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Objective

Explain basic concepts of TLA+

I modeling systems: static and dynamic aspects

I existing tool support for modeling and analysis
PlusCal translator, TLC model checker, TLAPS proof platform

I elementary aspects of system refinement

Example-driven presentation, not trying to be exhaustive
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Outline

1 Modeling Systems in TLA+

2 System Verification

3 The PlusCal Algorithm Language

4 Refinement in TLA+

Stephan Merz (INRIA Nancy) TLA+ Tutorial Toulouse, June 2014 3 / 39



Example: Distributed Termination Detection
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Nodes arranged on a ring perform some computation
I nodes can be active (double circle) or inactive
I how can node 0 (master node) detect when all nodes are inactive?

Token-based algorithm
I initially: token at master node, who may pass it to its neighbor
I when a node is inactive, it passes on the token
I termination detected when token returns to inactive master node

Complication: nodes may send messages, activating receiver
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Dijkstra’s Algorithm (EWD 840, 1983)
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Nodes and token colored black or white
I master node initiates probe by sending white token

I message to higher-numbered node stains sending node
I when passing the token, a black node stains the token

Termination detection by master node
I white token at inactive, white master node

Required correctness properties
I safety: termination detected only if all nodes inactive
I liveness: when all nodes inactive, termination will be detected
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TLA+ Specification of EWD 840: Data Model

MODULE EWD840
EXTENDS Naturals
CONSTANT N
ASSUME NAssumption ∆

= N ∈ Nat \ {0}
Nodes ∆

= 0 .. N− 1
Color ∆

= {“white”, “black” }
VARIABLES tpos, tcolor, active, color
TypeOK ∆

= ∧ tpos ∈ Nodes∧ tcolor ∈ Color
∧ active ∈ [Nodes→ BOOLEAN] ∧ color ∈ [Nodes→ Color]

Declaration of parameters

Definition of operators

I sets Nodes and Color
I TypeOK documents expected values of variables
I active and color are arrays, i.e. functions
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TLA+ Specification of EWD 840: Behavior (1)

Init ∆
= ∧ tpos ∈ Nodes∧ tcolor = “black”
∧ active ∈ [Nodes→ BOOLEAN] ∧ color ∈ [Nodes→ Color]

InitiateProbe ∆
=

∧ tpos = 0∧ (tcolor = “black”∨ color[0] = “black”)
∧ tpos′ = N− 1∧ tcolor′ = “white”
∧ color′ = [color EXCEPT ![0] = “white”]
∧ active′ = active

PassToken(i) ∆
=

∧ tpos = i∧ ¬active[i]
∧ tpos′ = i− 1
∧ tcolor′ = IF color[i] = “black” THEN “black” ELSE tcolor
∧ color′ = [color EXCEPT ![i] = “white”]
∧ active′ = active

Initial condition: any “type-correct” values; token should be black

Action definitions: describe transitions of the algorithm
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TLA+ Specification of EWD 840: Behavior (2)

SendMsg(i) ∆
=

∧ active[i]
∧ ∃j ∈ Nodes \ {i} :
∧ active′ = [active EXCEPT ![j] = TRUE]

∧ color′ = [color EXCEPT ![i] = IF j > i THEN “black” ELSE @]

∧ UNCHANGED 〈tpos, tcolor〉
Deactivate(i) ∆

=

∧ active[i] ∧ active′ = [active EXCEPT ![i] = FALSE]

∧ UNCHANGED 〈color, tpos, tcolor〉

Next ∆
=

∨ InitiateProbe∨ ∃i ∈ Nodes \ {0} : PassToken(i)
∨ ∃i ∈ Nodes : SendMsg(i) ∨Deactivate(i)

vars ∆
= 〈tpos, tcolor, active, color〉

Spec ∆
= Init∧2[Next]vars

Definition of remaining actions

Possible executions: initial condition, interleaving of transitions

Stephan Merz (INRIA Nancy) TLA+ Tutorial Toulouse, June 2014 8 / 39



TLA+ Specification of EWD 840: Behavior (2)

SendMsg(i) ∆
=

∧ active[i]
∧ ∃j ∈ Nodes \ {i} :
∧ active′ = [active EXCEPT ![j] = TRUE]

