BMCMT – Bounded Model Checking of TLA⁺ Specifications with SMT

Jure Kukovec

Igor Konnov

Thanh Hai Tran

work in progress

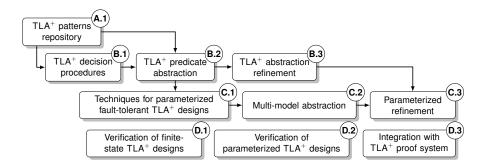
TLA⁺ Community Event

Oxford, UK, July 2018

APALACHE

Abstraction-based Parameterized TLA⁺ Checker

VIENNA SCIENCE AND TECHNOLOGY FUND



Almost automated verification: using the user input in a sound way

TLA⁺

First-order logic with sets (ZFC)

Temporal operators:

 \Box (always), \diamond (eventually), \rightsquigarrow (leads-to), no *Nexttime*

Syntax for operations on sets, functions, tuples, records

TLA Proof System: TLAPS

Explicit-state model checker: TLC

What is hard about TLA⁺?

Rich data

sets of sets, functions, records, tuples, sequences

No types

TLA⁺ is not a programming language

No imperative statements like assignments

TLA⁺ is not a programming language

No standard control flow

TLA⁺ is not a programming language

In this talk:

- a model checker like TLC but symbolic
- no abstractions
- nothing parameterized

Our short-term goal

Symbolic model checker that works under the assumptions of TLC:

Fixed and finite constants (parameters)

Finite sets, function domains and co-domains

TLC restrictions on formula structure

As few language restrictions as possible

Technically,

Quantifier-free formulas in SMT

Unfolding quantified expressions, e.g., $\forall x \in S : P$ as $\bigwedge_{x \in S} P[c/x]$

Our short-term goal

Symbolic model checker that works under the assumptions of TLC:

Fixed and finite constants (parameters)

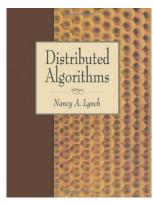
Finite sets, function domains and co-domains

TLC restrictions on formula structure

As few language restrictions as possible

Technically,

Quantifier-free formulas in SMT Unfolding quantified expressions, e.g., $\forall x \in S : P \text{ as } \bigwedge_{c \in S} P[c/x]$



an example

Maximal Independent Set

Classical distributed problem [Lynch, Ch 4]

N processes placed in the nodes of an undirected graph (V, E)

Processes exchange messages in synchronous rounds

Goal: Find a maximal independent set $I \subseteq V$:

 $(u, v) \in E \rightarrow u \notin I \lor v \notin I$ for $u, v \in V$ every larger set $I' \supset I$ violates Equation (1)

Example: $I = \{1, 3\}$

Maximal Independent Set

Classical distributed problem [Lynch, Ch 4]

N processes placed in the nodes of an undirected graph (V, E)

Processes exchange messages in synchronous rounds

Goal: Find a maximal independent set $I \subseteq V$:

$$(u, v) \in E \to u \notin I \lor v \notin I \quad \text{for } u, v \in V$$
(1)
every larger set $I' \supset I$ violates Equation (1) (2)

Example: $I = \{1, 3\}$

randomized distributed algorithm [Lynch, p. 73]

every process cyclically executes three rounds: 1, 2, 3, 1, 2, 3, ...

at every round 1, a process *i* randomly picks a value $val[i] \in 1..N^4$

round 1: if *val*[*i*] > *val*[*k*] for every neighbor *k* of *i*, *i* sends "winner" to the neighbors of *i*

round 2: if a process *i* receives "winner", it becomes a "loser" and sends "loser" to the neighbors

round 3: a process *i* removes the losers from its neighbors if *i* is a winner or a loser, it falls asleep

randomized distributed algorithm [Lynch, p. 73]

every process cyclically executes three rounds: 1, 2, 3, 1, 2, 3, ...

at every round 1, a process *i* randomly picks a value $val[i] \in 1..N^4$

round 1: if val[i] > val[k] for every neighbor k of i, i sends "winner" to the neighbors of i

round 2: if a process *i* receives "winner", it becomes a "loser" and sends "loser" to the neighbors
round 3: a process *i* removes the losers from its neighbors

randomized distributed algorithm [Lynch, p. 73]

every process cyclically executes three rounds: 1, 2, 3, 1, 2, 3, ...

