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Objective

@ Explain basic concepts of TLA*

» modeling systems: static and dynamic aspects

» existing tool support for modeling and analysis
PlusCal translator, TLC model checker, TLAPS proof platform

» elementary aspects of system refinement

e Example-driven presentation, not trying to be exhaustive
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@ Modeling Systems in TLA*
Q System Verification
9 The PlusCal Algorithm Language

@ Refinement in TLA*
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Example: Distributed Termination Detection

O

O

@ Nodes arranged on a ring perform some computation

» nodes can be active (double circle) or inactive
» how can node 0 (master node) detect when all nodes are inactive?
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Example: Distributed Termination Detection
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@ Nodes arranged on a ring perform some computation

» nodes can be active (double circle) or inactive
» how can node 0 (master node) detect when all nodes are inactive?

@ Token-based algorithm

» initially: token at master node, who may pass it to its neighbor
» when a node is inactive, it passes on the token
» termination detected when token returns to inactive master node

@ Complication: nodes may send messages, activating receiver
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Dijkstra’s Algorithm (EWD 840, 1983)
O

O
A

@ Nodes and token colored black or white

» master node initiates probe by sending white token
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@ Nodes and token colored black or white

» master node initiates probe by sending white token
» message to higher-numbered node stains sending node
» when passing the token, a black node stains the token

@ Termination detection by master node
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Dijkstra’s Algorithm (EWD 840, 1983)

O O

O O ~ O O ~ AO
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A A

@ Nodes and token colored black or white

» master node initiates probe by sending white token
» message to higher-numbered node stains sending node
» when passing the token, a black node stains the token

@ Termination detection by master node

» white token at inactive, white master node

@ Required correctness properties

» safety:  termination detected only if all nodes inactive
» liveness: when all nodes inactive, termination will be detected
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TLA* Specification of EWD 840: Data Model

[ MODULE EWD§840
EXTENDS Naturals
CONSTANT N
ASSUME NAssumption = N € Nat \ {0}
Nodes = 0..N —1
Color = {“white’, “black” }
VARIABLES tpos, tcolor, active, color
TypeOK = A tpos € Nodes A tcolor € Color
A active € [Nodes — BOOLEAN] A color € [Nodes — Color]

@ Declaration of parameters

@ Definition of operators

> sets Nodes and Color
» TypeOK documents expected values of variables
» active and color are arrays, i.e. functions
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TLA™ Specification of EWD 840: Behavior (1)

Init = A tpos € Nodes A tcolor = “lack”
A active € [Nodes — BOOLEAN] A color € [Nodes — Color]

@ Initial condition: any “type-correct” values; token should be black
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TLA™ Specification of EWD 840: Behavior (1)

Init = A tpos € Nodes A tcolor = “lack”
A active € [Nodes — BOOLEAN] A color € [Nodes — Color]

InitiateProbe =

A tpos = 0 A (tcolor = “black” V color[0] = “black”)

A tpos' = N — 1 A teolor’ = “white”

A color’ = [color EXCEPT ![0] = “white”]

A active’ = active
PassToken (i) =

A tpos = i A\ —activeli]

Atpos’' =i—1

A teolor’ = IF colorli] = “black” THEN “black” ELSE tcolor

A color’ = [color EXCEPT ![i] = “white”]

A active’ = active

@ Initial condition: any “type-correct” values; token should be black
@ Action definitions: describe transitions of the algorithm
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TLA™ Specification of EWD 840: Behavior (2)

SendMsg (i) =
A activeli]
A Jj € Nodes \ {i} :
A active’ = |active EXCEPT ![j] = TRUE]
A color’ = [color EXCEPT ![i] = IFj > i THEN “black” ELSE @]
A UNCHANGED (tpos, tcolor)
Deactivate(i) =
A active[i] A active’ = [active EXCEPT ![i] = FALSE]
A UNCHANGED {color, tpos, tcolor)

