
An Animation Module for TLA+
Will Schultz



What are TLA+ specifications useful for?



Utility of TLA+ Specifications

1. Communication: codification and sharing


2. Learning: precise, abstract thinking


3. Verification: TLC, TLAPS



Utility of TLA+ Specifications

1. Communication: codification and sharing


2. Learning: precise, abstract thinking


3. Verification: TLC, TLAPS



Current State of TLA+

Communication Process 

Write a spec, have someone else read it.


Explore a model in the TLA+ Toolbox


Learning Process 

Think, Write, Verify, Iterate



Visualization and TLA+

Visualization as a way to:


1. Improve the communication of TLA+ specs.


2. Enhance the TLA+ learning process.



TLA+ Animation Module

• Visualize execution traces of a TLA+ spec & model 
using TLC



TLA+ Animation Module

• Visualize execution traces of a TLA+ spec & model 
using TLC

state1 state2 state3

view1 view2 view3

Execution Trace: 



TLA+ Animation Module

• Module defines operators to describe and lay out 
graphical primitives (SVG) in TLA+

Circle(cx , cy , r , attrs)
�
=

let svgAttrs
�
= [cx 7! str(cx ),

cy 7! str(cy),
r 7! str(r)]in

SVGElem(“circle”, Merge(svgAttrs , attrs), hi)

Rectangle element. ’x’, ’y’, ’w’, and ’h’ should be given as integers.

Rect(x , y , w , h, attrs)
�
=

let svgAttrs
�
= [x 7! str(x ),

y 7! str(y),
width 7! str(w),
height 7! str(h)]in

SVGElem(“rect”, Merge(svgAttrs , attrs), hi)

Text element.’x’, and ’y’ should be given as integers, and ’text’ given as a string.

Text(x , y , text , attrs)
�
=

let svgAttrs
�
= [x 7! str(x ),

y 7! str(y)]in
SVGElem(“text”, Merge(svgAttrs , attrs), hRawText(text)i)

Group element. ’children’ is as a sequence of elements that will be contained in this group.

Group(children, attrs)
�
= SVGElem(“g”, attrs, children)

Animation Operators and Variables

The variables below are used to construct a sequence of animation frames. Upon each step of an
execution trace, we construct a new frame and convert it to an SVG string, and append it to the
global ’svgAnimationString’ variable. When the trace completes, this string should be suitable to
copy into an HTML template that displays an animation frame sequence.

The global SVG string that stores the sequence of all animation frames.

variable svgAnimationString

Index representing what frame number we are currently on.

variable frameInd

The name of the current action being executed. (Optional)

variable actionName

AnimationVars
�
= hsvgAnimationString , frameInd , actionNamei

local ActionNameElem(name)
�
= Text(10, 30, “Next Action: ” � name, hi)

Builds a single frame ’i’ for part of a sequence of animation frames. This is an SVG group element that

contains identifying information about the frame.

local MakeFrame(elem, action, i)
�
=

let attrs
�
= [class 7! “frame”, id 7! ToString(i), action 7! action]in

Group(helem, ActionNameElem(action)i, attrs)

3



TLA+ Animation Module

• Module defines operators to describe and lay out 
graphical primitives (SVG) in TLA+

Circle(cx , cy , r , attrs)
�
=

let svgAttrs
�
= [cx 7! str(cx ),

cy 7! str(cy),
r 7! str(r)]in

SVGElem(“circle”, Merge(svgAttrs , attrs), hi)

Rectangle element. ’x’, ’y’, ’w’, and ’h’ should be given as integers.

Rect(x , y , w , h, attrs)
�
=

let svgAttrs
�
= [x 7! str(x ),

y 7! str(y),
width 7! str(w),
height 7! str(h)]in

SVGElem(“rect”, Merge(svgAttrs , attrs), hi)

Text element.’x’, and ’y’ should be given as integers, and ’text’ given as a string.

Text(x , y , text , attrs)
�
=

let svgAttrs
�
= [x 7! str(x ),

y 7! str(y)]in
SVGElem(“text”, Merge(svgAttrs , attrs), hRawText(text)i)

Group element. ’children’ is as a sequence of elements that will be contained in this group.

Group(children, attrs)
�
= SVGElem(“g”, attrs, children)

Animation Operators and Variables

The variables below are used to construct a sequence of animation frames. Upon each step of an
execution trace, we construct a new frame and convert it to an SVG string, and append it to the
global ’svgAnimationString’ variable. When the trace completes, this string should be suitable to
copy into an HTML template that displays an animation frame sequence.

