Harnessing SMT solvers for TLA™ Proofs

Stephan Merz and Herndn Vanzetto

7 MICROSOFT RESEARCH
informatics g”mathematics INRIA
JOINT

TLA"Y Workshop, Paris, France
August 27th, 2012




Introduction

TLA" proof language:
@ Hierarchical proof structure

@ Top-down development: users refine assertions until they are
“obvious”

o Leaf steps verified by automatic backend provers

» invoke proof method
» cite necessary assumptions and facts
» expand definitions

TLA" Proof System:
@ Mechanically checks TLA" proofs

@ Currently proves only non-temporal fragment
@ Supported by the TLA™ Toolbox



Architecture of TLAPS

TLA* Proof System
\N Proof Manager
TLA dul Generate proof
specification FIc procs S obligations

& proofs ‘

Certify proof Translate & verify
. (optional) proof obligations
Results, | T \\
diagnostics | B — rd R 1
" Simple SMT
Isbellce Zenon Arithmetic solvers

Backend provers




Current backend provers

o lIsabelle/ TLAT
» Faithful encoding of TLA" over Isabelle’s meta-logic
» Calls predefined Isabelle automatic proof methods
» Used to certify proofs of other backend provers



Current backend provers

o lIsabelle/ TLAT
» Faithful encoding of TLA" over Isabelle’s meta-logic
» Calls predefined Isabelle automatic proof methods
» Used to certify proofs of other backend provers
@ Zenon
» Tableau prover for first-order logic with equality
» Includes extensions for TLA™ on sets, functions, ...
» Backend called by default ; proofs certified by Isabelle



Current backend provers

o lIsabelle/ TLAT

» Faithful encoding of TLA" over Isabelle’s meta-logic
» Calls predefined Isabelle automatic proof methods
» Used to certify proofs of other backend provers

@ Zenon

» Tableau prover for first-order logic with equality
» Includes extensions for TLA™ on sets, functions, ...
» Backend called by default ; proofs certified by Isabelle

@ SimpleArithmetic (obsolete)
» Cooper's algorithm for Presburger arithmetic



Current backend provers

o lIsabelle/ TLAT

» Faithful encoding of TLA" over Isabelle’s meta-logic
» Calls predefined Isabelle automatic proof methods
» Used to certify proofs of other backend provers

@ Zenon

» Tableau prover for first-order logic with equality
» Includes extensions for TLA™ on sets, functions, ...
» Backend called by default ; proofs certified by Isabelle

@ SimpleArithmetic (obsolete)
» Cooper's algorithm for Presburger arithmetic
e SMT

» Available since the last public version of TLAPS (v1.0)
» Based on type inference



Typical proof obligations usually contain a mix of arithmetic, sets,
functions, which the older backends were not able to handle at once

SMT solvers offer a combination of:
+ First-order reasoning

+ Decision procedures for other theories (=, linear arithmetic, .. .)

SMT input languages:
@ Based on many-sorted first-order logic
@ Predefined Bool and integer sorts

@ Uninterpreted functions, if-then-else function



Table of Contents

© Introduction
0 First approach: SMT backend based on type inference
© Second approach: untyped encoding

@ Experimental results

© Conclusions



type inference

First approach: a backend based on

fail
type

assignment

SMT formats

SMT-LIB2
(CVC3/veriT)

Type
inference

\
L ]
TLA+ . basic-TLA+ .
proof Normalise proof Syntactic
obligation expressions obligation rewriting

TLA+ to SMT translation




First approach: a backend based on type inference
fail SMT formats
SMT-LIB2

(CVC3/veriT)

Type type

inference a551gnment
TLA+ basic-TLA+
proof Normalise proof Syntactic
obligation EXprEss e obligation rewriting
TLA+ to SMT translation

@ Inference algorithm recurses over TLA™ expressions

» Ad-hoc type system for TLA™ terms
(unspecified type L, integer type, sets, functions

)



First approach: a backend based on type inference
fail SMT formats
SMT-LIB2

type

(CVC3/veriT)

Type

inference a551gnment
TLA+ basic-TLA+
proof Normalise proof Syntactic
obligation EXprEss e obligation rewriting
TLA+ to SMT translation

@ Inference algorithm recurses over TLA™ expressions

» Ad-hoc type system for TLA™ terms
(unspecified type L, integer type, sets, functions

)