@ Definition of remaining actions
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TLA™ Specification of EWD 840: Behavior (2)

SendMsg (i) =
A activeli]
A Jj € Nodes \ {i} :
A active’ = |active EXCEPT ![j] = TRUE]

A color’ = [color EXCEPT ![i] = IFj > i THEN “black” ELSE @]
A UNCHANGED (tpos, tcolor)
Deactivate(i) =
A active[i] A active’ = [active EXCEPT ![i] = FALSE]
A UNCHANGED {color, tpos, tcolor)
Next =
V InitiateProbe VV 3i € Nodes \ {0} : PassToken (i)
V Ji € Nodes : SendMsg (i) V Deactivate(i)
vars = (tpos, teolor, active, color)
Spec 2 Init A O[Next]vars

@ Definition of remaining actions
@ Possible executions: initial condition, interleaving of transitions
Stephan Merz (INRIA Nancy)
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Modeling a System in TLA*

@ Describe the system configurations

» represent the state of the system by state variables
» mathematical abstractions: numbers, sets, functions, tuples, ...
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@ Specify system behavior as a state machine Init A O[Next|,

» initial condition: state formula identifies initial states

» next-state relation: action formula constrains allowed transitions
» overall spec: temporal formula defines system executions

» O[Next|, every transition satisfies Next or leaves v unchanged
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Modeling a System in TLA*

@ Describe the system configurations

» represent the state of the system by state variables

» mathematical abstractions: numbers, sets, functions, tuples, ...
@ Specify system behavior as a state machine Init A O[Next|,

» initial condition: state formula identifies initial states

» next-state relation: action formula constrains allowed transitions
» overall spec: temporal formula defines system executions

» O[Next|, every transition satisfies Next or leaves v unchanged

@ Specifications (and properties) expressed in mathematical logic

» formally, specify a universe that contains the modeled system
» use the power of mathematical logic to decompose the specification
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Outline

e System Verification
@ Safety Properties
@ Liveness Properties
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Outline

e System Verification
@ Safety Properties
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Safety Properties in TLA™

@ Prove type correctness

» invariant of the specification: THEOREM Spec = OTypeOK |

» asserts that TypeOK is always true during any execution of Spec
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Safety Properties in TLA™

@ Prove type correctness

» invariant of the specification: THEOREM Spec = OTypeOK |

» asserts that TypeOK is always true during any execution of Spec

@ Termination detection implies that all nodes are inactive

» termination detected when white token at inactive, white node 0

terminationDetected =

tpos = 0 A tcolor = “white” A —active[0] A color[0] = “white”
TerminationDetection =

terminationDetected = Vi € Nodes : —activeli]
THEOREM Spec = OTerminationDetection

» formally again expressed as an invariant
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Model Checking Using TLC

@ Define a model: finite instance of TLA* specification

» instantiate system parameters by concrete values

for example, create instance for N = 5

» indicate operator corresponding to system specification

in our example, Spec

» indicate invariants to verify
formulas TypeOK and TerminationDetection

» run TLC on this model and for these properties

e Fully integrated into the TLA* Toolbox
» Eclipse IDE for developing and analyzing TLA™" specifications

@ Use TLC also for validating the specification
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Using TLAPS to Prove Safety of EWD 840

@ TLAPS: proof assistant for verifying TLA* specifications

» interesting specifications cannot be verified fully automatically
(for arbitrary instances)

» user interaction guides verification
» automatic back-end provers discharge leaf obligations
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Using TLAPS to Prove Safety of EWD 840

@ TLAPS: proof assistant for verifying TLA* specifications
» interesting specifications cannot be verified fully automatically
(for arbitrary instances)
» user interaction guides verification
» automatic back-end provers discharge leaf obligations

