
Harnessing SMT solvers for TLA+ Proofs

Stephan Merz and Hernán Vanzetto

TLA+ Workshop, Paris, France

August 27th, 2012

1

Introduction

TLA+ proof language:

Hierarchical proof structure

Top-down development: users refine assertions until they are
“obvious”

Leaf steps verified by automatic backend provers
I invoke proof method
I cite necessary assumptions and facts
I expand definitions

TLA+ Proof System:

Mechanically checks TLA+ proofs

Currently proves only non-temporal fragment

Supported by the TLA+ Toolbox

2

Architecture of TLAPS

3

Current backend provers

Isabelle/TLA+

I Faithful encoding of TLA+ over Isabelle’s meta-logic
I Calls predefined Isabelle automatic proof methods
I Used to certify proofs of other backend provers

Zenon
I Tableau prover for first-order logic with equality
I Includes extensions for TLA+ on sets, functions, ...
I Backend called by default ; proofs certified by Isabelle

SimpleArithmetic (obsolete)
I Cooper’s algorithm for Presburger arithmetic

SMT
I Available since the last public version of TLAPS (v1.0)
I Based on type inference

4

Current backend provers

Isabelle/TLA+

I Faithful encoding of TLA+ over Isabelle’s meta-logic
I Calls predefined Isabelle automatic proof methods
I Used to certify proofs of other backend provers

Zenon
I Tableau prover for first-order logic with equality
I Includes extensions for TLA+ on sets, functions, ...
I Backend called by default ; proofs certified by Isabelle

SimpleArithmetic (obsolete)
I Cooper’s algorithm for Presburger arithmetic

SMT
I Available since the last public version of TLAPS (v1.0)
I Based on type inference

4

Current backend provers

Isabelle/TLA+

I Faithful encoding of TLA+ over Isabelle’s meta-logic
I Calls predefined Isabelle automatic proof methods
I Used to certify proofs of other backend provers

Zenon
I Tableau prover for first-order logic with equality
I Includes extensions for TLA+ on sets, functions, ...
I Backend called by default ; proofs certified by Isabelle

SimpleArithmetic (obsolete)
I Cooper’s algorithm for Presburger arithmetic

SMT
I Available since the last public version of TLAPS (v1.0)
I Based on type inference

4

Current backend provers

Isabelle/TLA+

I Faithful encoding of TLA+ over Isabelle’s meta-logic
I Calls predefined Isabelle automatic proof methods
I Used to certify proofs of other backend provers

Zenon
I Tableau prover for first-order logic with equality
I Includes extensions for TLA+ on sets, functions, ...
I Backend called by default ; proofs certified by Isabelle

SimpleArithmetic (obsolete)
I Cooper’s algorithm for Presburger arithmetic

SMT
I Available since the last public version of TLAPS (v1.0)
I Based on type inference

4

Motivation

Typical proof obligations usually contain a mix of arithmetic, sets,

functions, which the older backends were not able to handle at once

SMT solvers offer a combination of:

+ First-order reasoning

+ Decision procedures for other theories (=, linear arithmetic, . . .)

SMT input languages:

Based on many-sorted first-order logic

Predefined Bool and integer sorts

Uninterpreted functions, if-then-else function

5

Table of Contents

1 Introduction

2 First approach: SMT backend based on type inference

3 Second approach: untyped encoding

4 Experimental results

5 Conclusions

6

First approach: a backend based on type inference

Inference algorithm recurses over TLA+ expressions
I Ad-hoc type system for TLA+ terms

(unspecified type ⊥, integer type, sets, functions, . . .)

Soundness: incorrect typing can make invalid theorems provable
I x /∈ Int ⇒ x + 0 = x ; (¬¬X) = X

Safe types: ⊥, set(⊥), set(set(⊥)), . . .

Typing hypotheses are available facts of the form
x ≈ exp and ∀~y ∈ ~S : f (~y) ≈ exp with ≈ ∈ {=, ∈ ,⊆}

7

First approach: a backend based on type inference

Inference algorithm recurses over TLA+ expressions
I Ad-hoc type system for TLA+ terms

(unspecified type ⊥, integer type, sets, functions, . . .)

Soundness: incorrect typing can make invalid theorems provable
I x /∈ Int ⇒ x + 0 = x ; (¬¬X) = X

Safe types: ⊥, set(⊥), set(set(⊥)), . . .