@ Soundness: incorrect typing can make invalid theorems provable

; (—X)=X

» x ¢ Int=>x+0=x



First approach: a backend based on type inference

fail
Type SMT formats
J type
inference assignment SMT-LIB2
AY (CvC3/veriT)
L]

TLA+ basic-TLA+
proof Normalise proof Syntactic
obligation expressions obligation rewriting

TLA+ to SMT translation

@ Inference algorithm recurses over TLA™ expressions
» Ad-hoc type system for TLA™ terms
(unspecified type L, integer type, sets, functions, ...)
@ Soundness: incorrect typing can make invalid theorems provable
» x ¢ Int=x+0=x ; (—X)=X
o Safe types: 1, set(L), set(set(L)), ...
e Typing hypotheses are available facts of the form
x~exp and Wy eS:f(y)~exp with~ €{= €,C}



First approach: a backend based on type inference

Well-typed TLAT formulas are translated to SMT input formats

e Basic TLA" expressions contain only operators that have a
direct representation in SMT formats (logical, arithm. and IFs)

@ Sets, functions, records, tuples encoded as uninterpreted functions

Example
x 7 Fxeht=x+0=x — x+0=x
axl; STuset(L)F aeSUT — S(a) Vv T(a)

Type information for variables usually provided by type invariants



Toy example

AXIOM Natinduction = ASSUME NEW P(_),
P(0),
Vn € Nat : P(n) = P(n+1)
PROVE Vn € Nat : P(n)




Toy example

AXIOM NatInduction = ASSUME NEW P(_),
P(0),
Vn € Nat : P(n) = P(n+1)
PROVE Vn € Nat : P(n)

THEOREM GeneralNatInduction =
ASSUME NEW P(_),

Vn € Nat : P(n) € BOOLEAN, (typing hypothesis)
Vn € Nat: (Vm € 0..(n— 1) : P(m)) = P(n)
PROVE Vn € Nat : P(n)
DEFINE Q(n) =Vm € 0..n: P(m)

(1).

(1)1. Q(0) BY SMT

(1)2. ¥n € Nat : Q(n) = Q(n+ 1) BY SMT

(1)3. Vn € Nat : Q(n) BY (1)1, (1)2, NatInduction,SMT
(1)4. QED BY (1)3, SMT

4




Second approach: untyped encoding

SMT formats
Axioms SMT-LIB2
(cvc3/veriT)
1 ]
TLA+ H . basic-TLA+ M
proof Normalise proof Syntactic Yices
obligation expressions obligation rewriting | | I\_/—\
TLA+ to SMT translation \‘\_i_\




Second approach: untyped encoding
SMT formats
Axions SMT-LIB2
(cvc3/veriT)

Y

TLA+ H . basic-TLA+ M
proof Normalise proof Syntactic Yices
obligation expressions obligation rewriting | |

TLA+ to SMT translation 73

W

i

@ TLA' terms are mapped to a unique SMT sort U

@ Operators are uninterpreted functions or predicates
» union: U x U — U in: U x U — Bool

@ Operators’ semantics are defined axiomatically

» Axiom for U: Vx, 5, T:U. (xeSUT)=(xeSvxeT)
» Primitive operators (&, f[x], DOMAIN) are left uninterpreted

@ Functions are related to its argument by apply : U x U — U




Encoding arithmetic

@ Arithmetic expressions are lifted to elements on sort U
e Embedding function ¢ : Int — U (uninterpreted and injective)

° 42 is encoded as  ¢(42)
x € Int is encoded as dn: Int. x = ¢(n)



Encoding arithmetic

@ Arithmetic expressions are lifted to elements on sort U
e Embedding function ¢ : Int — U (uninterpreted and injective)

° 42 is encoded as  ¢(42)
x € Int is encoded as dn: Int. x = ¢(n)

@ Arithmetic operators are homomorphically embedded using ¢
+u:UxU—=U

Axiom for +: Vm,n: Int. ¢(m) +y ¢(n) = ¢(m—+ n)

Example
Vx €lnt: x+0=x

— Vx:U.(3n:Int. x =¢(n)) = x+y ¢(0) = x




Normalisation: removing non-basic operators

@ Grounding expressions: rewrite based on operator semantics
s e = keld  [avel = [a] Vel
» [xeeaUe] = [x€eVx e e]
» [SCT] = [vx:xeS=xeT]