@ Proving a simple invariant in TLAPS

THEOREM TypeOK_inv = Spec = OTypeOK
(1)1. Init = TypeOK

(1)2. TypeOK A [Next]pars = TypeOK’
(1)3.QeD  BY(1)1,(1)2, PTL DEF Spec

» hierarchical proof language represents proof tree
» steps can be proved in any order: usually start with QED step
» invariant follows from steps (1)1 and (1)2 by temporal logic
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Simple Proofs

@ Prove that Init implies TypeOK

(1)1. Init = TypeOK
BY NAssumption DEFS Init, TypeOK, Node, Color

» definitions and facts must be cited explicitly
» this helps manage the size of the search space for backend provers
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Simple Proofs

@ Prove that Init implies TypeOK

(1)1. Init = TypeOK
BY NAssumption DEFS Init, TypeOK, Node, Color

» definitions and facts must be cited explicitly

» this helps manage the size of the search space for backend provers

e Attempt similar proof for step (1)2

(1)2. TypeOK A [Next|yars = TypeOK’
BY NAssumption DEFS TypeOK, Next, vars, InitiateProbe, . . .

» back-end provers don’t prove this automatically
» use TLC to ensure that TypeOK is an inductive invariant

TypeOK A O[Next]vars = OTypeOK )

» decompose proof obligation into simpler steps
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Hierarchical Proofs

(1)2. TypeOK A [Next|vars = TypeOK’
(2) USE DEF TypeOK, Node, Color
(2) SUFFICES ASSUME TypeOK, Next
PROVE TypeOK'
BY DEFS TypeOK, vars
(2)1. CASE InitiateProbe
BY (2)1 DEF InitiateProbe
(2)2. ASSUME NEW i € Node \ {0}, PassToken (i)
PROVE TypeOK’
BY (2)2, NAssumption DEF PassToken
. similar for remaining actions ...
(2) QED  BY (2)1,(2)2,... DEF Next

@ SUFFICES steps represent backward chaining
@ trivial case UNCHANGED vars handled during decomposition

@ Toolbox IDE helps with hierarchical decomposition
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Verifying Safety: Summing Up

@ Model checking for finite instances

» TLC computes reachable state graph, checking invariants on the fly
» for termination, the set of reachable states must be finite

» updates of state variables: v' =¢ or v/ € E
for “computable” expressions e, E (E must evaluate to finite set)

» finite bounds for quantifiers, set comprehensions, function domains
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Verifying Safety: Summing Up

@ Model checking for finite instances

» TLC computes reachable state graph, checking invariants on the fly
» for termination, the set of reachable states must be finite

» updates of state variables: v' =¢ or v/ € E
for “computable” expressions e, E (E must evaluate to finite set)

» finite bounds for quantifiers, set comprehensions, function domains

@ Theorem proving for arbitrary instances

v

explicit, hierarchical proofs

v

inductive invariant must be provided by the user

» main proof effort at action level: supported by automatic backends

v

PTL decision procedure for simple temporal reasoning
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Outline

e System Verification

@ Liveness Properties
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Verifying Liveness (1)
@ When all nodes are inactive, termination will be detected
» expressed in TLA™ using a leadsto-formula F~ G = 0O(F = ©G)

Liveness = (Vi € Nodes : —activeli]) ~» terminationDetected
THEOREM Spec = Liveness

» verification using TLC, for 5 nodes
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Verifying Liveness (1)

@ When all nodes are inactive, termination will be detected

» expressed in TLA™ using a leadsto-formula F~ G = 0O(F = ©G)

Liveness = (Vi € Nodes : —activeli]) ~» terminationDetected
THEOREM Spec = Liveness

» verification using TLC, for 5 nodes
» TLC produces a counter-example that ends in infinite stuttering
» O[Next]|oars allows for steps that do not change vars

@ Use fairness constraint to ensure progress

» fairness: action will be taken, provided it is long enough enabled
Spec 2 Init A O[Next]vars A WEpars (Next)

» don't stutter indefinitely as long as some transition is possible
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Verifying Liveness (2)