∧ color′ = [color EXCEPT ![i] = IF j > i THEN “black” ELSE @]

∧ UNCHANGED 〈tpos, tcolor〉
Deactivate(i) ∆

=

∧ active[i] ∧ active′ = [active EXCEPT ![i] = FALSE]

∧ UNCHANGED 〈color, tpos, tcolor〉
Next ∆

=

∨ InitiateProbe∨ ∃i ∈ Nodes \ {0} : PassToken(i)
∨ ∃i ∈ Nodes : SendMsg(i) ∨Deactivate(i)

vars ∆
= 〈tpos, tcolor, active, color〉

Spec ∆
= Init∧2[Next]vars

Definition of remaining actions

Possible executions: initial condition, interleaving of transitions

Stephan Merz (INRIA Nancy) TLA+ Tutorial Toulouse, June 2014 8 / 39



Modeling a System in TLA+

1 Describe the system configurations

I represent the state of the system by state variables
I mathematical abstractions: numbers, sets, functions, tuples, . . .

2 Specify system behavior as a state machine Init∧2[Next]v
I initial condition: state formula identifies initial states
I next-state relation: action formula constrains allowed transitions
I overall spec: temporal formula defines system executions
I 2[Next]v every transition satisfies Next or leaves v unchanged

Specifications (and properties) expressed in mathematical logic

I formally, specify a universe that contains the modeled system
I use the power of mathematical logic to decompose the specification
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Safety Properties in TLA+

1 Prove type correctness

I invariant of the specification: THEOREM Spec⇒ 2TypeOK

I asserts that TypeOK is always true during any execution of Spec

2 Termination detection implies that all nodes are inactive

I termination detected when white token at inactive, white node 0

terminationDetected ∆
=

tpos = 0∧ tcolor = “white”∧ ¬active[0] ∧ color[0] = “white”

TerminationDetection ∆
=

terminationDetected⇒ ∀i ∈ Nodes : ¬active[i]
THEOREM Spec⇒ 2TerminationDetection

I formally again expressed as an invariant
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Model Checking Using TLC

Define a model: finite instance of TLA+ specification

I instantiate system parameters by concrete values
for example, create instance for N = 5

I indicate operator corresponding to system specification
in our example, Spec

I indicate invariants to verify
formulas TypeOK and TerminationDetection

I run TLC on this model and for these properties

Fully integrated into the TLA+ Toolbox

I Eclipse IDE for developing and analyzing TLA+ specifications

Use TLC also for validating the specification
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Using TLAPS to Prove Safety of EWD 840

TLAPS: proof assistant for verifying TLA+ specifications

I interesting specifications cannot be verified fully automatically
(for arbitrary instances)

I user interaction guides verification
I automatic back-end provers discharge leaf obligations

Proving a simple invariant in TLAPS

THEOREM TypeOK inv ∆
= Spec⇒ 2TypeOK

〈1〉1. Init⇒ TypeOK
〈1〉2. TypeOK ∧ [Next]vars ⇒ TypeOK′

〈1〉3. QED BY〈1〉1, 〈1〉2, PTL DEF Spec

I hierarchical proof language represents proof tree
I steps can be proved in any order: usually start with QED step
I invariant follows from steps 〈1〉1 and 〈1〉2 by temporal logic
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Simple Proofs

Prove that Init implies TypeOK

〈1〉1. Init⇒ TypeOK
BY NAssumption DEFS Init, TypeOK, Node, Color

I definitions and facts must be cited explicitly
I this helps manage the size of the search space for backend provers

Attempt similar proof for step 〈1〉2

〈1〉2. TypeOK ∧ [Next]vars ⇒ TypeOK′

BY NAssumption DEFS TypeOK, Next, vars, InitiateProbe, . . .

I back-end provers don’t prove this automatically
I use TLC to ensure that TypeOK is an inductive invariant

TypeOK ∧2[Next]vars ⇒ 2TypeOK

I decompose proof obligation into simpler steps

Stephan Merz (INRIA Nancy) TLA+ Tutorial Toulouse, June 2014 17 / 39



Simple Proofs

Prove that Init implies TypeOK

〈1〉1. Init⇒ TypeOK
BY NAssumption DEFS Init, TypeOK, Node, Color

I definitions and facts must be cited explicitly
I this helps manage the size of the search space for backend provers

Attempt similar proof for step 〈1〉2

〈1〉2. TypeOK ∧ [Next]vars ⇒ TypeOK′

BY NAssumption DEFS TypeOK, Next, vars, InitiateProbe, . . .