at every round 1, a process *i* randomly picks a value $val[i] \in 1..N^4$

round 1: if val[i] > val[k] for every neighbor k of i, i sends "winner" to the neighbors of i

round 2: if a process *i* receives "winner", it becomes a "loser" and sends "loser" to the neighbors

round 3: a process *i* removes the losers from its neighbors if *i* is a winner or a loser, it falls asleep

randomized distributed algorithm [Lynch, p. 73]

every process cyclically executes three rounds: 1, 2, 3, 1, 2, 3, ...

at every round 1, a process *i* randomly picks a value $val[i] \in 1..N^4$

round 1: if val[i] > val[k] for every neighbor k of i, i sends "winner" to the neighbors of i

if a process *i* receives "winner",

- it becomes a "loser" and sends "loser" to the neighbors
- **round 3**: a process *i* removes the losers from its neighbors if *i* is a winner or a loser, it falls asleep

— MODULE mis -

EXTENDS Integers, TLC $N \stackrel{\Delta}{=} 3$ $N4 \triangleq 81$ Nodes $\stackrel{\sim}{=} 1 = N$ VARIABLES Nb, round, val, awake, rem_nbrs, status, msas $Pred(n) \triangleq$ if n > 1 then n - 1 else N $Succ(n) \triangleq \text{if } n < N \text{ then } n+1 \text{ else } 1$ Init $\triangleq \land Nb = [n \in Nodes \mapsto \{Pred(n), Succ(n)\}]$ $\wedge round = 1$ $\land val \in [Nodes \rightarrow 1 \dots N4]$ $\land awake = [n \in Nodes \mapsto TRUE]$ $\land rem_nbrs = Nb$ \land status = [$n \in Nodes \mapsto$ "unknown"] $\land msas = \{\}$ $Senders(u) \triangleq \{v \in Nodes : u \in rem_nbrs[v] \land awake[v]\}$ $SentValues(u) \triangleq \{val'[w] : w \in Senders(u)\}$ $IsWinner(u) \triangleq \forall v \in msgs'[u] : val'[u] > v$ Round 1 \triangleq $\land round = 1$ $\land val' \in [Nodes \rightarrow 1 ... N4]$ non-determinism, no randomness $\land msas' = [u \in Nodes \mapsto SentValues(u)]$ \land status' = [$n \in Nodes \mapsto$ IF $awake[n] \land IsWinner(n)$ THEN "winner" ELSE status[n]∧ UNCHANGED (rem_nbrs, awake) $SentWinners(u) \triangleq$ IF $\exists w \in Senders(u) : awake[w] \land status[w] = "winner"$ THEN { "winner" } ELSE {} $IsLoser(u) \triangleq$ "winner" $\in msas'[u]$ $Round 2 \triangleq$ $\land round = 2$ $\land msas' = [u \in Nodes \mapsto SentWinners(u)]$ $\land status' = [n \in Nodes \mapsto$ IF $awake[n] \wedge IsLoser(n)$ THEN "loser" ELSE status[n]∧ UNCHANGED (rem_nbrs, awake, val) $SentLosers(u) \triangleq$

 $\begin{array}{l} \{w \in Senders(u): awake[w] \wedge status[w] = "oser" \} \\ Round3 \triangleq \\ & \land round = 3 \\ & \land msgs' = [u \in Nodes \mapsto SentLosers(u)] \\ & \land awake' = [n \in Nodes \mapsto \\ & Ir \ status[n] \notin ("winner", "loser") \ THEN \ TRUE \ ELSE \ FALSE] \\ & \land rem_nbrs' = [u \in Nodes \mapsto rem_nbrs[u] \setminus msgs'[u]] \\ & \land UNCHANCED \ (status, val) \\ \\ Next \triangleq \\ round' = 1 + (round\%3) \land (Round1 \lor Round2 \lor Round3) \land UNCHANGED \ (Nb) \\ IsIndependent \triangleq \\ & \forall u \in Nodes : \forall v \in Nb[u] : \\ & (status[u] \neq "winner") \ (status[v] \neq "winner") \end{array}$

Terminated $\triangleq \forall n \in Nodes : awake[n] = False$

* Modification History

```
\* Last modified Mon Jul 16 19:35:37 CEST 2018 by igor
```