@ Verify liveness property for redefined specification

» TLC verifies that the property is now satisfied
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Verifying Liveness (2)
@ Verify liveness property for redefined specification
» TLC verifies that the property is now satisfied

@ TLC also verifies an undesired liveness property

AlINodesTerminatelfNoMessages =
<©0O[—3i € Nodes : SendMsg(i)]vars = (Vi € Nodes : —activeli])

» our fairness requirement is too strong!
» weaken fairness constraint: only ensure termination detection

System = InitiateProbe \/ 3i € Nodes \ {0} : PassToken(i)
Spec 2 Init A O[Next]vars A WEpars (System)

» TLC now verifies liveness, but no longer termination

@ Too strong fairness constraints are a frequent specification error!
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Verifying Liveness: Summing Up

@ Specification of fair state machine Init A O[Next], A F

» F can be a conjunction of weak or strong fairness conditions

ENABLEDA 2 Joar’ : A (var’ contains all primed variables in A)
WE,(A) = 0O(OENABLED (A)y = O(A)y)

A

SFy(A) = O(OO ENABLED (A), = O(A)y)

» typically: Next is a disjunction, fairness assumed for some disjuncts
» don’t assume too strong fairness conditions: use TLC for validation
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Verifying Liveness: Summing Up

@ Specification of fair state machine Init A O[Next], A F

» F can be a conjunction of weak or strong fairness conditions

ENABLEDA 2 Joar’ : A (var’ contains all primed variables in A)
WE,(A) = 0O(OENABLED (A)y = O(A)y)

A

SFy(A) = O(OO ENABLED (A), = O(A)y)

» typically: Next is a disjunction, fairness assumed for some disjuncts
» don’t assume too strong fairness conditions: use TLC for validation

@ Verifying liveness through model checking

» temporal properties such as OOP, GOP, P~ Q and combinations
» verification using TLC is more complex, but still automatic

@ Verification through theorem proving

» not yet supported by TLAPS: needs quantified temporal logic
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0 Modeling Systems in TLA*
Q System Verification
e The PlusCal Algorithm Language

e Refinement in TLA*
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Languages for Describing Algorithms

@ TLA™: algorithms specified by logical formulas

» set-theoretical language for modeling data

» fair state machine specified in temporal logic
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Languages for Describing Algorithms

@ TLA™: algorithms specified by logical formulas

» set-theoretical language for modeling data

» fair state machine specified in temporal logic

e Conventional descriptions of algorithms by pseudo-code

» familiar presentations, using imperative-style language
» (obviously) effective for conveying algorithmic ideas

» neither executable nor mathematically precise

@ PlusCal: pseudo-code flavor, but precise and more expressive
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PlusCal: Elements of an Algorithm Language

e Language for modeling, not programming concurrent algorithms

e High-level abstractions, precise semantics

@ Familiar control structure + non-determinism

@ Concurrency: indicate grain of atomicity
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PlusCal: Elements of an Algorithm Language

e Language for modeling, not programming concurrent algorithms
e High-level abstractions, precise semantics

» use TLA™ expressions for modeling data
» simple translation of PlusCal to TLA* specification

@ Familiar control structure + non-determinism

@ Concurrency: indicate grain of atomicity
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PlusCal: Elements of an Algorithm Language

e Language for modeling, not programming concurrent algorithms

e High-level abstractions, precise semantics

» use TLA™ expressions for modeling data
» simple translation of PlusCal to TLA* specification

@ Familiar control structure + non-determinism

» flavor of imperative language: assignment, loop, conditional, ...