I back-end provers don’t prove this automatically
I use TLC to ensure that TypeOK is an inductive invariant

TypeOK ∧2[Next]vars ⇒ 2TypeOK

I decompose proof obligation into simpler steps

Stephan Merz (INRIA Nancy) TLA+ Tutorial Toulouse, June 2014 17 / 39



Hierarchical Proofs

〈1〉2. TypeOK ∧ [Next]vars ⇒ TypeOK′

〈2〉 USE DEF TypeOK, Node, Color
〈2〉 SUFFICES ASSUME TypeOK, Next

PROVE TypeOK′

BY DEFS TypeOK, vars
〈2〉1. CASE InitiateProbe

BY 〈2〉1 DEF InitiateProbe
〈2〉2. ASSUME NEW i ∈ Node \ {0}, PassToken(i)

PROVE TypeOK′

BY 〈2〉2, NAssumption DEF PassToken
. . . similar for remaining actions . . .
〈2〉 QED BY 〈2〉1, 〈2〉2, . . . DEF Next

SUFFICES steps represent backward chaining

trivial case UNCHANGED vars handled during decomposition

Toolbox IDE helps with hierarchical decomposition
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Verifying Safety: Summing Up

Model checking for finite instances

I TLC computes reachable state graph, checking invariants on the fly

I for termination, the set of reachable states must be finite

I updates of state variables: v′ = e or v′ ∈ E
for “computable” expressions e, E (E must evaluate to finite set)

I finite bounds for quantifiers, set comprehensions, function domains

Theorem proving for arbitrary instances

I explicit, hierarchical proofs

I inductive invariant must be provided by the user

I main proof effort at action level: supported by automatic backends

I PTL decision procedure for simple temporal reasoning
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Verifying Liveness (1)

When all nodes are inactive, termination will be detected

I expressed in TLA+ using a leadsto-formula F ; G ∆
= 2(F⇒ 3G)

Liveness ∆
= (∀i ∈ Nodes : ¬active[i]) ; terminationDetected

THEOREM Spec⇒ Liveness

I verification using TLC, for 5 nodes

I TLC produces a counter-example that ends in infinite stuttering
I 2[Next]vars allows for steps that do not change vars

Use fairness constraint to ensure progress

I fairness: action will be taken, provided it is long enough enabled

Spec ∆
= Init∧2[Next]vars ∧WFvars(Next)

I don’t stutter indefinitely as long as some transition is possible
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Verifying Liveness (2)

Verify liveness property for redefined specification
I TLC verifies that the property is now satisfied

TLC also verifies an undesired liveness property

AllNodesTerminateIfNoMessages ∆
=

32[¬∃i ∈ Nodes : SendMsg(i)]vars ⇒ 3(∀i ∈ Nodes : ¬active[i])

I our fairness requirement is too strong!
I weaken fairness constraint: only ensure termination detection

System ∆
= InitiateProbe∨ ∃i ∈ Nodes \ {0} : PassToken(i)

Spec ∆
= Init∧2[Next]vars ∧WFvars(System)

I TLC now verifies liveness, but no longer termination

Too strong fairness constraints are a frequent specification error!
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Verifying Liveness: Summing Up

Specification of fair state machine Init∧2[Next]v ∧ F
I F can be a conjunction of weak or strong fairness conditions

ENABLED A ∆
= ∃var′ : A (var′ contains all primed variables in A)

WFv(A)
∆
= 2(2 ENABLED 〈A〉v ⇒ 3〈A〉v)

SFv(A)
∆
= 2(23 ENABLED 〈A〉v ⇒ 3〈A〉v)

I typically: Next is a disjunction, fairness assumed for some disjuncts
I don’t assume too strong fairness conditions: use TLC for validation

Verifying liveness through model checking
I temporal properties such as 23P, 32P, P ; Q and combinations
I verification using TLC is more complex, but still automatic

