
Invariants in Distributed Algorithms

Y. Annie Liu, Scott D. Stoller

Computer Science Department
Stony Brook University

joint work with
Saksham Chand, Bo Lin, and Xuetian Weng

Distributed algorithms and correctness

distributed systems: increasingly important and complex

everyday life: search engines, social networks, electronic com-

merce, cloud computing, mobile computing, ...

distributed algorithms: increasingly needed and complex

for distributed control and distributed data, e.g., distributed

consensus, DHT, ...

correctness guarantees: increasingly needed and challenging

safety, liveness, fairness, ..., improved guarantees

1

Expressing and understanding algorithms

need languages

• pseudocode languages and English high-level

in many textbooks and papers

• specification languages precise

TLA and PlusCal by Lamport,

IOA and TIOA by Lynch’s group, ...

• programming languages executable

Argus by Liskov’s group, Emerald, Erlang, ...

libraries in C, C++, Java, Python, ...: socket, MPI, ...

DistAlgo: combines advantages of all three [TOPLAS 2017]

2

Overview

DistAlgo: expressing, understanding, optimizing, and improving

distributed algorithms

example: Lamport’s algorithm for distributed mutual exclusion

verification: formal semantics, translation to TLA+

proofs using TLAPS: Paxos for distributed consensus

model checking using TLC: Lamport’s distributed mutex

invariants: clear specs, optimization, improvement, easier proofs

through high-level queries over history variables

3

Lamport’s distributed mutual exclusion

Lamport developed it to show the logical clocks he invented
n processes access a shared resource, need mutex, go in CS
requests must be granted in the order in which they are made

a process that wants to enter critical section (CS)
• send requests to all
• wait for replies from all
• enter CS
• send releases to all

each process maintains a queue of requests
• order by logical timestamps
• enter CS only if its request is the first on the queue
• when receiving a request, enqueue
• when receiving a release, dequeue

reliable, fifo channel — safety, liveness, fairness, efficiency
requests are granted in the order of timestamps of requests

4

How to express it

two extremes:

• English: clear high-level flow; imprecise, informal

• state machine based specs: precise; low-level control flow
e.g., Nancy Lynch’s I/O automata (1 1/5 pages, most 2-col.)

many in between, e.g.:

• Michel Raynal’s pseudocode: still informal and imprecise

• Leslie Lamport’s PlusCal on top of TLA+: still complex
(90 lines excluding comments and empty lines, by Merz)

• Robbert van Renesse’s pseudocode: precise, partly high-level

lack concepts for building real systems — much more complex
most of these are not executable at all.

5

Lamport’s original description in English
The algorithm is then defined by the following five rules. For convenience,

the actions defined by each rule are assumed to form a single event.
1. To request the resource, process Pi sends the message Tm : Pi requests

resource to every other process, and puts that message on its request queue,
where Tm is the timestamp of the message.

2. When process Pj receives the message Tm : Pi requests resource, it
places it on its request queue and sends a (timestamped) acknowledgment
message to Pi.

3. To release the resource, process Pi removes any Tm : Pi requests resource
message from its request queue and sends a (timestamped) Pi releases re-
source message to every other process.

4. When process Pj receives a Pi releases resource message, it removes
any Tm : Pi requests resource message from its request queue.

5. Process Pi is granted the resource when the following two conditions
are satisfied: (i) There is a Tm : Pi requests resource message in its request
queue which is ordered before any other request in its queue by the relation
<. (To define the relation < for messages, we identify a message with the
event of sending it.) (ii) Pi has received an acknowledgment message from
every other process timestamped later than Tm.
Note that conditions (i) and (ii) of rule 5 are tested locally by Pi.

order < on requests: pairs of logical time and process id.

There will be an interesting exercise later, if there is time. 6

Challenges in expressing it

each process must

• act as both Pi and Pj in interactions with all other processes

• have an order of handling all events by the 5 rules, trying to
enter and exit CS while also responding to msgs from others

• keep testing the complex condition in rule 5 as events happen

actual implementations need many more details

• create processes, let them establish channels with each other

• incorporate appropriate clocks (e.g., Lamport, vector) if needed

• guarantee the specified channel properties (e.g., reliable, FIFO)

• integrate the algorithm with the overall application

how to do all of these in an easy and modular fashion?