» special constructs for non-deterministic choice

either { A}or{B} withxe S{A}

@ Concurrency: indicate grain of atomicity
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PlusCal: Elements of an Algorithm Language

e Language for modeling, not programming concurrent algorithms
e High-level abstractions, precise semantics

» use TLA™ expressions for modeling data

» simple translation of PlusCal to TLA* specification
@ Familiar control structure + non-determinism

» flavor of imperative language: assignment, loop, conditional, ...
» special constructs for non-deterministic choice

either { A}or{B} withxe S{A}
@ Concurrency: indicate grain of atomicity

> statements may be labeled req: try[self] := TRUE; J

» statements from one label to the next one are executed atomically
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Example: Alternating-Bit Protocol in PlusCal

[ MODULE AlternatingBit

EXTENDS Naturals, Sequences
CONSTANT Data

noData = CHOOSE x : x ¢ Data

(*>(->{->(-

—-algorithm AlternatingBit {
variables sndC = (), ackC = ();
process (send = “sender”)

process (rcv = “receiver”)
process (err = “error”)

}

>(->F>{->(-)

\* BEGIN TRANSLATION
\* END TRANSLATION
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Example: Alternating-Bit Protocol in PlusCal

[ MODULE AlternatingBit ‘
EXTENDS Naturals, Sequences

CONSTANT Data PlusCal algorithm embedded J
o .

noData = CHOOSE x : x ¢ Data within TLA™ module

(*>(->{->(-

—-algorithm AlternatingBit {
variables sndC = (), ackC = ();
process (send = “sender”)

process (rcv = “receiver”)
process (err = “error”)

}

***X—)

\* BEGIN TRANSLATION
\* END TRANSLATION
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Example: Alternating-Bit Protocol in PlusCal

[ MODULE AlternatingBit ‘
EXTENDS Naturals, Sequences

CONSTANT Data PlusCal algorithm embedded J
o .

noData = CHOOSE x : x ¢ Data within TLA™ module

(*>(->{->(-

—-algorithm AlternatingBit {
variables sndC = (), ackC = (); global variable declarations J

process (send = “sender”)

process (rcv = “receiver”)
process (err = “error”)

}

>(->F>{->(-)

\* BEGIN TRANSLATION
\* END TRANSLATION
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Example: Alternating-Bit Protocol in PlusCal

MODULE AlternatingBit ‘
EXTENDS Naturals, Sequences
CONSTANT Data

noData = CHOOSE x : x ¢ Data

(*>(->{->(-

PlusCal algorithm embedded
within TLA* module J

—-algorithm AlternatingBit {
variables sndC = (), ackC = (); global variable declarations J

process (send = “sender”)

process (rcv = “receiver”) three parallel processes
code to be filled in

process (err = “error”)

}

>(->F>{->(-)

\* BEGIN TRANSLATION
\* END TRANSLATION
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Example: Alternating-Bit Protocol in PlusCal

MODULE AlternatingBit |
EXTENDS Naturals, Sequences

CONSTANT Data PlusCal algorithm embedded J
o .

noData = CHOOSE x : x ¢ Data within TLA™ module

(*>(->{->(-

—-algorithm AlternatingBit {
variables sndC = (), ackC = (); global variable declarations J

process (send = “sender”)

process (rco = “receiver”) three parallel processes
code to be filled in

process (err = “error”)

}

***X—)
\* BEGIN TRANSLATION PlusCal translator inserts
\* END TRANSLATION TLA* between these lines J

Stephan Merz (INRIA Nancy) TLA™" Tutorial Toulouse, June 2014 27 /39



PlusCal Code of Processes

process (send = “sender”)
variables sending = noData, sBit = 0, lastAck = 0; {
s0:  while (TRUE) {
with (d € Data) { sending := d; sBit :== 1 — sBit };
sl: while (lastAck # sBit) {
either {
sndC := Append(sndC, (sending, sBit));
}or{
await (Len(ackC) > 0);
lastAck := Head(ackC); ackC := Tail(ackC);
P}

} \*end process send
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PlusCal Code of Processes

process (send = “sender”)
variables sending = noData, sBit = 0, lastAck = 0; { initialize local variables |
s0:  while (TRUE) {
with (d € Data) { sending := d; sBit :== 1 — sBit };
sl: while (lastAck # sBit) {
either {
sndC := Append(sndC, (sending, sBit));
}or {
await (Len(ackC) > 0);
lastAck := Head(ackC); ackC := Tail(ackC);
P}