* Created Sun Jul 15 17:03:47 CEST 2018 by igor

Declaration and initialization

EXTENDS Integers $N \stackrel{\triangle}{=} 3$ $N4 \stackrel{\triangle}{=} 81$ Nodes $\stackrel{\triangle}{=}$ 1 N VARIABLES Nb, round, val, awake, rem nbrs, status, msgs $Pred(n) \stackrel{\triangle}{=}$ IF n > 1 THEN n - 1 ELSE N $Succ(n) \stackrel{\triangle}{=}$ IF n < N THEN n + 1 ELSE 1 *Init* $\stackrel{\triangle}{=} \land Nb = [n \in Nodes \mapsto \{Pred(n), Succ(n)\}]$ (* a ring of size N *) \land round = 1 \land val \in [Nodes \rightarrow 1..N4] \land awake = [$n \in Nodes \mapsto TRUE$] \wedge rem nbrs = Nb \land status = [$n \in Nodes \mapsto$ "unknown"] \land msgs = {}

Round 1

Senders (u) $\stackrel{\triangle}{=} \{ v \in Nodes : u \in rem_nbrs[v] \land awake[v] \}$

SentValues(u) $\stackrel{\triangle}{=} \{ val'[w] : w \in Senders(u) \}$

 $IsWinner(u) \stackrel{\triangle}{=} \forall v \in msgs'[u] : val'[u] > v$

Round 2

```
SentWinners(u) \triangleq
       IF \exists w \in Senders(u) : awake[w] \land status[w] = "winner"
      THEN {"winner"}
       ELSE {}
IsLoser(u) \stackrel{\triangle}{=} "winner" \in msgs'[u]
Round2 \triangleq
      \wedge round = 2
      \land msgs' = [u \in Nodes \mapsto SentWinners(u)]
      \land status' = [n \in Nodes \mapsto
                      IF awake[n] \land lsLoser(n)
                     THEN "loser"
                      ELSE status[n]]
      \land UNCHANGED \langle \langle rem \ nbrs, awake, val \rangle \rangle
```

Round 3

 $\begin{array}{l} SentLosers\left(u\right) \stackrel{\triangle}{=} \\ \{w \in Senders(u) : awake[w] \land status[w] = "loser''\} \\ \\ Round3 \stackrel{\triangle}{=} \\ \land round = 3 \\ \land msgs' = [u \in Nodes \mapsto SentLosers(u)] \\ \land awake' = [n \in Nodes \mapsto \\ \quad \text{IF } status[n] \in \{"winner'', "loser''\} \text{ THEN } \text{FALSE } \text{ELSE } \text{TRUE}] \\ \land rem_nbrs' = [u \in Nodes \mapsto rem_nbrs[u] \setminus msgs'[u]] \\ \land \text{ UNCHANGED } \langle \langle status, val \rangle \rangle \end{array}$

Putting it all together

```
(* The next-state relation *)

Next \triangleq

\land round' = 1 + (round % 3)

\land (Round1 \lor Round2 \lor Round3)

\land UNCHANGED \langle\langle Nb \rangle\rangle

(* An invariant *)

IsIndependent \triangleq

\forall u \in Nodes : \forall v \in Nb[u] :

(status[u] \neq "winner" \lor status[v] \neq "winner")
```

Let's run TLC for N = 3...

One day later... still running

Why? Crunching states produced by $\{1, \ldots, N^4\}$, that is, 3⁴ integers

Let's run TLC for N = 3...

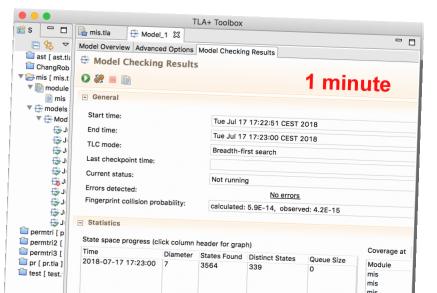
One day later... still running

Why? Crunching states produced by $\{1, \ldots, N^4\}$, that is, 3^4 integers

Let's be more fair to TLC

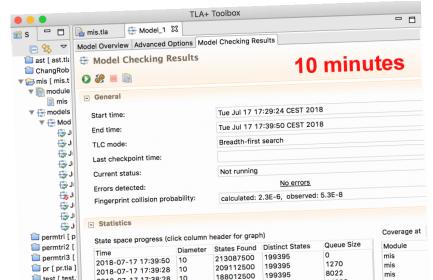
Let's set N4 to N

(the smaller values kill progress)



How about larger graphs?