• for both correctness verification and performance optimization

DistAlgo language

as extensions to common high-level languages
including a syntax for extensions to Python

distributed processes and sending messages
process P: ... define setup(pars), run(), receive

send ms to ps

control flows and receiving messages
-- l: yield point for handling msgs
receive m from p: ... handler
await cond1: ... or...or condk: ... timeout t: ...

high-level queries of message histories
some v1 in s1,...,vk in sk has cond also each/set/min
received m is same as m in received

configurations
configure clock = Lamport

ps := n new P call setup/start
8

Original algorithm in DistAlgo
1 def setup(s):
2 self.s := s # set of all other processes
3 self.q := {} # set of pending requests with logical clock

4 def mutex(task): # for doing task() in critical section
5 -- request
6 self.t := logical_time() # rule 1
7 send (’request’, t, self) to s #
8 q.add((’request’, t, self)) #
9 await each (’request’,t2,p2) in q | (t2,p2) != (t,self) implies (t,self) < (t2,p2)

10 and each p2 in s | some received (’ack’,t2,=p2) | t2 > t # rule 5
11 task() # critical section
12 -- release
13 q.del((’request’, t, self)) # rule 3
14 send (’release’, logical_time(), self) to s #

15 receive (’request’, t2, p2): # rule 2
16 q.add((’request’, t2, p2)) #
17 send (’ack’, logical_time(), self) to p2 #

18 receive (’release’, _, p2): # rule 4
19 q.del((’request’, _, =p2)) #

9

Complete program in DistAlgo
0 process P:

... # content of the previous slide

20 def run():
21 def task(): output(self, ’in critical section’)
22 mutex(task)

23 def main():
24 configure clock = Lamport
25 configure channel = {reliable, fifo}
26 ps := 50 new P
27 for p in ps: p.setup(ps-{p})
28 ps.start()

some syntax in Python:

class P(process)
send(m, to= ps)
some(elem in s, has= bexp)
config(clock= ’Lamport’)
new(P, num= 50)

10

Formal operational semantics

Reduction semantics with evaluation contexts
for a core language for DistAlgo

• Traditional constructs

• Booleans, integers, addresses

• class definition, object creation, method call, ...

• if, while, for (over sets), assignment, ...

• DistAlgo constructs

• start, send, receive handlers, await

• set comprehension and quantifications with tuple patterns
in membership clauses

Some constructs (e.g., tuple patterns, set comprehensions) are
given semantics by translation.

11

Formal semantics: Overview

state: local state of each process + message channel contents

local state: heap + statement remaining to be executed

evaluation context: identifies the sub-expression or sub-statement

to be evaluated next

transition: updates the statement (e.g., removes the part just

executed, unrolls a loop, or inlines a method call), the local

heap, and the message channel contents

execution: sequence of transitions starting from an initial state

• may terminate, get stuck, or continue forever

12

Formal semantics: Evaluation context

evaluation context: an expression or statement with a hole, de-

noted [], in place of the next sub-expression or sub-statement

to be evaluated.

C ::= []

(Val*,C ,Expression*)

C .MethodName(Expression*)

Address.MethodName(Val*,C ,Expression*)

UnaryOp(C)

some Pattern in C | Expression

if C: Statement else: Statement

for InstanceVariable in C: Statement

send C to Expression

send Val to C

await Expression : Statement AnotherAwaitClause* timeout C

· · ·
13

Formal semantics: Transition relation

σ → σ′ state σ can transition to state σ′.

state: a tuple of the form (P, ht, h, ch,mq)

P : map from process address to remaining statement

h: heap, ht: heap type map

ch: message channel contents (messages in transit)

mq: message queue contents (arrived, unhandled messages)

sample transition rule

/ / context rule for statements

(P [a→ s], ht, h, ch,mq)→ (P [a := s′], ht′, h′, ch′,mq′)

(P [a→ C[s]], ht, h, ch,mq)→ (P [a := C[s′]], ht′, h′, ch′,mq′)

14

Transition rule for handling messages

/ / handle a message at a yield point. remove the
/ / (message, sender) pair from the message queue, append a
/ / copy to the received sequence, and prepare to run
/ / matching receive handlers associated with `, if any.
/ / s has a label hence must be await.

