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TLA+

First-order logic with sets (ZFC)

Temporal operators:

2 (always), 3 (eventually), ; (leads-to), no Nexttime

Syntax for operations on sets, functions, tuples, records

TLA Proof System: TLAPS

Explicit-state model checker: TLC
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What is hard about TLA+?

Rich data

sets of sets, functions, records, tuples, sequences

No types

TLA+ is not a programming language

No imperative statements like assignments

TLA+ is not a programming language

No standard control flow

TLA+ is not a programming language
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In this talk:

- a model checker like TLC but symbolic

- no abstractions

- nothing parameterized
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Our short-term goal

Symbolic model checker that works under the assumptions of TLC:

Fixed and finite constants (parameters)

Finite sets, function domains and co-domains

TLC restrictions on formula structure

As few language restrictions as possible

Technically,

Quantifier-free formulas in SMT

Unfolding quantified expressions, e.g., ∀x ∈ S : P as
∧

c∈S
P[c/x ]
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an example



Maximal Independent Set

Classical distributed problem [Lynch, Ch 4]

1

2 3

4

N processes placed in the nodes of an undirected graph (V ,E)

Processes exchange messages in synchronous rounds

Goal: Find a maximal independent set I ⊆ V :

(u, v) ∈ E → u /∈ I ∨ v /∈ I for u, v ∈ V (1)
every larger set I′ ⊃ I violates Equation (1) (2)

Example: I = {1,3}
Igor Konnov 15 of 56
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LubyMIS

randomized distributed algorithm [Lynch, p. 73]

every process cyclically executes three rounds: 1, 2, 3, 1, 2, 3, . . .

at every round 1, a process i randomly picks a value val[i] ∈ 1..N4

round 1:
if val[i] > val[k ] for every neighbor k of i ,
i sends “winner” to the neighbors of i

round 2:
if a process i receives “winner”,
it becomes a “loser” and sends “loser” to the neighbors

round 3:
a process i removes the losers from its neighbors
if i is a winner or a loser, it falls asleep
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module mis
extends Integers, TLC

N
∆
= 3

N 4
∆
= 81

Nodes
∆
= 1 . . N

variables Nb, round , val , awake, rem nbrs, status, msgs

Pred(n)
∆
= if n > 1 then n − 1 else N

Succ(n)
∆
= if n < N then n + 1 else 1

Init
∆
= ∧Nb = [n ∈ Nodes 7→ {Pred(n), Succ(n)}]
∧ round = 1
∧ val ∈ [Nodes → 1 . . N 4]
∧ awake = [n ∈ Nodes 7→ true]
∧ rem nbrs = Nb
∧ status = [n ∈ Nodes 7→ “unknown”]
∧msgs = {}

Senders(u)
∆
= {v ∈ Nodes : u ∈ rem nbrs[v ] ∧ awake[v ]}

SentValues(u)
∆
= {val ′[w ] : w ∈ Senders(u)}

IsWinner(u)
∆
= ∀ v ∈ msgs ′[u] : val ′[u] > v

Round1
∆
=

∧ round = 1
∧ val ′ ∈ [Nodes → 1 . . N 4] non-determinism, no randomness

∧ msgs ′ = [u ∈ Nodes 7→ SentValues(u)]
∧ status ′ = [n ∈ Nodes 7→

if awake[n] ∧ IsWinner(n) then “winner” else status[n]]
∧ unchanged 〈rem nbrs, awake〉

SentWinners(u)
∆
=

if ∃w ∈ Senders(u) : awake[w ] ∧ status[w ] = “winner”
then {“winner”}
else {}

IsLoser(u)
∆
= “winner” ∈ msgs ′[u]

Round2
∆
=

∧ round = 2
∧ msgs ′ = [u ∈ Nodes 7→ SentWinners(u)]
∧ status ′ = [n ∈ Nodes 7→

if awake[n] ∧ IsLoser(n) then “loser” else status[n]]
∧ unchanged 〈rem nbrs, awake, val〉

SentLosers(u)
∆
=

1

{w ∈ Senders(u) : awake[w ] ∧ status[w ] = “loser”}

Round3
∆
=

∧ round = 3
∧ msgs ′ = [u ∈ Nodes 7→ SentLosers(u)]
∧ awake ′ = [n ∈ Nodes 7→

if status[n] /∈ {“winner”, “loser”} then true else false]
∧ rem nbrs ′ = [u ∈ Nodes 7→ rem nbrs[u] \msgs ′[u]]
∧ unchanged 〈status, val〉