Let's set N and N4 to 5



14929

mis

199395

166428125

10

10

2018-07-17 17:38:28

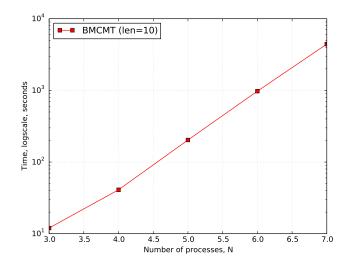
i test [test.

Let's run BMCMT

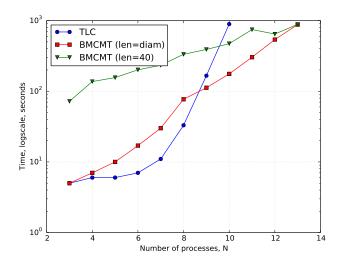
for
$$N = 5$$
 and $N4 = 5^4$ **3 minutes**

./bin/apalache-mc check --inv=IsIndependent mis.tla

PASS #1: AssignmentFinder Found 1 initializing transitions and 3 next transitions PASS #2: Grade PASS #3: SimpleSkolemization Found 2 free existentials in the transitions PASS #4: BoundedChecker The outcome is: NoError PASS #5: Terminal Checker reports no error up to computation length 10

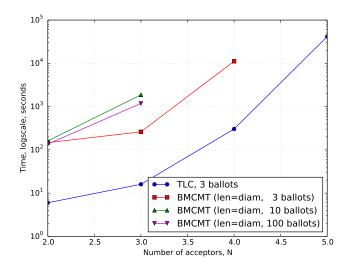


LubyMIS: *N* processes and the range $1..N^4$ **Invariant:** independence for executions of length up to 10



EWD840: Dijkstra's termination detection in a ring of *N* nodes **Invariant**: when termination is detected, all nodes are inactive

Diameter is 3*N*, as shown by TLC for $N \le 10$



Simple Paxos of *N* acceptors, from the TLA⁺ benchmarks Just computing reachable states (SAT) for 3, 10, and 100 ballots

Yes! [forsyte.at/research/apalache]

Beware: it is fresh and crashes more often than it works

how does it work?

Essential steps

Extracting assignments and symbolic transitions

somewhat similar to TLC

Simple type inference

as we go, for every step

Bounded model checking

we track potential contents of data structures

assignments & symbolic transitions

Symbolic transitions

 $\begin{array}{l} \textit{Next} \stackrel{\triangle}{=} \\ \land \textit{round'} = 1 + (\textit{round \% 3}) \\ \land (\textit{Round1} \lor \textit{Round2} \lor \textit{Round3}) \\ \land \texttt{UNCHANGED} \ \langle \langle \textit{Nb} \rangle \rangle \end{array}$

Intuitively, we reason about the three cases:

 \land round' = 1 + (round % 3) \land (Round1 ∨ Round2 ∨ Round3) \land UNCHANGED $\langle\langle Nb \rangle\rangle$ $\land round' = 1 + (round % 3)$ $\land (Bound1 \lor Round2 \lor Bound3)$ $\land UNCHANGED ((Nb))$

 $\land round' = 1 + (round % 3)$ $\land (Round + < Round 2 < Round 3)$ $\land UNCHANGED ((Nb))$

Symbolic transitions

$$\begin{array}{l} \textit{Next} \stackrel{\triangle}{=} \\ \land \textit{round'} = 1 + (\textit{round \% 3}) \\ \land (\textit{Round1} \lor \textit{Round2} \lor \textit{Round3}) \\ \land \texttt{UNCHANGED} \ \langle \langle \textit{Nb} \rangle \rangle \end{array}$$

Intuitively, we reason about the three cases:

 $\land round' = 1 + (round \% 3)$ $\land (Round 1 \lor Round 2 \lor Round 3)$ $\land UNCHANGED (\langle Nb \rangle)$ $\land \textit{round'} = 1 + (\textit{round \% 3}) \\ \land (\textit{Bound1} \lor \textit{Round2} \lor \textit{Bound3}) \\ \land \text{UNCHANGED} \langle \langle \textit{Nb} \rangle \rangle$

 $\land \textit{round'} = 1 + (\textit{round \% 3}) \\ \land (\overrightarrow{\textit{Round 1} \lor \textit{Round 2}} \lor \textit{Round 3}) \\ \land \textit{UNCHANGED} \langle \langle \textit{Nb} \rangle \rangle$

How does TLC find assignments?