(P [a→ ` s], ht, h[a→ ha], ch,mq[a→ q])

→ (P [a := s′[self := a]; ` s],
ht′, h[a→ ha′[ar → ha(ar)@〈copy〉]],
ch,mq[a := rest(q)])

if length(q) > 0 ∧ ar = ha(a)(received)
∧ isCopy(first(q), ha, ha, ht, copy, ha′, ht′)
∧ receiveAtLabel(first(q), `, ht(a), ha′) = S
∧ s′ is a linearization of S

15

Transition rule for starting a process

/ / process.start allocates a local heap and sent and received

/ / sequences for the new process, and moves the started
/ / process to the new local heap.
(P [a→ a′.start()], ht, h[a→ ha[a′ → o], ch,mq)
→ (P [a := skip, a′ := a′.run()], ht[as := sequence, ar := sequence],

h[a := ha	 a′, a′ := f0[a′ → o[sent := as, received := ar],
ar := 〈〉, as := 〈〉]],

ch,mq)
if extends(ht(a′), process) ∧ (ht(a′) inherits start from process)
∧ ar 6∈ dom(ht) ∧ as 6∈ dom(ht)
∧ ar ∈ NonProcessAddress ∧ as ∈ NonProcessAddress

16

Formal verification: Translation to TLA+

manual specification: for using TLC and TLAPS at all

Basic Paxos, Multi, Fast, Vertical: checking using TLC

Multi-Paxos, Multi-Paxos with Preemption, minimally ext.

Lamport et al’s Basic Paxos: safety proof in TLAPS

manual translation: for safety proof of more complex Paxos

Multi with Preemption, state reduction, failure detection

automatic translation: from

first: Python parser AST, second: own parser AST,

last: Python parser own AST

ongoing: DistAlgo actions—a DistAlgo subset

17

Model checking using TLC

using manual specification:

• checking small number of processes, simpler algorithms:

Basic Paxos, Fast Paxos, Vertical Paxos: 3 acceptors...

• too slow for more complex algorithms or more processes:

Multi-Paxos, > 3 processes...

• did not find any violations even when there was

a more complex variant of Multi-Paxos

using automatically translated: from much worse to worse

• first: each DistAlgo construct into 1 or more TLA+ actions

• last: use low-level intermediate rep. and compiler opts

Lamport’s distributed mutex, number of states:

• Lamport TLA+: 28,358. our generated with last: 37,978

• Merz TLA+: 1,180,688. our generated with last: 2,052,276

18

Summary

DistAlgo: expressing, understanding, optimizing, and improving

distributed algorithms

example: Lamport’s algorithm for distributed mutual exclusion

verification: formal semantics, translation to TLA+

proofs using TLAPS: Paxos for distributed consensus

model checking using TLC: Lamport’s distributed mutex

invariants: clear specs, optimization, improvement, easier proofs

through high-level queries over history variables

19

Invariants in distributed algorithms

high-level queries over history variables, allowing

clear specifications:

use high-level queries for synchronization conditions

optimization by incrementalization:

transform expensive queries into incremental updates

algorithm improvements:

simplified and improved algorithms (correctness and efficiency)

easier proofs:

need fewer manually written invariants

20

Lamport’s dist. mutex: Simplified, improved
Original. in DistAlgo, at same high level as Lamport’s English,

except operations of both Pi and Pj are operations of P

Send-to-self. in 1&3, Pi need not enqueue/dequeue own request,
but send request/release to all incl. self. 2&4 does enq/deq.

Inc-with-queue. expensive conditions (i)&(ii) in 5 are optimized
by incremental maintenance as messages are received, incl.
using dynamic queue for minimum of other reqs in (i).

Ignore-self. discovered in Inc-with-queue, in 1&3, Pi need not
enqueue/dequeue own request or send request/release to
self. (i) in 5 compares only with other requests anyway.

Inc-without-queue. (i) in 5 is better optimized by inc. maint.,
by using just a count of requests < own request, and using
a bit for each process if messages can be duplicated.

Simplified. discovered in Inc-with-queue and Inc-without-queue,
(i) in 5 can just compare with request for which a release has
not been received, omitting all updates of queue in 1-4.

21

Lamport’s dist. mutex: Improved fairness

further simplifications:

remove unnecessary uses of logical clocks

improved understanding of fairness

use of any ordering for fairness:

including improved fairness

for granting requests in the order they are made,

over using logical clock values

discovery that logical clocks are not fair in general

exercise: for Lamport’s mutex, if follow original English exactly,

easy to see safety and liveness violations too

22

Paxos made moderately complex:
simplified and improved

Paxos made moderately complex [vRA 2015-ACMCS]:

