future work:

- Adapt this translation to use ATPs with arithmetic (Spass+LA)
- \bullet Interpret the solvers output and certify it with <code>lsabelle/TLA+</code>

Example: how the SMT solver use the axioms

Consider the TLA $^+$ proof obligation

 $\forall x \in Int : x + 0 = x$

which is translated as

$$\forall x: U. (\exists n: Int. \ x = \phi(n)) \Rightarrow x +_U \phi(0) = x.$$

By Skolemization, the solver introduces a new constant, say n, of sort *Int*, such that $x = \phi(n)$. It can then reason as follows:

$$\begin{array}{ll} x \ +_U \ \phi(0) \ = \ \phi(n) \ +_U \ \phi(0) & (x \ = \ \phi(n)) \\ & = \ \phi(n \ + \ 0) & (\text{by axiom of } \ +_U) \\ & = \ \phi(n) & (\text{by the SMT arithmetic procedure}) \\ & = x & (x \ = \ \phi(n)) \end{array}$$

Encoding of CHOOSE

• Any expression CHOOSE x : P(x) can be abstracted to a new variable *s*, for which the following equality is asserted:

```
s = CHOOSE \quad x : P(x)
```

2 Use of the following TLA⁺ theorem to ground the expression

$$y = (\text{CHOOSE } x : P(x)) \Rightarrow ((\exists x : P(x)) \Rightarrow P(y))$$

Obterminacy of CHOOSE . For every pair of expressions CHOOSE x : P(x) and CHOOSE x : Q(x) that appear in the proof obligation, we add the following axiom:

 $(\forall x : P(x) \Leftrightarrow Q(x)) \Rightarrow (\text{CHOOSE } x : P(x)) = (\text{CHOOSE } x : Q(x))$