Verification through theorem proving
I not yet supported by TLAPS: needs quantified temporal logic
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Languages for Describing Algorithms

TLA+: algorithms specified by logical formulas

I set-theoretical language for modeling data

I fair state machine specified in temporal logic

Conventional descriptions of algorithms by pseudo-code

I familiar presentations, using imperative-style language

I (obviously) effective for conveying algorithmic ideas

I neither executable nor mathematically precise

PlusCal: pseudo-code flavor, but precise and more expressive
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PlusCal: Elements of an Algorithm Language

Language for modeling, not programming concurrent algorithms

High-level abstractions, precise semantics

I use TLA+ expressions for modeling data
I simple translation of PlusCal to TLA+ specification

Familiar control structure + non-determinism

I flavor of imperative language: assignment, loop, conditional, . . .
I special constructs for non-deterministic choice

either { A } or { B } with x ∈ S { A }

Concurrency: indicate grain of atomicity

I statements may be labeled req: try[self ] := TRUE;

I statements from one label to the next one are executed atomically
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Example: Alternating-Bit Protocol in PlusCal

MODULE AlternatingBit
EXTENDS Naturals, Sequences

PlusCal algorithm embedded
within TLA+ module

CONSTANT Data
noData ∆

= CHOOSE x : x /∈ Data
(****
--algorithm AlternatingBit {

variables sndC = 〈〉, ackC = 〈〉;

global variable declarations

process (send = “sender”)
. . .

process (rcv = “receiver”)

three parallel processes
code to be filled in

. . .
process (err = “error”)

. . .
}
****)
\* BEGIN TRANSLATION

PlusCal translator inserts
TLA+ between these lines

\* END TRANSLATION
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PlusCal Code of Processes

process (send = “sender”)
variables sending = noData, sBit = 0, lastAck = 0; {

initialize local variables

s0: while (TRUE) {
with (d ∈ Data) { sending := d; sBit := 1− sBit };

prepare new data

s1: while (lastAck 6= sBit) {
either {

while not acknowledged,
either (re)send data or
receive acknowledgement

sndC := Append(sndC, 〈sending, sBit〉);
} or {

await (Len(ackC) > 0);
lastAck := Head(ackC); ackC := Tail(ackC);

} } }
} \* end process send

Code of the two other processes is similar

Familiar “look and feel” of imperative code
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Translation to TLA+: System State

TLA+ variables

I variables corresponding to those declared in PlusCal algorithm

I “program counter” stores current point of program execution

VARIABLES sndC, ackC, pc, sending, sBit, lastAck, rcvd, rBit

ProcSet ∆
= {“sender”} ∪ {“receiver”} ∪ {“error”}

Init ∆
=

∧ sndC = 〈〉 ∧ ackC = 〈〉
∧ sending = noData∧ sBit = 0∧ lastAck = 0
∧ rcvd = noData∧ rBit = 0
∧ pc = [self ∈ ProcSet 7→ CASE self = “sender”→ “s0”

2 self = “receiver”→ “r0”
2 self = “error”→ “e0”]
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Translation to TLA+: Transitions

s1 ∆
=

s1: while (lastAck 6= sBit) {
either {

sndC := Append(sndC, 〈sending, sBit〉);
} or {

await (Len(ackC) > 0);
lastAck := Head(ackC); ackC := Tail(ackC);

} }

∧ pc[“sender”] = “s1”
∧ IF lastAck 6= sBit

THEN ∧ ∨ ∧ sndC′ = Append(sndC, 〈sending, sBit〉)
∧ UNCHANGED 〈ackC, lastAck〉
∨ ∧ Len(ackC) > 0
∧ lastAck′ = Head(ackC)
∧ ackC′ = Tail(ackC)
∧ sndC′ = sndC

∧ pc′ = [pc EXCEPT ![“sender”] = “s1”]
ELSE ∧ pc′ = [pc EXCEPT ![“sender”] = “s0”]

∧ UNCHANGED 〈sndC, ackC, lastAck〉
∧ UNCHANGED 〈sending, sBit, rcvd, rBit〉

Fairly direct translation from PlusCal block to TLA+ action
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Translation to TLA+: Tying It All Together