} \*end process send
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process (send = “sender”)
variables sending = noData, sBit = 0, lastAck = 0; { initialize local variables |
s0:  while (TRUE) {
with (d € Data) { sending := d; sBit :== 1 — sBit }; ~ prepare new data J
sl: while (lastAck # sBit) {
either {
sndC := Append(sndC, (sending, sBit));
}or {
await (Len(ackC) > 0);
lastAck := Head(ackC); ackC := Tail(ackC);
P}

} \*end process send

Stephan Merz (INRIA Nancy) TLA" Tutorial Toulouse, June 2014 28 /39



PlusCal Code of Processes

process (send = “sender”)
variables sending = noData, sBit = 0, lastAck = 0; {
s0:  while (TRUE) {

with (d € Data) { sending := d; sBit :== 1 — sBit };

sl: while (lastAck # sBit) {
either {
sndC := Append(sndC, (sending, sBit));
}oor {
await (Len(ackC) > 0);
lastAck := Head(ackC); ackC := Tail(ackC);
P}

} \*end process send

Stephan Merz (INRIA Nancy) TLA" Tutorial

initialize local variables y

prepare new data J

either (re)send data or

while not acknowledged,
receive acknowledgementJ

Toulouse, June 2014 28 / 39



PlusCal Code of Processes

process (send = “sender”)

variables sending = noData, sBit = 0, lastAck = 0; { initialize local variables |
s0:  while (TRUE) {
with (d € Data) { sending := d; sBit :== 1 — sBit };  Prepare new data J
sl: while (lastAck # sBit) {
either {
sndC := Append(sndC, (sending, sBit)); while not acknowledged,
}or { eithe.r (re)send data or J
e () = 0 receive acknowledgement

lastAck := Head(ackC); ackC := Tail(ackC);
P}

} \*end process send

@ Code of the two other processes is similar
@ Familiar “look and feel” of imperative code

Stephan Merz (INRIA Nancy) TLA" Tutorial Toulouse, June 2014 28 /39



Translation to TLA™: System State

@ TLAT" variables

» variables corresponding to those declared in PlusCal algorithm

» “program counter” stores current point of program execution

VARIABLES sndC, ackC, pc, sending, sBit, lastAck, rcvd, rBit
ProcSet = {“sender’} U {“receiver’} U {“error’
Init =
A sndC = () AackC = ()
A sending = noData A sBit = 0 A lastAck = 0
A rcvd = noData A rBit = 0
A pc = [self € ProcSet — CASE self = “sender” — “s0”
O self = “receiver” — “r0”
O self = “error” — “e0”]
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Translation to TLA*: Transitions

s1: while (lastAck # sBit) {
either {
sndC := Append(sndC, (sending, sBit) );
}or{
await (Len(ackC) > 0);
lastAck := Head(ackC); ackC := Tail(ackC);

b}

i3

sl
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Translation to TLA*: Transitions

s1: while (lastAck # sBit) {
either {
sndC := Append(sndC, (sending, sBit) );
}or{
await (Len(ackC) > 0);
lastAck := Head(ackC); ackC := Tail(ackC);

2

sl
A pc[‘sender’] = “s1” }}

A TF lastAck # sBit
THEN A V A sndC' = Append(sndC, (sending, sBit))
A UNCHANGED (ackC, lastAck)
V A Len(ackC) > 0
A lastAck’ = Head(ackC)
A ackC' = Tail (ackC)
A sndC' = sndC
A pc’ = [pc EXCEPT ![“sender’] = “s1”]
ELSE A pc’ = [pc EXCEPT ![*sender’| = “s0”]
A UNCHANGED (sndC, ackC, last Ack)
A UNCHANGED (sending, sBit, rcud, rBit)