TLC detects assignments as it explores a formula:

- from left to right:

$$x'=1 \wedge x' \in \{1,2,3\}$$

- treating action-level disjunctions as non-deterministic choice

$$\left(x'=1 \lor x'=2\right) \land x' \geq 2$$

- expecting the same kind of assignments on all branches

$$(x'=1 \land y'=2) \lor x'=3$$

Anything similar with SMT?

Looking for assignment strategies that:

- cover every Boolean branch (not easy to define)
- have exactly one assignment per variable per branch
- do not contain cyclic assignments

$$\left((\underline{y'=x'} \land x' \in \{2,3,y'\}) \lor (x'=2 \land \underline{y'} \in \{x'\})\right) \land \underline{x'=3}$$

Sometimes, we do better than TLC (above)

Sometimes, worse, e.g., when x = 0:

$$x > 0 \lor (x' = x + 1 \lor y' = x - 1)$$

[Kukovec, K., Tran, ABZ'18]

Anything similar with SMT?

Looking for assignment strategies that:

- cover every Boolean branch (not easy to define)
- have exactly one assignment per variable per branch
- do not contain cyclic assignments

$$\left((\underline{y'=x'} \land x' \in \{2,3,y'\}) \lor (x'=2 \land \underline{y'} \in \{x'\})\right) \land \underline{x'=3}$$

Sometimes, we do better than TLC (above)

Sometimes, worse, e.g., when x = 0:

$$x > 0 \lor (x' = x + 1 \lor y' = x - 1)$$

Simple types

Types: scalars and functions

Basic:

constants: <i>Const</i>	"a", "hello"
integers: Int	-1, 1024
Booleans: <i>Bool</i>	FALSE, TRUE

Functions:

functions: $\tau_{set} \rightarrow \tau_{set}$ FinSet(Int) \rightarrow FinSet(Bool)tuples: $\langle \tau, \dots, \tau \rangle$ $\langle Int, Bool, FinSet(Int), Int <math>\rightarrow$ FinSet(Int) \rangle records: [Const $\mapsto \tau, \dots, Const \mapsto \tau$]["a" \mapsto Int, "b" \mapsto Bool]

Types: sets

finite sets: $FinSet(\tau)$ FinSet(Int) power sets: $PowSet(\tau)$ PowSet(FinSet(Int)) function sets: $[\tau_{set} \rightarrow \tau_{set}]$ $[PowSet(FinSet(Int)) \rightarrow FinSet(Int)]$ products: $\tau_{set} \times \cdots \times \tau_{set}$ $[FinSet(Int) \times FinSet(Bool)]$ record sets: [Const : τ_{set} , ..., Const : τ_{set}] ["a" : FinSet(Int), "b" : FinSet(Bool)]

Simple type inference

Knowing the types at the current state

Compute the types of the expressions and of the primed variables

e.g., if X has type *FinSet(Int)*, then

 $X' = [X \rightarrow X]$ has type Fun(FinSet(Int), FinSet(Int))

y in $\{y \in X : y > 0\}$ has type Int

{} has type *FinSet(Unknown*)

hence, IF P THEN $\{1\}$ ELSE $\{\}$ fails

one can hack it by writing $\{1\} \setminus \{1\}$

Simple type inference

Knowing the types at the current state

Compute the types of the expressions and of the primed variables

e.g., if X has type *FinSet(Int)*, then

 $X' = [X \rightarrow X]$ has type Fun(FinSet(Int), FinSet(Int))

y in $\{y \in X : y > 0\}$ has type Int

{} has type *FinSet*(*Unknown*)

hence, IF P THEN {1} ELSE {} fails

one can hack it by writing $\{1\}\setminus\{1\}$

Bounded model checking

Old recipe for bounded symbolic computations

Two symbolic transitions that assign values to x

Next $\stackrel{\triangle}{=}$ *A* \vee *B*

Translate TLA^+ expressions to SMT with some $[\![\cdot]\!]$

[[Init]]	$x\mapsto i_0$
$\llbracket A[i_0/x] \rrbracket$	$x\mapsto a_1$
$\llbracket B[i_0/x] \rrbracket$	$x\mapsto b_1$
$[\![x'\in\{a_1,b_1\}]\!]$	$x\mapsto c_1$
$\llbracket A[c_1/x] \rrbracket$	$x\mapsto a_2$
$\llbracket B[c_1/x] \rrbracket$	$x\mapsto b_2$
$[\![\textbf{x}' \in \{\textbf{a}_2, \textbf{b}_2\}]\!]$	$x\mapsto c_2$

. . .