Next
∆
=

round ′ = 1 + (round%3) ∧ (Round1 ∨ Round2 ∨ Round3) ∧ unchanged 〈Nb〉

IsIndependent
∆
=

∀ u ∈ Nodes : ∀ v ∈ Nb[u] :
(status[u] 6= “winner” ∨ status[v ] 6= “winner”)

Terminated
∆
= ∀n ∈ Nodes : awake[n] = false

\ * Modification History

\ * Last modified Mon Jul 16 19:35:37 CEST 2018 by igor

\ * Created Sun Jul 15 17:03:47 CEST 2018 by igor
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Declaration and initialization

EXTENDS I n tege rs

N 4
= 3

N4 4
= 81

Nodes 4
= 1 . .N

VARIABLES Nb , round , val , awake , rem_nbrs , status , msgs

Pred ( n ) 4
= I F n > 1 THEN n − 1 ELSE N

Succ ( n ) 4
= I F n < N THEN n + 1 ELSE 1

Init 4
= ∧ Nb = [n ∈ Nodes 7→ {Pred(n),Succ(n)}] (* a ring of size N *)
∧ round = 1
∧ val ∈ [Nodes → 1..N4]
∧ awake = [n ∈ Nodes 7→ TRUE ]
∧ rem_nbrs = Nb
∧ status = [n ∈ Nodes 7→ “unknown′′]
∧ msgs = {}



Round 1

Senders ( u ) 4
= {v ∈ Nodes : u ∈ rem_nbrs[v ] ∧ awake[v ]}

SentValues ( u ) 4
= {val ′[w ] : w ∈ Senders(u)}

IsWinner ( u ) 4
= ∀v ∈ msgs′[u] : val ′[u] > v

Round1 4
=

∧ round = 1
∧ val ′ ∈ [Nodes → 1..N4] (* non-determinism instead of randomness *)
∧ msgs′ = [u ∈ Nodes 7→ SentValues(u)]
∧ status′ = [n ∈ Nodes 7→

I F awake[n] ∧ IsWinner(n) THEN “winner ′′ ELSE status[n]]
∧ UNCHANGED 〈〈rem_nbrs,awake〉〉



Round 2

SentWinners ( u ) 4
=

I F ∃w ∈ Senders(u) : awake[w ] ∧ status[w ] = “winner ′′

THEN {“winner ′′ }
ELSE { }

IsLoser ( u ) 4
= “winner ′′ ∈ msgs′[u]

Round2 4
=

∧ round = 2
∧ msgs′ = [u ∈ Nodes 7→ SentWinners(u)]
∧ status′ = [n ∈ Nodes 7→

I F awake[n] ∧ IsLoser(n)
THEN “loser ′′

ELSE status[n]]
∧ UNCHANGED 〈〈rem_nbrs,awake, val〉〉



Round 3

SentLosers ( u ) 4
=

{w ∈ Senders(u) : awake[w ] ∧ status[w ] = “loser ′′}

Round3 4
=

∧ round = 3
∧ msgs′ = [u ∈ Nodes 7→ SentLosers(u)]
∧ awake′ = [n ∈ Nodes 7→

I F status[n] ∈ {“winner ′′, “loser ′′} THEN FALSE ELSE TRUE]
∧ rem_nbrs′ = [u ∈ Nodes 7→ rem_nbrs[u] \msgs′[u]]
∧ UNCHANGED 〈〈status, val〉〉



Putting it all together

(* The next-state relation *)

Next 4
=

∧ round ′ = 1 + (round % 3)
∧ (Round1 ∨ Round2 ∨ Round3)
∧ UNCHANGED 〈〈Nb〉〉

(* An invariant *)

Is Independent 4
=

∀u ∈ Nodes : ∀v ∈ Nb[u] :
(status[u] 6= ”winner” ∨ status[v ] 6= ”winner”)



Let’s run TLC for N = 3...

One day later... still running
Why? Crunching states produced by {1, . . . ,N4}, that is, 34 integers
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Let’s be more fair to TLC

Let’s set N4 to N (the smaller values kill progress)



How about larger graphs?