Multi-Paxos with preemption, reconfiguration, state

reduction, and failure detection

simplified specification: total about 50 lines

without scattered updates, from already greatly reduced

found errors and improvements:

previously unknown

useless replies, unnecessary delays, a liveness violation

and a safety violation in an earlier spec of ours

through TLAPS proof effort! after several years of teaching,

with special efforts in testing and model checking
23

References

DistAlgo language and optimization [OOPSLA 2012/TOPLAS 2017]

implementation [OOPSLA 2012] formal semantics [TOPLAS 2017]

high-level executable specifications of distributed algorithms [SSS

2012]

TLA specification and TLAPS proofs of Multi-Paxos [FM 2016]

TLA specification and TLAPS proofs using history variables

[NFM 2018]

moderated complex Paxos made simple [arXiv 2017/18]

logical clocks are not fair [APPLIED 2018]

24

DistAlgo resources

http://github.com/DistAlgo http://distalgo.sourceforge.net

README

can download — unzip — run script without installation
or to install: add to python path or run python setup.py install

or not even download if you have pip: run pip install pyDistAlgo

http://distalgo.cs.stonybrook.edu

tutorial (to update)
language description
formal operational semantics

more example algorithms given with DistAlgo implementation
among a wide variety of algorithms and protocols in DistAlgo,
including core of many distributed systems and services in
dozens of different course projects by hundreds of students

25

Ongoing and future work

easier and simpler specifications

DistAlgo actions: DistAlgo subset corresp. to TLA actions

more automated proofs

direct translation to TLA+

automated proof by induction: corresp. to incrementalization

many additional, improved analyses and optimizations:

type analysis, deadcode analysis, cost analysis, ...

efficient C/Erlang implementation, ... new algorithms

languages for more advanced computations:

security protocols, probabilistic inference, ...

26

Thanks !

27

Optimized w/ queue after incrementalization
0 class P extends process:
1 def setup(s):
2 self.s := s # self.q was removed
3 self.total := size(s) # total number of other processes
4 self.ds := new DS() # aux DS for maint min of requests by other processes

5 def mutex(task):
6 -- request
7 self.t := logical_time()
8 self.responded := {} # set of responded processes
9 self.count := 0 # count of responded processes

19 send (’request’, t, self) to s # q.add(...) was removed
11 await (ds.is_empty() or (t,self) < ds.min()) and count = total # use maintained
12 task()
13 -- release
14 send (’release’, logical_time(), self) to s # q.del(...) was removed

15 receive (’request’, t2, p2):
16 ds.add((t2,p2)) # add to the auxiliary data structure
17 send (’ack’, logical_time(), self) to p2 # q.add(...) was removed

18 receive (’ack’, t2, p2): # new message handler
19 if t2 > t: # test comparison in condition 2
20 if p2 in s: # test membership in condition 2
21 if p2 not in responded: # test whether responded already
22 responded.add(p2) # add to responded
23 count +:= 1 # increment count

24 receive (’release’, _, p2): # q.del(...) was removed
25 ds.del((_,=p2)) # remove from the auxiliary data structure

Optimized w/o queue after incrementalization
0 class P extends process:
1 def setup(s):
2 self.s := s
3 self.q := {} # self.q is kept as a set, no aux ds
4 self.total := size(s) # total num of other processes

5 def mutex(task):
6 -- request
7 self.t = logical_time()
8 self.earlier := q # set of pending earlier reqs
9 self.count1 := size(earlier) # num of pending earlier reqs

10 self.responded := {} # set of responded processes
11 self.count := 0 # num of responded processes
12 send (’request’, t, self) to s
13 q.add((’request’, t, self)) # q.add is kept, no aux ds.add
14 await count1 = 0 and count = total # use maintained results
15 task()
16 -- release
17 q.del((’request’, t, self)) # q.del is kept,no aux ds.add
18 send (’release’, logical_time(), self) to s

19 receive (’request’, t2, p2):
20 if t != undefined: # if t is defined
21 if (t,self) > (t2,p2): # test comparison in conjunct 1
22 if (’request’,t2,p2) not in earlier: # if not in earlier
23 earlier.add((’request’,t2,p2)) # add to earlier
24 count1 +:= 1 # increment count1
25 q.add((’request’,t2,p2)) # q.add is kept, no aux ds.add
26 send (’ack’, logical_time(), self) to p2

29

27 receive (’ack’, t2, p2): # new message handler
28 if t2 > t: # test comparison in conjunct 2
29 if p2 in s: # test membership in conjunct 2
30 if p2 not in responded: # test whether responded already
31 responded.add(p2) # add to responded
31 count +:= 1 # increment count