Define the transition relation of the algorithm

I transition relation of process: disjunction of individual transitions
I overall next-state relation: disjunction of processes
I generalizes to multiple instances of same process type

send ∆
= s0∨ s1 rcv ∆

= r0∨ r1 err ∆
= e0

Next ∆
= send∨ rcv∨ err

Define the overall TLA+ specification

Spec ∆
= Init∧2[Next]vars

Extension: fairness conditions per process or label

fair process (send = “sender”) Spec ∆
= . . . ∧WFvars(send)

s1:+ while (lastAck 6= sBit) . . . Spec ∆
= . . . ∧ SFvars(s1)
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PlusCal: Summing Up

A gateway drug for programmers (C. Newcombe, Amazon)

I retain familiar look and feel of pseudo-code
I abstractness and expressiveness through embedded TLA+

I precision through simple translation to TLA+

I formal verification via standard TLA+ tool set

Simplicity of translation induces some limitations

I single level of processes can make modeling unnatural
I translation dictates rules on where labels must and cannot go
I properties must be written in TLA+ (probably a feature)

Algorithm language: much better than pseudo-code
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Outline

1 Modeling Systems in TLA+

2 System Verification

3 The PlusCal Algorithm Language

4 Refinement in TLA+
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Refinement of System Specifications

Refining (implementing) specification Spec by Impl

I every behavior allowed by Impl is a possible execution of Spec

I TLA+ formalization Impl⇒ Spec

I systems and properties represented as formulas

Problem: Impl will include detail not present in Spec

I additional variables + extra transitions
I many steps of Impl will be meaningless for Spec

Stuttering invariance to the rescue!

I extra transitions of Impl stutter w.r.t. the variables in Spec
I stuttering steps are allowed by next-state relation 2[Next]vars
I infinite stuttering ruled out by fairness conditions
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Example: Specifying Data Transmission

MODULE Transmission
CONSTANT Data
noData ∆

= CHOOSE x : x /∈ Data
VARIABLES sending, rcvd
Init ∆

= sending = noData∧ rcvd = noData
Send ∆

= ∧ rcvd = sending
∧ sending′ ∈ Data
∧ rcvd′ = rcvd

Receive ∆
= ∧ rcvd 6= sending
∧ rcvd′ = sending
∧ sending′ = sending

vars ∆
= 〈sending, rcvd〉

Spec ∆
= Init∧2[Send∨ Receive]vars

Simple handshake protocol specified as a state machine
I new data may be sent when previous one has been received
I no explicit mechanism for transferring data
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Implementation Through Alternating Bit Protocol

MODULE AlternatingBit
. . .
INSTANCE Transmission
THEOREM Spec⇒ Transmission!Spec

Implementation checked by TLC

I for fixed instances of Data and constraints on channel size

I exercise: extend this to fair data transmission
hint: ensure that the channels do not lose all data or acknowledgements

Stuttering invariance is essential here

I most transitions of alternating bit protocol stutter on 〈sending, rcvd〉
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Information Hiding

TLA+ specifications describe state machines

I often introduce “implementation detail” for controlling transitions
I example: program counter generated by PlusCal translator
I internal detail should be hidden from “interface”

In logic, hiding corresponds to existential quantification

Inner ∆
= Init∧2[Next]vars ∧ F

Spec ∆
= ∃∃∃∃∃∃ x : Inner

I behaves like inner specification, but with variables x hidden

Refinement under information hiding

I prove Impl⇒ Inner[t/x] for showing Impl⇒ Spec
I refinement mapping t : computed from implementation variables
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Summing Up

TLA+: Specify systems in logic, from first principles

I describe system behavior at appropriate level of abstraction
I mathematical logic is flexible and expressive
I set theory plus state machine plus temporal logic
I no formal distinction between systems and properties
I experience shows that this approach scales to practical systems

Support tools

I TLA+ Toolbox: editor, syntax/semantic analysis, pretty printer
I TLC: explicit-state model checker, checkpointing, parallelization
I TLAPS: interactive proof platform with powerful theorem provers
I PlusCal translator for generating TLA+ specification

Community: Google group, this workshop!
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Going Further

The TLA+ Web page
http://research.microsoft.com/en-us/um/people/lamport/tla/tla.html

Detailed presentations

The Hyperbook Specifying Systems
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