Let’s set N and N4 to 5



Let’s run BMCMT

for N = 5 and N4 = 54 3 minutes

./bin/apalache-mc check --inv=IsIndependent mis.tla

PASS #1: AssignmentFinder
Found 1 initializing transitions and 3 next transitions
PASS #2: Grade
PASS #3: SimpleSkolemization
Found 2 free existentials in the transitions
PASS #4: BoundedChecker
The outcome is: NoError
PASS #5: Terminal
Checker reports no error up to computation length 10
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BMCMT (len=10)

LubyMIS: N processes and the range 1..N4

Invariant: independence for executions of length up to 10



2 4 6 8 10 12 14
Number of processes, N
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TLC
BMCMT (len=diam)
BMCMT (len=40)

EWD840: Dijkstra’s termination detection in a ring of N nodes
Invariant: when termination is detected, all nodes are inactive

Diameter is 3N, as shown by TLC for N ≤ 10
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TLC, 3 ballots
BMCMT (len=diam,   3 ballots)
BMCMT (len=diam,  10 ballots)
BMCMT (len=diam, 100 ballots)

Simple Paxos of N acceptors, from the TLA+ benchmarks
Just computing reachable states (SAT) for 3, 10, and 100 ballots



Can I run it?

Yes! [ forsyte.at/research/apalache ]

Beware: it is fresh and crashes more often than it works
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how does it work?



Essential steps

Extracting assignments and symbolic transitions

somewhat similar to TLC

Simple type inference

as we go, for every step

Bounded model checking

we track potential contents of data structures
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assignments & symbolic transitions



Symbolic transitions

Next 4
=

∧ round ′ = 1 + (round % 3)
∧ (Round1 ∨ Round2 ∨ Round3)
∧ UNCHANGED 〈〈Nb〉〉

Intuitively, we reason about the three cases:

∧ round ′ = 1 + (round % 3)
∧ (Round1 ∨(((((

((((hhhhhhhhhRound2 ∨ Round3)
∧ UNCHANGED 〈〈Nb〉〉

∧ round ′ = 1 + (round % 3)
∧ (���

�XXXXRound1 ∨ Round2 ∨����XXXXRound3)
∧ UNCHANGED 〈〈Nb〉〉

∧ round ′ = 1 + (round % 3)
∧ (((((

((((
(hhhhhhhhhRound1 ∨ Round2 ∨ Round3)

∧ UNCHANGED 〈〈Nb〉〉

Igor Konnov 34 of 56



Symbolic transitions

Next 4
=

∧ round ′ = 1 + (round % 3)
∧ (Round1 ∨ Round2 ∨ Round3)
∧ UNCHANGED 〈〈Nb〉〉

Intuitively, we reason about the three cases:

∧ round ′ = 1 + (round % 3)
∧ (Round1 ∨(((((

((((hhhhhhhhhRound2 ∨ Round3)
∧ UNCHANGED 〈〈Nb〉〉

∧ round ′ = 1 + (round % 3)
∧ (���

�XXXXRound1 ∨ Round2 ∨����XXXXRound3)
∧ UNCHANGED 〈〈Nb〉〉

∧ round ′ = 1 + (round % 3)
∧ (((((

(((
((hhhhhhhhhRound1 ∨ Round2 ∨ Round3)

∧ UNCHANGED 〈〈Nb〉〉

Igor Konnov 34 of 56



How does TLC find assignments?

TLC detects assignments as it explores a formula:

- from left to right:

x ′ = 1 ∧ x ′ ∈ {1,2,3}

- treating action-level disjunctions as non-deterministic choice(
x ′ = 1 ∨ x ′ = 2

)
∧ x ′ ≥ 2

- expecting the same kind of assignments on all branches

(x ′ = 1 ∧ y ′ = 2) ∨ x ′ = 3
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Anything similar with SMT?

Looking for assignment strategies that:

- cover every Boolean branch (not easy to define)
- have exactly one assignment per variable per branch
- do not contain cyclic assignments(

(y ′ = x ′ ∧ x ′ ∈ {2,3, y ′}) ∨ (x ′ = 2 ∧ y ′ ∈ {x ′})
)
∧ x ′ = 3

Sometimes, we do better than TLC (above)

Sometimes, worse, e.g., when x = 0:

x > 0 ∨ (x ′ = x + 1 ∨ y ′ = x − 1)

[Kukovec, K., Tran, ABZ’18]

Igor Konnov 36 of 56



Anything similar with SMT?

Looking for assignment strategies that:

- cover every Boolean branch (not easy to define)
- have exactly one assignment per variable per branch
- do not contain cyclic assignments(

(y ′ = x ′ ∧ x ′ ∈ {2,3, y ′}) ∨ (x ′ = 2 ∧ y ′ ∈ {x ′})
)
∧ x ′ = 3

Sometimes, we do better than TLC (above)

Sometimes, worse, e.g., when x = 0:

x > 0 ∨ (x ′ = x + 1 ∨ y ′ = x − 1)

[Kukovec, K., Tran, ABZ’18]

Igor Konnov 36 of 56



Simple types
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Types: scalars and functions