Typing hypotheses are available facts of the form
x ≈ exp and ∀~y ∈ ~S : f (~y) ≈ exp with ≈ ∈ {=, ∈ ,⊆}

7

First approach: a backend based on type inference

Inference algorithm recurses over TLA+ expressions
I Ad-hoc type system for TLA+ terms

(unspecified type ⊥, integer type, sets, functions, . . .)

Soundness: incorrect typing can make invalid theorems provable
I x /∈ Int ⇒ x + 0 = x ; (¬¬X) = X

Safe types: ⊥, set(⊥), set(set(⊥)), . . .

Typing hypotheses are available facts of the form
x ≈ exp and ∀~y ∈ ~S : f (~y) ≈ exp with ≈ ∈ {=, ∈ ,⊆}

7

First approach: a backend based on type inference

Inference algorithm recurses over TLA+ expressions
I Ad-hoc type system for TLA+ terms

(unspecified type ⊥, integer type, sets, functions, . . .)

Soundness: incorrect typing can make invalid theorems provable
I x /∈ Int ⇒ x + 0 = x ; (¬¬X) = X

Safe types: ⊥, set(⊥), set(set(⊥)), . . .

Typing hypotheses are available facts of the form
x ≈ exp and ∀~y ∈ ~S : f (~y) ≈ exp with ≈ ∈ {=, ∈ ,⊆}

7

First approach: a backend based on type inference

Well-typed TLA+ formulas are translated to SMT input formats

Basic TLA+ expressions contain only operators that have a
direct representation in SMT formats (logical, arithm. and ifs)

Sets, functions, records, tuples encoded as uninterpreted functions

Example

x :: Z ` x ∈ Int ⇒ x + 0 = x −→ x + 0 = x

a :: ⊥ ; S ,T :: set(⊥) ` a ∈ S ∪ T −→ S(a) ∨ T (a)

Type information for variables usually provided by type invariants

8

Toy example

axiom NatInduction ≡ assume new P(),
P(0),
∀n ∈ Nat : P(n)⇒ P(n + 1)

prove ∀n ∈ Nat : P(n)

theorem GeneralNatInduction ≡
assume new P(),

∀n ∈ Nat : P(n) ∈ boolean, (typing hypothesis)
∀n ∈ Nat : (∀m ∈ 0..(n − 1) : P(m))⇒ P(n)

prove ∀n ∈ Nat : P(n)
〈1〉. define Q(n) ≡ ∀m ∈ 0..n : P(m)
〈1〉1. Q(0) by SMT
〈1〉2. ∀n ∈ Nat : Q(n)⇒ Q(n + 1) by SMT
〈1〉3. ∀n ∈ Nat : Q(n) by 〈1〉1, 〈1〉2,NatInduction,SMT
〈1〉4. qed by 〈1〉3, SMT

9

Toy example

axiom NatInduction ≡ assume new P(),
P(0),
∀n ∈ Nat : P(n)⇒ P(n + 1)

prove ∀n ∈ Nat : P(n)

theorem GeneralNatInduction ≡
assume new P(),

∀n ∈ Nat : P(n) ∈ boolean, (typing hypothesis)
∀n ∈ Nat : (∀m ∈ 0..(n − 1) : P(m))⇒ P(n)

prove ∀n ∈ Nat : P(n)
〈1〉. define Q(n) ≡ ∀m ∈ 0..n : P(m)
〈1〉1. Q(0) by SMT
〈1〉2. ∀n ∈ Nat : Q(n)⇒ Q(n + 1) by SMT
〈1〉3. ∀n ∈ Nat : Q(n) by 〈1〉1, 〈1〉2,NatInduction,SMT
〈1〉4. qed by 〈1〉3, SMT

9

Second approach: untyped encoding

TLA+ terms are mapped to a unique SMT sort U

Operators are uninterpreted functions or predicates
I union : U × U → U in : U × U → Bool

Operators’ semantics are defined axiomatically
I Axiom for ∪: ∀x ,S ,T : U. (x ∈ S ∪ T) = (x ∈ S ∨ x ∈ T)
I Primitive operators (∈, f [x], domain) are left uninterpreted

Functions are related to its argument by apply : U × U → U

10

Second approach: untyped encoding

TLA+ terms are mapped to a unique SMT sort U

Operators are uninterpreted functions or predicates
I union : U × U → U in : U × U → Bool