The global SVG string that stores the sequence of all animation frames.

variable svgAnimationString

Index representing what frame number we are currently on.

variable frameInd

The name of the current action being executed. (Optional)

variable actionName

AnimationVars
�
= hsvgAnimationString , frameInd , actionNamei

local ActionNameElem(name)
�
= Text(10, 30, “Next Action: ” � name, hi)

Builds a single frame ’i’ for part of a sequence of animation frames. This is an SVG group element that

contains identifying information about the frame.

local MakeFrame(elem, action, i)
�
=

let attrs
�
= [class 7! “frame”, id 7! ToString(i), action 7! action]in

Group(helem, ActionNameElem(action)i, attrs)

3



TLA+ Animation Module

• View expression: TLA+ state expression that 
visualizes a single state by composing these 
graphical primitives

state view

View Expression



View

Basic 
Spec

Animated 
Spec

module AnimationExample
extends Animation

Represent the values of two numbers, ’x’ and ’y’, as a simple bar chart.

variable x , y

vars
�
= hx , yi

Init
�
=

^ x = 0
^ y = 0

Next
�
=

_ x 0 = x + 1 ^ unchanged y
_ y 0 = y + 1 ^ unchanged x

Define an animation view.

barHeight
�
= 5

widthFactor
�
= 10

View
�
=

let xBar
�
= Rect(0, 10, widthFactor ⇤ x , barHeight , (“fill” :> “blue”))

yBar
�
= Rect(0, 20, widthFactor ⇤ y , barHeight , (“fill” :> “red”))in

Group(hxBar , yBari, hi)

AnimSpec
�
=

^ AnimatedInit(Init , View)
^2[AnimatedNext(Next , View , true)]hvars,AnimationVarsi

\ ⇤ Modification History

\ ⇤ Last modified Sat Jul 14 14:37:21 EDT 2018 by williamschultz

\ ⇤ Created Sat Jul 14 13:00:21 EDT 2018 by williamschultz

1



View

module AnimationExample
extends Animation

Represent the values of two numbers, ’x’ and ’y’, as a simple bar chart.

variable x , y

vars
�
= hx , yi

Init
�
=

^ x = 0
^ y = 0

Next
�
=

_ x 0 = x + 1 ^ unchanged y
_ y 0 = y + 1 ^ unchanged x

Define an animation view.

barHeight
�
= 5

widthFactor
�
= 10

View
�
=

let xBar
�
= Rect(0, 10, widthFactor ⇤ x , barHeight , (“fill” :> “blue”))

yBar
�
= Rect(0, 20, widthFactor ⇤ y , barHeight , (“fill” :> “red”))in

Group(hxBar , yBari, hi)

AnimSpec
�
=

^ AnimatedInit(Init , View)
^2[AnimatedNext(Next , View , true)]hvars,AnimationVarsi

\ ⇤ Modification History

\ ⇤ Last modified Sat Jul 14 14:37:21 EDT 2018 by williamschultz

\ ⇤ Created Sat Jul 14 13:00:21 EDT 2018 by williamschultz

1

module AnimationExample
extends Animation

Represent the values of two numbers, ’x’ and ’y’, as a simple bar chart.

variable x , y

vars
�
= hx , yi

Init
�
=

^ x = 0
^ y = 0

Next
�
=

_ x 0 = x + 1 ^ unchanged y
_ y 0 = y + 1 ^ unchanged x

Define an animation view.

barHeight
�
= 5

widthFactor
�
= 10

View
�
=

let xBar
�
= Rect(0, 10, widthFactor ⇤ x , barHeight , (“fill” :> “blue”))

yBar
�
= Rect(0, 20, widthFactor ⇤ y , barHeight , (“fill” :> “red”))in

Group(hxBar , yBari, hi)

AnimSpec
�
=

^ AnimatedInit(Init , View)
^2[AnimatedNext(Next , View , true)]hvars,AnimationVarsi

\ ⇤ Modification History

\ ⇤ Last modified Sat Jul 14 14:37:21 EDT 2018 by williamschultz

\ ⇤ Created Sat Jul 14 13:00:21 EDT 2018 by williamschultz

1

Animated Spec



TLA+ Animation Module

Module internals:


• Defines a set of auxiliary variables to track 
animation related state.


• Records a sequence of frames, where each 
frame is a visualization of one state of a behavior


• When trace generation finishes, final state will 
contain an SVG string of the animation



Demos



Concluding Thoughts

1. ProB Animator and Runway visualization tools 
similar, but not TLA+ native


2. Better performance, closer integration with TLC


3. Fully interactive trace exploration


4. Module & examples available at https://
github.com/will62794/tlaplus_animation

https://github.com/will62794/tlaplus_animation