Fairly direct translation from PlusCal block to TLA™" action
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Translation to TLA™: Tying It All Together

@ Define the transition relation of the algorithm
» transition relation of process: disjunction of individual transitions
» overall next-state relation: disjunction of processes
» generalizes to multiple instances of same process type
send = s0V sl rev = 10V rl err = ¢0
Next = send \/ rco V err
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Translation to TLA™: Tying It All Together

@ Define the transition relation of the algorithm
» transition relation of process: disjunction of individual transitions

» overall next-state relation: disjunction of processes
» generalizes to multiple instances of same process type

send = s0V sl rco = r0Vrl err = €0

Next = send \/ rco V err
@ Define the overall TLA* specification

Spec 2 Init A O[Next]vars
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Translation to TLA™: Tying It All Together

@ Define the transition relation of the algorithm

» transition relation of process: disjunction of individual transitions

» overall next-state relation: disjunction of processes
» generalizes to multiple instances of same process type

send = s0V sl rco = r0Vrl err = €0
Next = send V rcoVerr

@ Define the overall TLA* specification
Spec 2 Init A O[Next]vars

@ Extension: fairness conditions per process or label

fair process (send = “sender”) Spec = ... A WFEyys(send)
s+ while (lastAck # sBit) ... Spec = ... ASFyus(s1)
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PlusCal: Summing Up

@ A gateway drug for programmers (C. Newcombe, Amazon)

» retain familiar look and feel of pseudo-code

v

abstractness and expressiveness through embedded TLA™*
> precision through simple translation to TLA*

formal verification via standard TLA™ tool set

\{
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PlusCal: Summing Up

@ A gateway drug for programmers (C. Newcombe, Amazon)

» retain familiar look and feel of pseudo-code
» abstractness and expressiveness through embedded TLA™*
> precision through simple translation to TLA*

» formal verification via standard TLA* tool set

e Simplicity of translation induces some limitations

» single level of processes can make modeling unnatural
» translation dictates rules on where labels must and cannot go

» properties must be written in TLA* (probably a feature)
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PlusCal: Summing Up

@ A gateway drug for programmers (C. Newcombe, Amazon)

» retain familiar look and feel of pseudo-code

v

abstractness and expressiveness through embedded TLA™*
> precision through simple translation to TLA*

formal verification via standard TLA™ tool set

\{

e Simplicity of translation induces some limitations

» single level of processes can make modeling unnatural
» translation dictates rules on where labels must and cannot go

» properties must be written in TLA* (probably a feature)

@ Algorithm language: much better than pseudo-code
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e Modeling Systems in TLA*
Q System Verification
9 The PlusCal Algorithm Language

e Refinement in TLA*

«4Or «Fr «=Er «=)» DA



Refinement of System Specifications

@ Refining (implementing) specification Spec by Impl

» every behavior allowed by Impl is a possible execution of Spec

» TLA™" formalization Impl = Spec

» systems and properties represented as formulas
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» every behavior allowed by Impl is a possible execution of Spec

» TLA™" formalization Impl = Spec

» systems and properties represented as formulas

@ Problem: Impl will include detail not present in Spec

» additional variables + extra transitions
» many steps of Impl will be meaningless for Spec

Stephan Merz (INRIA Nancy) TLA" Tutorial Toulouse, June 2014 34 /39



Refinement of System Specifications

@ Refining (implementing) specification Spec by Impl

» every behavior allowed by Impl is a possible execution of Spec

» TLA™" formalization Impl = Spec

» systems and properties represented as formulas

@ Problem: Impl will include detail not present in Spec

» additional variables + extra transitions
» many steps of Impl will be meaningless for Spec

@ Stuttering invariance to the rescue!