What is $\llbracket \cdot \rrbracket$?

Our idea

Let's mimic the explicit model checker TLC

Explicitely compute the memory layout of data structures

Restrict memory contents with SMT

Define operational semantics (for finite models)

Static picture of TLA⁺ objects and relations between them

Arena: SMT: 3 integer sort Int Boolean sort Bool finite set: c of uninterpreted sort uninterpreted function in : $\implies \times \implies \rightarrow \text{Bool}$ FinSet(T

Igor Konnov

Arenas: functions

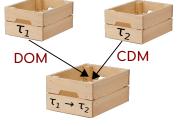
<u>SMT:</u>

function: $\ensuremath{\diamondsuit}$ of uninterpreted sort

uninterpreted function

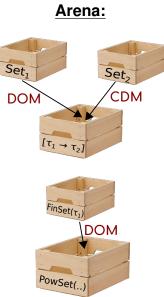
 $fun_c : \longrightarrow \longrightarrow$

that keeps tracks of values



Arena:

Arenas: set of functions and powerset



SMT:

cells of uninterpreted sort

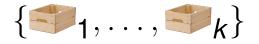
 $[\{1,2,3\} \to \{4,5,6\}]$

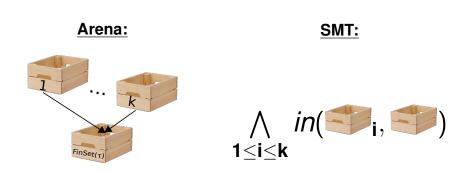
 $\texttt{SUBSET} \ \{1,2,3\}$

just tracking the structure

some rules for sets

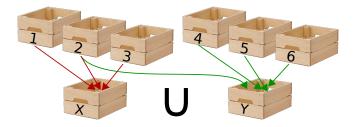
Set constructor

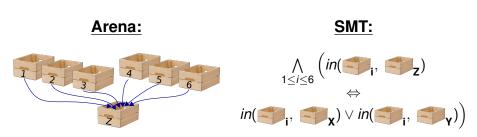




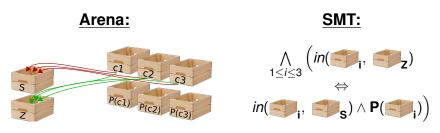
Igor Konnov

Set union: $Z = X \cup Y$

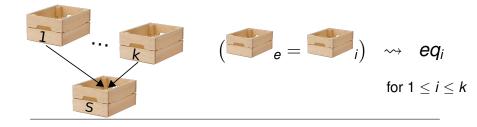




Set filter: $Z = \{x \in S : P\}$



Set membership: $c_e \in c_S$



Arena:

SMT:

 $\textcircled{P}_{?} \leftrightarrow \bigvee_{1 \leq i \leq k} \left(eq_i \wedge in(\textcircled{P}_i, \textcircled{P}_{\mathbf{S}}) \right)$

Igor Konnov

Set inclusion and equality

$S \subseteq T \quad \leftrightarrow \quad \bigwedge_{1 \leq i \leq k} \left(in(\mathbf{s}_i, \mathbf{s}_S) \to \mathbf{s}_i \in \mathbf{s}_T \right)$

 $S = T \quad \leftrightarrow \quad S \subseteq T \land T \subseteq S$

Igor Konnov

Equality in general

```
Integers, Booleans, string constants
```

```
SMT equality (=)
```

```
Sets, functions, records, tuples
```

```
lazy, define X = Y when needed
```

avoid redundant constraints

exploit locality thanks to arenas

cache constraints

Implementation

about 100 rewriting rules, to encode semantics

still, some features not covered:

recursive functions

sequences

set cardinalities (any ideas?)

operations with modules

Conclusions

TLA⁺ can be checked symbolically

TLC works surprisingly well

Covering all TLA⁺ features is hard!

We are preparing a technical report and hope to release a stable version soon

We need benchmarks from you!