
Modeling Virtual Machines and
Interrupts in TLA+ & PlusCal

ValenƟn Schneider <valentin.schneider@arm.com>

18th of July 2018

© 2018 Arm Limited



Outline

Context

Technical details
GIC
KVM & GIC interacƟon

Model
PlusCal & TLA+
GIC
KVM

Results

QuesƟons

2 © 2018 Arm Limited



Context

3 © 2018 Arm Limited



TLA+ at Arm

Catalin Marinas (Arm Linux Kernel tech lead)

Linux kernel models
ASID allocator - two processes geƫng the same ASID
Ticket spinlocks - two CPUs entering criƟcal secƟon
Queued spinlocks - liveness not guaranteed for all processes

4 © 2018 Arm Limited

mailto:catalin.marinas@arm.com
https://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/kernel-tla.git/tree/


What this presentaƟon is about

Arm Generic Interrupt Controller (GIC)
Programmable interrupt controller
Gateway between CPUs and interrupts
Model based on GICv2

Kernel-based Virtual Machine (KVM)
VirtualizaƟon infrastructure
Lets the Linux kernel take the role of a hypervisor
Allows us to run VMs (guests)
Uses the GIC to present interrupts to guests
Model based on Linux v4.16

What can go wrong?
Misbehaving/malicious guests
Buggy hypervisor

5 © 2018 Arm Limited

https://www.cl.cam.ac.uk/research/srg/han/ACS-P35/zynq/arm_gic_%0Aarchitecture_specification.pdf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/?h=v4.16


Technical details

6 © 2018 Arm Limited



The Generic Interrupt Controller (GIC)

Interface for handling interrupts
Processor has one (or two) interrupt lines
GIC can assert that line: CPU is interrupted
CPU interacts with the GIC to know more

Types of interrupts
PPI: per-CPU hardware interrupt
SPI: global hardware interrupt
SGI: per-CPU soŌware-generated interrupt

7 © 2018 Arm Limited



Internal interrupt state

CombinaƟons of (pending, acƟve)
pending = can be signaled, waiƟng to be serviced
acƟve = cannot be signaled, being serviced

TransiƟons caused by
Hardware - Interrupt signal changes

Affects the pending bit
Depends on edge or level transiƟons (state machine
variaƟons)

SoŌware - CPU interface interacƟon
Affects the acƟve bit
Set with Acknowledge
Cleared with DeacƟvate

Individual interrupts can be enƟrely disabled

8 © 2018 Arm Limited



Choosing an interrupt to signal

CPU interrupt signal raised when at least one
interrupt

is enabled
is pending
has a high enough priority

PrioriƟes
Priority mask
Running priority

Acknowledge updates the running priority
Interrupts of lesser (or equal) priority can no
longer be signaled

Priority drop - end of interrupt (EOI)
SƟll acƟve so can’t be fired again

DeacƟvaƟon - clears the ”acƟve” state

Threaded IRQs, Virtual Machines

9 © 2018 Arm Limited



VirtualizaƟon extensions

Virtual Machines need interrupts too!
All GIC interacƟons could be trapped, (interrupt controller emulaƟon)…
…But that is slow! (see Raspberry Pi)
Extra hardware to help us out

10 © 2018 Arm Limited



What the vGIC gives us

GIC virtual interface
Similar interface (Ack, End,
DeacƟvate)
Isolated from physical
Distributor
List Registers (LRs)

Fills (part of) the role of the
Distributor for VMs
Describe interrupts

Sources of virtual interrupts
Purely virtual (QEMU,
inter-VCPU SGI)
Triggered by some hardware

Priority drop helps

11 © 2018 Arm Limited



The big picture

12 © 2018 Arm Limited



Things that can go wrong

Misbehaving/malicious guest
Interrupts leŌ acƟve
The guest must not harm the host!

Buggy hypervisor
Interrupts not being delivered to the guest VCPU
MisconfiguraƟon of the GIC

Erroneous LR entries

13 © 2018 Arm Limited



Model

14 © 2018 Arm Limited



The models

KVM (Hypervisor + guests)
PlusCal
Why? SoŌware, collecƟon of sequenƟal steps

GIC
TLA+
Why? Hardware, collecƟon of simple, independent steps

15 © 2018 Arm Limited



Combining models

KVM model needs to use the GIC registers

KVM model would need to modify GIC
internal variables

UNCHANGED statements managed by PlusCal
Only works with operators PlusCal has visibility on
Can’t put GIC variables in PlusCal segment, since
Inits will conflict

16 © 2018 Arm Limited



CommunicaƟon channel - diagram

17 © 2018 Arm Limited



CommunicaƟon channel - logic

18 © 2018 Arm Limited



GIC next-state predicate

ReadQueue
Non empty communicaƟon channel
Emulate requested register access, reply in ack

Randomly assert interrupt ligne

Pending signal update
Read status of interrupt lines
Update internal pending signal

Interrupt pending bit update
Read internal pending signal
Update relevant interrupts

Update interrupt signals
Interrupt (virt or phys) can be signaled
Raise interrupt signal (virt or phys)

Update maintenance interrupt signals
CondiƟon for raising maintenance interrupt met
Set maintenance interrupt as pending

19 © 2018 Arm Limited



Context switching - tasks definiƟon

These processes must not run in parallel -
they have to share the CPU!