Basic:
constants: Const “a”, “hello”

integers: Int -1, 1024

Booleans: Bool FALSE, TRUE

Functions:
functions: τset → τset FinSet(Int)→ FinSet(Bool)

tuples: 〈τ, . . . , τ〉 〈Int ,Bool ,FinSet(Int), Int → FinSet(Int)〉
records: [Const 7→ τ, . . . ,Const 7→ τ ] [“a” 7→ Int , “b” 7→ Bool]
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Types: sets

finite sets: FinSet(τ) FinSet(Int)

power sets: PowSet(τ) PowSet(FinSet(Int))

function sets: [τset → τset ] [PowSet(FinSet(Int))→ FinSet(Int)]

products: τset × · · · × τset [FinSet(Int)× FinSet(Bool)]

record sets: [Const : τset , . . . ,Const : τset ]

[“a” : FinSet(Int), “b” : FinSet(Bool)]
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Simple type inference

Knowing the types at the current state

Compute the types of the expressions and of the primed variables

e.g., if X has type FinSet(Int), then

X ′ = [X → X ] has type Fun(FinSet(Int),FinSet(Int))

y in {y ∈ X : y > 0} has type Int

{} has type FinSet(Unknown)

hence, IF P THEN {1} ELSE {} fails

one can hack it by writing {1} \ {1}
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Bounded model checking
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Old recipe for bounded symbolic computations

Two symbolic transitions that assign values to x

Next 4= A ∨ B

Translate TLA+ expressions to SMT with some J·K

JInitK x 7→ i0
JA[i0/x ]K x 7→ a1

JB[i0/x ]K x 7→ b1

Jx ′ ∈ {a1,b1}K x 7→ c1

JA[c1/x ]K x 7→ a2

JB[c1/x ]K x 7→ b2

Jx ′ ∈ {a2,b2}K x 7→ c2

. . . . . .
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What is J·K?
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Our idea

Let’s mimic the explicit model checker TLC

Explicitely compute the memory layout of data structures

Restrict memory contents with SMT

Define operational semantics (for finite models)
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Static picture of TLA+ objects and relations between them

Arena:

τ τ τ

FinSet(τ)

SMT:

integer sort Int

Boolean sort Bool

finite set: ¢ of uninterpreted sort

uninterpreted function

in : × → Bool



Arenas: functions

SMT:

function: ¢ of uninterpreted sort

uninterpreted function

fun¢ : →

that keeps tracks of values

Arena:

τ1

τ1 → τ2

τ2

DOM CDM
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Arenas: set of functions and powerset

Arena:

Set1

[τ1 → τ2]

Set2

DOM CDM

FinSet(τ1)

PowSet(..)

DOM

SMT:

cells of uninterpreted sort

[{1,2,3} → {4,5,6}]

SUBSET {1,2,3}

just tracking the structure
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some rules for sets

Igor Konnov 48 of 56



Set constructor

{ 1, . . . , k}

Arena:

1 ...

FinSet(τ)

k

SMT:

∧
1≤i≤k

in( i, )
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Set union: Z = X ∪ Y

1

X

3
4

6
2 5

∪ Y

Arena:

1
3

4
62 5

Z

SMT:∧
1≤i≤6

(
in( i, Z)

⇔
in( i, X) ∨ in( i, Y)

)
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Set filter: Z = {x ∈ S : P}

c1

S
c3

P(c1)

c2

P(c2) P(c3)

Arena:

c1

S
c3

P(c1)

c2

P(c2) P(c3)Z

SMT:∧
1≤i≤3

(
in( i, Z)

⇔
in( i, S) ∧ P( i)

)
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Set membership: ¢e ∈ ¢S

1 ...

S

k
(

e = i
)
 eqi

for 1 ≤ i ≤ k

Arena:

?

SMT:

?
↔ ∨

1≤i≤k

(
eqi ∧ in( i, S)

)
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Set inclusion and equality

1 ...

S

k

S ⊆ T ↔ ∧
1≤i≤k

(
in(

i
,

S
)→

i
∈

T

)

S = T ↔ S ⊆ T ∧ T ⊆ S
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Equality in general

Integers, Booleans, string constants

SMT equality (=)

Sets, functions, records, tuples

lazy, define X = Y when needed

avoid redundant constraints

exploit locality thanks to arenas

cache constraints
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Implementation

about 100 rewriting rules, to encode semantics

still, some features not covered:

recursive functions

sequences

set cardinalities (any ideas?)

operations with modules
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Conclusions

TLA+ can be checked symbolically

TLC works surprisingly well

Covering all TLA+ features is hard!

We are preparing a technical report and
hope to release a stable version soon

We need benchmarks from you!
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