Normalisation: removing non-basic operators

@ Grounding expressions: rewrite based on operator semantics
slxeed = el [avel = [a] Vel
» [xeeaUe] = [x€eVx e e]
» [SCT] = [vx:xeS=xeT]

© Disambiguation of equalities by inferred kinds
» [S=T] = ¥x:[xeSexeT] (when S, T are sets)
» S={a}U{} — Vx:x €S x=aVFALSE



Normalisation: removing non-basic operators

@ Grounding expressions: rewrite based on operator semantics
sxeel = el [avel = [alviel
» [xeeaUe] = [x€eVx e e]
» [SCT] = [vx:xeS=xeT]

© Disambiguation of equalities by inferred kinds
» [S=T] = ¥x:[xeSexeT] (when S, T are sets)
» S={a}U{} — Vx:x €S x=aVFALSE

© Term-rewriting of top-level equalities
» ASSUME T ={12} — ¥x:(x=1Vx=2)=x¢€ Int

PROVE T C Int



Normalisation: removing non-basic operators

@ Grounding expressions: rewrite based on operator semantics
slxeed = el [avel = [a] Vel
» [xeeaUe] = [x€eVx e e]
» [SCT] = [vx:xeS=xeT]
© Disambiguation of equalities by inferred kinds
» [S=T] = ¥x:[xeSexeT] (when S, T are sets)
» S={a}U{} — Vx:x €S x=aVFALSE
© Term-rewriting of top-level equalities
» ASSUME T ={12} — ¥x:(x=1Vx=2)=x¢€ Int
PROVE T C Int
© Abstraction of non-basic operators
» Va: P({a}U{}) & P({a}) — Va,si,9: A st ={a}U{}
A sy ={a}
= P(Sl) <~ P(S2)



Experimental results

@ N-process Bakery algorithm
» includes some basic arithmetic

@ Memoir security architecture
» mostly based on records

@ Module Cardinality of finite sets

Original Typed-SMT/Z3 | Untyped-SMT/Z3
size time size  time size time
Bakery 120 15.66 3 2.76 4 0.67
Memoir 424  7.31 14 5.08 14 1.11
Cardinality | 185 2.12 - - 54 0.88

(length = number of non-trivial proof-obligations ; time in seconds)

- Original = proof using Zenon, Isabelle/ TLA", SimpleArithmetic



Conclusions

Typed encoding

Untyped encoding

Handled first-order logic, sets, functions, records, tuples
fragment ® no sets of sets © CHOOSE operator
Efficiency © scales well for large | ® more quantifiers

formulas

Type inference

® may fail for valid obli-
gations

® may require logically
unnecessary typing hy-
potheses

© delegated to the solver

© no need of typing hy-
potheses ; preferred by
users

Soundness
analysis

® non-trivial ; relies on
type inference

© immediate : all axioms
are theorems



Work in progress: Merge both encodings
@ Based on the untyped encoding

@ Instantiate arithmetic expressions using type information

Future work:
@ Adapt this translation to use ATPs with arithmetic (Spass+LA)
@ Interpret the solvers output and certify it with Isabelle/ TLA"



Example: how the SMT solver use the axioms

Consider the TLA" proof obligation
Vx € Int: x +0=x
which is translated as
Vx:U. (3n:Int. x=¢(n)) = x+y ¢(0) = x.

By Skolemization, the solver introduces a new constant, say n, of sort
Int, such that x = ¢(n). It can then reason as follows:

x +u ¢(0) =o(n) +u ¢(0)  (x=d(n))
= ¢(n+0) (by axiom of +)
= ¢(n) (by the SMT arithmetic procedure)
x (x = ¢(n))



Encoding of CHOOSE

© Any expression CHOOSE x : P(x) can be abstracted to a new
variable s, for which the following equality is asserted:

s = CHOOSE x : P(x)
@ Use of the following TLA" theorem to ground the expression
y = (CHOOSE x : P(x)) = ((3x: P(x)) = P(y))

© Determinacy of CHOOSE . For every pair of expressions
CHOOSE x : P(x) and CHOOSE x : Q(x) that appear in the
proof obligation, we add the following axiom:

(Vx : P(x) & Q(x)) = (cnoose x : P(x)) = (cnoose x : Q(x))



	Introduction
	First approach: SMT backend based on type inference
	Second approach: untyped encoding
	Experimental results
	Conclusions