The Hypervisor must explicitely let the Guest
run (world switch)

The Guest can be halted at any moment and
let the Hypervisor run instead

20 © 2018 Arm Limited



Context switching - TaskEnabled

TaskEnabled(self) becomes an enabling condiƟon of every PlusCal step

IniƟally, only the Hypervisor threads will be enabled

It will eventually call ContextSwitch(cpu, vcpu)

21 © 2018 Arm Limited



Context switching - CommunicaƟon channel tricks

Processes should not be context switched during a GIC ”transacƟon”

Only relevant to the model

22 © 2018 Arm Limited



KVM next-state predicate

Execute an instrucƟon
Next-state predicate automaƟcally generated by PlusCal
Will run whatever task is currently acƟve on a given CPU
Hypervisor: save -> handle exit -> restore -> run guest (&loop)
Guest: just virtual interrupt handling

Exit the guest
Guest is running but physical interrupt signal is raised
Need to return to the hypervisor to handle it

Branch to the interrupt handler
Hypervisor is running and physical interrupt signal is raised (and irqs allowed)

23 © 2018 Arm Limited



Results

24 © 2018 Arm Limited



Property checking

Liveness properƟes
An interrupt is eventually delivered, IOW the guest sees it
SGI (or even PPI) delivery liveness property check runs out of memory aŌer a few hours (32GB)

Safety properƟes
Sane GIC interacƟon (e.g. correct LR values)
Failure aŌer ~ 150 steps - invalid data regarding virtual SGI

Loss of informaƟon, issue fixed while model was being wriƩen

25 © 2018 Arm Limited

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/virt/kvm/arm/vgic?h=v4.17&id=53692908b0f594285aba18ab848318262332ed25


End product

GIC model
Priority handling, virtualizaƟon extensions

KVM model
Context switches
Virtual interrupt delivery
InstrucƟon traps

Yet more work to do
GICv2 is quite simpler than GICv3+
KVM code has progressed since then

Others
Emacs TLA+ mode improved for PlusCal syntax highlighƟng

26 © 2018 Arm Limited

https://github.com/valschneider/tla-mode


Lessons learned

1:1 matching between code and model piƞall
Take a step back, see what are the actual logical steps
No need for a loop to populate the List Registers

Large tracebacks are not always easy to analyze
Regexps can help a bit

A few PlusCal/TLA+ issues to circumvent
Talk about it at the end of the workshop?

27 © 2018 Arm Limited



QuesƟons

28 © 2018 Arm Limited



Thank you!

The Arm trademarks featured in this presentaƟon are registered trademarks or

trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights

reserved. All other marks featured may be trademarks of their respecƟve owners.

www.arm.com/company/policies/trademarks

© 2018 Arm Limited



Tweaking the specificaƟon

30 © 2018 Arm Limited



HW-Ɵed interrupts

Need to forward an e.g. programmed Ɵmer
Hypervisor does a priority drop on it, but it stays acƟve

Prevents the host from taking it again

An equivalent IT is created in the LRs and linked to the real interrupt
Virtual deacƟvaƟon automagically triggers a physical deacƟvaƟon

No need to exit the guest on virtual deacƟvaƟon!

31 © 2018 Arm Limited



SGI NPIE issue

SGI issue, NPIE (No Pending Interrupt Enable)
Fired when no pending (and only pending) IT in LRs
CondiƟon met when interrupt goes from Pending to AcƟve
Loss of informaƟon when saving the vgic state
Fixed while the model was being wriƩen, but a good target for fidelity

32 © 2018 Arm Limited


	
	Outline
	Context
	
	TLA+ at Arm
	What this presentation is about

	Technical details
	
	The Generic Interrupt Controller (GIC)
	Internal interrupt state
	Choosing an interrupt to signal
	Virtualization extensions
	What the vGIC gives us
	The big picture
	Things that can go wrong

	Model
	
	The models
	Combining models
	Communication channel - diagram
	Communication channel - logic
	GIC next-state predicate
	Context switching - tasks definition
	Context switching - TaskEnabled
	Context switching - Communication channel tricks
	KVM next-state predicate

	Results
	
	Property checking
	End product
	Lessons learned

	Questions
	
	

	Appendix
	Tweaking the specification
	HW-tied interrupts
	SGI NPIE issue