» extra transitions of Impl stutter w.r.t. the variables in Spec
» stuttering steps are allowed by next-state relation O[Next]yrs
> infinite stuttering ruled out by fairness conditions
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Example: Specifying Data Transmission

MODULE Transmission
CONSTANT Data
noData = CHOOSEX : x ¢ Data
VARIABLES sending, rcod
Init = sending = noData A rcvd = noData
Send = A rcod = sending
A sending’ € Data
A revd’ = reod
Receive = A rcod # sending
A revd = sending
A sending’ = sending
vars = (sending, rcod)

Spec 2 mitAD [Send V Receive]pars
[ |

e Simple handshake protocol specified as a state machine

» new data may be sent when previous one has been received
» no explicit mechanism for transferring data
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Implementation Through Alternating Bit Protocol

[ MODULE AlternatingBit

INSTANCE Transmission

THEOREM Spec = Transmission!Spec
I

@ Implementation checked by TLC

» for fixed instances of Data and constraints on channel size

» exercise: extend this to fair data transmission

hint: ensure that the channels do not lose all data or acknowledgements

@ Stuttering invariance is essential here

» most transitions of alternating bit protocol stutter on (sending, rcvd)
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Information Hiding

@ TLA™ specifications describe state machines

» often introduce “implementation detail” for controlling transitions
» example: program counter generated by PlusCal translator
» internal detail should be hidden from “interface”

Stephan Merz (INRIA Nancy) TLA™" Tutorial Toulouse, June 2014 37 /39



Information Hiding

@ TLA™ specifications describe state machines

» often introduce “implementation detail” for controlling transitions

» example: program counter generated by PlusCal translator
» internal detail should be hidden from “interface”

@ In logic, hiding corresponds to existential quantification

Inner 2 Init A O[Next]yars A F
Spec = Ax: Inner

» behaves like inner specification, but with variables x hidden
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Information Hiding

@ TLA™ specifications describe state machines

» often introduce “implementation detail” for controlling transitions
» example: program counter generated by PlusCal translator
» internal detail should be hidden from “interface”

@ In logic, hiding corresponds to existential quantification

Inner = Init A O[Next]yars A F
Spec = 3x: Inner

» behaves like inner specification, but with variables x hidden

@ Refinement under information hiding

» prove Impl = Inner[t/x] for showing Impl = Spec
» refinement mapping t : computed from implementation variables
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Summing Up

@ TLA*: Specify systems in logic, from first principles

» describe system behavior at appropriate level of abstraction

» mathematical logic is flexible and expressive

» set theory plus state machine plus temporal logic

» no formal distinction between systems and properties

» experience shows that this approach scales to practical systems

@ Support tools

v

TLA™ Toolbox: editor, syntax/semantic analysis, pretty printer

v

TLC: explicit-state model checker, checkpointing, parallelization
» TLAPS: interactive proof platform with powerful theorem provers

v

PlusCal translator for generating TLA* specification

o Community: Google group, this workshop!
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Going Further

@ The TLA*™ Web page

http://research.microsoft.com/en-us/um/people/lamport/tla/tla.html

@ Detailed presentations

The Hyperbook

Principles and Specifications of Concurrent Systems

Leslie Lamport
Version of 24 March 2014

The Principles and Specification Tracks

1 Introduction
11 Concurrent Computation
1.2 Modeling Computation
13 Specification
14 Systems and Languages

Sections colored like this have
2 The One-Bit Clock not yet been written.
21 The Clock's Behaviors
22 Deseribing the Behaviors
2.3 Writing the Specification
The Pretty-Printed Version of Your Spec

ecking the Specfication
Computing the Behaviors from the Specifcation
Other Ways of Writing the Behavior Specification
238 Specifying the Clock in PlusCal

3 The Die Hard Problem
3.1 Representing the Problem in TLA
3.2 Applying TLC
3.3 Expressing the Problem in PlusCal

4 Buclid’s Algorithm
4.1 The Greatest Common Divisor
411 Divisors
412 CHOOSE and the Maximum of a Set
413 The GCD Operator
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