Operators’ semantics are defined axiomatically
I Axiom for ∪: ∀x ,S ,T : U. (x ∈ S ∪ T) = (x ∈ S ∨ x ∈ T)
I Primitive operators (∈, f [x], domain) are left uninterpreted

Functions are related to its argument by apply : U × U → U

10

Encoding arithmetic

Arithmetic expressions are lifted to elements on sort U

Embedding function φ : Int → U (uninterpreted and injective)

42 is encoded as φ(42)
x ∈ Int is encoded as ∃n : Int. x = φ(n)

Arithmetic operators are homomorphically embedded using φ

+U : U × U → U

Axiom for +: ∀m, n : Int. φ(m) +U φ(n) = φ(m + n)

Example

∀x ∈ Int : x + 0 = x

−→ ∀x : U . (∃n : Int. x = φ(n)) ⇒ x +U φ(0) = x

11

Encoding arithmetic

Arithmetic expressions are lifted to elements on sort U

Embedding function φ : Int → U (uninterpreted and injective)

42 is encoded as φ(42)
x ∈ Int is encoded as ∃n : Int. x = φ(n)

Arithmetic operators are homomorphically embedded using φ

+U : U × U → U

Axiom for +: ∀m, n : Int. φ(m) +U φ(n) = φ(m + n)

Example

∀x ∈ Int : x + 0 = x

−→ ∀x : U . (∃n : Int. x = φ(n)) ⇒ x +U φ(0) = x

11

Normalisation: removing non-basic operators

1 Grounding expressions: rewrite based on operator semantics
I [[x ∈ e]] ≡ [[x]] ∈ [[e]] [[e1 ∨ e2]] ≡ [[e1]] ∨ [[e2]]
I [[x ∈ e1 ∪ e2]] ≡ [[x ∈ e1 ∨ x ∈ e2]]
I [[S ⊆ T]] ≡ [[∀x : x ∈ S ⇒ x ∈ T]]

2 Disambiguation of equalities by inferred kinds
I [[S = T]] ≡ ∀x : [[x ∈ S ⇔ x ∈ T]] (when S ,T are sets)
I S = {a} ∪ {} −→ ∀x : x ∈ S ⇔ x = a ∨ false

3 Term-rewriting of top-level equalities
I assume T = {1,2}

prove T ⊆ Int
−→ ∀x : (x = 1 ∨ x = 2)⇒ x ∈ Int

4 Abstraction of non-basic operators
I ∀a : P({a}∪{})⇔ P({a}) −→ ∀a, s1, s2 : ∧ s1 = {a} ∪ {}

∧ s2 = {a}
⇒ P(s1)⇔ P(s2)

12

Normalisation: removing non-basic operators

1 Grounding expressions: rewrite based on operator semantics
I [[x ∈ e]] ≡ [[x]] ∈ [[e]] [[e1 ∨ e2]] ≡ [[e1]] ∨ [[e2]]
I [[x ∈ e1 ∪ e2]] ≡ [[x ∈ e1 ∨ x ∈ e2]]
I [[S ⊆ T]] ≡ [[∀x : x ∈ S ⇒ x ∈ T]]

2 Disambiguation of equalities by inferred kinds
I [[S = T]] ≡ ∀x : [[x ∈ S ⇔ x ∈ T]] (when S ,T are sets)
I S = {a} ∪ {} −→ ∀x : x ∈ S ⇔ x = a ∨ false

3 Term-rewriting of top-level equalities
I assume T = {1,2}

prove T ⊆ Int
−→ ∀x : (x = 1 ∨ x = 2)⇒ x ∈ Int

4 Abstraction of non-basic operators
I ∀a : P({a}∪{})⇔ P({a}) −→ ∀a, s1, s2 : ∧ s1 = {a} ∪ {}

∧ s2 = {a}
⇒ P(s1)⇔ P(s2)

12

Normalisation: removing non-basic operators

1 Grounding expressions: rewrite based on operator semantics
I [[x ∈ e]] ≡ [[x]] ∈ [[e]] [[e1 ∨ e2]] ≡ [[e1]] ∨ [[e2]]
I [[x ∈ e1 ∪ e2]] ≡ [[x ∈ e1 ∨ x ∈ e2]]
I [[S ⊆ T]] ≡ [[∀x : x ∈ S ⇒ x ∈ T]]