33 receive (’release’, _, p2):
34 if t != undefined: # if t is defined
35 if (t,self) > (t2,p2): # test comparison in conjunct 1
36 if (’request’,t2,p2) in earlier: # if in earlier
37 earlier.del((’request’,t2,p2)) # delete from earlier
38 count1 -:=1 # decrement count1
39 q.del((’request’,_,=p2)) # q.del is kept, no aux ds.del

Simplified algorithm
0 process P:
1 def setup(s):
2 self.s := s

3 def mutex(task):
4 -- request
5 self.t = logical_time()
6 send (’request’, t, self) to s
7 await each received (’request’,t2,p2) |
8 not (some received (’release’,t3,=p2) | t3 > t2) implies (t,self) < (t2,p2)

and each p2 in s | some received (’ack’,t2,=p2) | t2 > t
9 task()

10 -- release
11 send (’release’, logical_time(), self) to s

12 receive (’request’, _, p2):
13 send (’ack’, logical_time(), self) to p2

eliminated all updates of queue by un-incrementalization

30

Further simplified algorithm (1/2)
0 process P:
1 def setup(s):
2 self.s := s

3 def mutex(task):
4 -- request
5 self.t := logical_time()
6 send (’request’, t, self) to s
7 await each received (’request’,t2,p2) |
8 not received (’release’,t2,p2) implies (t,self) < (t2,p2)

and each p2 in s | some received (’ack’,t2,=p2) | t2 > t
9 task()

10 -- release
11 send (’release’, t, self) to s

12 receive (’request’, _, p2):
13 send (’ack’, logical_time(), self) to p2

removed unnecessary use of logical times in release messages

31

Further simplified algorithm (2/2)
0 process P:
1 def setup(s):
2 self.s := s

3 def mutex(task):
4 -- request
5 self.t := logical_time()
6 send (’request’, t, self) to s
7 await each received (’request’,t2,p2) |
8 not received (’release’,t2,p2) implies (t,self) < (t2,p2)

and each p2 in s | received (’ack’,t,p2)
9 task()

10 -- release
11 send (’release’, t, self) to s

12 receive (’request’, t2, p2):
13 send (’ack’, t2, self) to p2

removed unnecessary use of logical times in ack messages

logical times are used only in request messages

32

DistAlgo language overview

as extensions to common object-oriented languages

including a syntax for extensions to Python

1. distributed processes and sending messages

2. control flows and receiving messages

3. high-level queries of message histories

4. configurations

33

1. Distributed processes, sending messages

process definition

process p: process body setup, run, self

class p (process): process body

process creation, setup, and start

v = n new p at node exp

v = new(p, at = node exp, num = n)

pexp.setup(args)

setup(pexp, (args))

pexp.start()

start(pexp)

sending messages (usually tuples)

send mexp to pexp

send(mexp, to = pexp)

34

2. Control flows, receiving messages

yield point with label
-- l:

-- l

handling messages received
receive mexp from pexp at l1,...,lj:

handler body

def receive(msg = mexp, from = pexp, at = (l1,...,lj)):

handler body

synchronization (nondeterminism)
await bexp

await(bexp)

await bexp1: stmt1 or ... or bexpk: stmtk
timeout t: stmt

if await(bexp1): stmt1 elif ... elif bexpk: stmtk
elif timeout(t): stmt

35

3. High-level queries of message histories

message sequences: received, sent

received mexp from pexp
mexp from pexp in received

received(mexp, from = pexp)
(mexp, pexp) in received

1) comprehensions
{exp: v1 in sexp1, ..., vk in sexpk, bexp}
setof(exp, v1 in sexp1, ..., vk in sexpk, bexp)

2) aggregates
agg op comprehension exp
agg op(comprehension exp)

3) quantifications
some v1 in sexp1, ..., vk in sexpk has bexp
each v1 in sexp1, ..., vk in sexpk has bexp
some(v1 in sexp1, ..., vk in sexpk, has = bexp)
each(v1 in sexp1, ..., vk in sexpk, has = bexp)

tuple patterns, left side of membership clause
36

4. Configurations

channel types

configure channel = fifo

config(channel = ’fifo’)

default is not FIFO or reliable

message handling

configure handling = all

config(handling = ’all’)

this is the default

logical clocks

configure clock = Lamport

config(clock = ’Lamport’)

call logical time() to get the logical time

overall: .da files

process definitions, method main, and conventional parts;

main: configurations and process creation, setup, and start
37