2 Disambiguation of equalities by inferred kinds
I [[S = T]] ≡ ∀x : [[x ∈ S ⇔ x ∈ T]] (when S ,T are sets)
I S = {a} ∪ {} −→ ∀x : x ∈ S ⇔ x = a ∨ false

3 Term-rewriting of top-level equalities
I assume T = {1,2}

prove T ⊆ Int
−→ ∀x : (x = 1 ∨ x = 2)⇒ x ∈ Int

4 Abstraction of non-basic operators
I ∀a : P({a}∪{})⇔ P({a}) −→ ∀a, s1, s2 : ∧ s1 = {a} ∪ {}

∧ s2 = {a}
⇒ P(s1)⇔ P(s2)

12

Normalisation: removing non-basic operators

1 Grounding expressions: rewrite based on operator semantics
I [[x ∈ e]] ≡ [[x]] ∈ [[e]] [[e1 ∨ e2]] ≡ [[e1]] ∨ [[e2]]
I [[x ∈ e1 ∪ e2]] ≡ [[x ∈ e1 ∨ x ∈ e2]]
I [[S ⊆ T]] ≡ [[∀x : x ∈ S ⇒ x ∈ T]]

2 Disambiguation of equalities by inferred kinds
I [[S = T]] ≡ ∀x : [[x ∈ S ⇔ x ∈ T]] (when S ,T are sets)
I S = {a} ∪ {} −→ ∀x : x ∈ S ⇔ x = a ∨ false

3 Term-rewriting of top-level equalities
I assume T = {1,2}

prove T ⊆ Int
−→ ∀x : (x = 1 ∨ x = 2)⇒ x ∈ Int

4 Abstraction of non-basic operators
I ∀a : P({a}∪{})⇔ P({a}) −→ ∀a, s1, s2 : ∧ s1 = {a} ∪ {}

∧ s2 = {a}
⇒ P(s1)⇔ P(s2)

12

Experimental results

N-process Bakery algorithm
I includes some basic arithmetic

Memoir security architecture
I mostly based on records

Module Cardinality of finite sets

Original Typed-SMT/Z3 Untyped-SMT/Z3
size time size time size time

Bakery 120 15.66 3 2.76 4 0.67
Memoir 424 7.31 14 5.08 14 1.11
Cardinality 185 2.12 - - 54 0.88

(length = number of non-trivial proof-obligations ; time in seconds)

- Original = proof using Zenon, Isabelle/TLA+, SimpleArithmetic

13

Conclusions

Typed encoding Untyped encoding

Handled
fragment

first-order logic, sets, functions, records, tuples

/ no sets of sets , choose operator

Efficiency , scales well for large
formulas

/ more quantifiers

Type inference / may fail for valid obli-
gations

, delegated to the solver

/ may require logically
unnecessary typing hy-
potheses

, no need of typing hy-
potheses ; preferred by
users

Soundness
analysis

/ non-trivial ; relies on
type inference

, immediate ; all axioms
are theorems

14

Future work

Work in progress: Merge both encodings

Based on the untyped encoding

Instantiate arithmetic expressions using type information

Future work:

Adapt this translation to use ATPs with arithmetic (Spass+LA)

Interpret the solvers output and certify it with Isabelle/TLA+

15

Example: how the SMT solver use the axioms

Consider the TLA+ proof obligation

∀x ∈ Int : x + 0 = x

which is translated as

∀x : U . (∃n : Int. x = φ(n)) ⇒ x +U φ(0) = x .

By Skolemization, the solver introduces a new constant, say n, of sort
Int, such that x = φ(n). It can then reason as follows:

x +U φ(0) = φ(n) +U φ(0) (x = φ(n))

= φ(n + 0) (by axiom of +U)

= φ(n) (by the SMT arithmetic procedure)

= x (x = φ(n))

16

Encoding of choose

1 Any expression choose x : P(x) can be abstracted to a new
variable s, for which the following equality is asserted:

s = choose x : P(x)

2 Use of the following TLA+ theorem to ground the expression

y = (choose x : P(x)) ⇒
(
(∃x : P(x))⇒ P(y)

)
3 Determinacy of choose . For every pair of expressions

choose x : P(x) and choose x : Q(x) that appear in the
proof obligation, we add the following axiom:

(∀x : P(x)⇔ Q(x))⇒ (choose x : P(x)) = (choose x : Q(x))

17

	Introduction
	First approach: SMT backend based on type inference
	Second approach: untyped encoding
	Experimental results
	Conclusions

