
An Extension of PlusCal for Modeling Distributed
Algorithms

Heba Alkayed, Horatiu Cirstea, Stephan Merz

University of Lorraine, CNRS, Inria, Nancy, France

September 28, 2020

1 / 16

Introduction

Formal Specification Languages

I Algorithms modeled using TLA+ can be formally verified using
the TLA+ Toolbox

I PlusCal algorithms have a more familiar syntax and can be
translated to TLA+

2 / 16

Distributed PlusCal Algorithms

Motivation
An extension of PlusCal with a syntax that offers constructs for
modeling distributed algorithms naturally

Features
I Introduces

I Sub-processes
I Communication channels

I Can be translated into a TLA+ specification

3 / 16

Motivating example

Lamport’s Mutex Algorithm

I An algorithm for Mutual Exclusion in Distributed Systems
I Critical section requests are ordered based on logical clocks
I Processes exchange 3 types of messages

I Request
I Acknowledge
I Release

I Processes asynchronously receive messages from each other

4 / 16

Algorithm in PlusCal: main process

* Variables must be declared globally to be used by the
inter-playing processes representing this algorithm

variables network, clock ...

(**--algorithm LamportMutex {
Process executing
the main algorithmprocess (proc \in Proc) {

ncs: while (TRUE) {
* non-critical section

try: * multicast a message requesting access to cs
enter: * wait for acknowledgements
cs: * critical section
exit: * multicast the release message
} * end while

} * end process

5 / 16

Algorithm in PlusCal: helper process

process (comm \in Comm) {

Process handling
messages

rcv: while (TRUE) {
with (prc = node(self), ...) {
* handle request, ack and release messages

}
} * end while

} * end process

6 / 16

Algorithm in PlusCal: helper process

process (comm \in Comm) {
rcv: while (TRUE) {

with (prc = node(self)

Proc == 1 .. N
Comm == N+1..N+N
node(c) == c - N

, ...) {
* handle request, ack and release messages

}
} * end while

} * end process
**)

7 / 16

Lamport Mutex in Distributed PlusCal

fifos network[Proc, Proc];
process(p \in Proc)

variables ..
{

sub-process executing
the main algorithm

ncs: while (TRUE) {*non-critical section
...
exit: * multicast the

* release message
} * end while

} {

message handling
sub-process

rcv: while (TRUE) {* receive msg from channel
* handle request, ack and release messages
...

} * end while
} * end message handling thread
**)

8 / 16

Modeling channels

Declaration (in PlusCal)

network=[p,q \in Proc |-> 〈〉]

Declaration (in Distributed PlusCal)

fifos network[Proc, Proc];

Operation (in PlusCal)

macro mcast(p, m) {
network := [s,d \in Proc |->
IF s = p /\ d # p
THEN Append(network[s,d], m)
ELSE network[s,d]]

}
mcast(self, Request(clock));

Operation (in Distributed PlusCal)

* 1st argument: channel name
* 2nd argument specifies

recipients and message

multicast(network,
[self, p \in Proc |->
Request(clock)]);

9 / 16

Modeling channels

Declaration (in PlusCal)

network=[p,q \in Proc |-> 〈〉]

Declaration (in Distributed PlusCal)

fifos network[Proc, Proc];

Operation (in PlusCal)

macro mcast(p, m) {
network := [s,d \in Proc |->
IF s = p /\ d # p
THEN Append(network[s,d], m)
ELSE network[s,d]]

}
mcast(self, Request(clock));

Operation (in Distributed PlusCal)

* 1st argument: channel name
* 2nd argument specifies

recipients and message

multicast(network,
[self, p \in Proc |->
Request(clock)]);

9 / 16

Modeling channels

Declaration (in PlusCal)

network=[p,q \in Proc |-> 〈〉]

Declaration (in Distributed PlusCal)

fifos network[Proc, Proc];

Operation (in PlusCal)

macro mcast(p, m) {
network := [s,d \in Proc |->
IF s = p /\ d # p
THEN Append(network[s,d], m)
ELSE network[s,d]]

}
mcast(self, Request(clock));

Operation (in Distributed PlusCal)

* 1st argument: channel name
* 2nd argument specifies

recipients and message

multicast(network,
[self, p \in Proc |->
Request(clock)]);

9 / 16

Modeling channels

Declaration (in PlusCal)

network=[p,q \in Proc |-> 〈〉]

Declaration (in Distributed PlusCal)

fifos network[Proc, Proc];

Operation (in PlusCal)

macro mcast(p, m) {
network := [s,d \in Proc |->
IF s = p /\ d # p
THEN Append(network[s,d], m)
ELSE network[s,d]]

}
mcast(self, Request(clock));

Operation (in Distributed PlusCal)

* 1st argument: channel name
* 2nd argument specifies

recipients and message

multicast(network,
[self, p \in Proc |->
Request(clock)]);

9 / 16

Distributed PlusCal

General Structure of an algorithm

(* --algorithm <algorithm name>
(* Declaration section *)
variables <variable declarations>
channels <channel declarations>
fifos <fifo declarations>
(* ... *)
(* Processes section *)
process (<name> [= | \in] <Expr>))

variables <variable declarations>
<subprocesses>

*)

10 / 16

Operations on channels

I Supported operators
I send(ch, el)
I receive(ch, var)
I broadcast(ch, [x ∈ S 7→ e(x)]
I multicast(ch, [x ∈ S 7→ e(x)]
I clear(ch)

11 / 16

Translation of Unordered Channels

channel 〈id〉[〈Expr1〉, . . . , 〈ExprN〉];

I Translation based on TLA+ sets

I send(chan[e], msg) ,

chan’ = [chan EXCEPT ![e] = chan[e] \cup {msg}]

I receive(chan[e], var) ,

\E temp \in chan[e]:
/\ var’ = temp
/\ chan’ = [chan EXCEPT ![e] = chan[e] \ {temp}]

12 / 16

Translation of FIFO Channels

fifo 〈id〉[〈Expr1〉, . . . , 〈ExprN〉];

I Translation based on TLA+ sequences

I send(chan[e], msg) ,

chan’ = [chan EXCEPT ![e] = Append(@, msg)]

I receive(chan[e], var) ,

/\ Len(chan[e]) > 0
/\ var’ = Head(chan[e])
/\ chan’ = [chan EXCEPT ![e]= Tail(@)]

13 / 16

Program counter

I The variable pc is indexed by processes and sub-processes

pc = [self \in ProcSet|->
CASE self \in P1 -> << lbl11, lbl12, ...>>

[] self \in ...]

where the lblij are the entry labels of the subprocesses of the
process type Pi .

14 / 16

Translation to TLA+

exit: clock := clock + 1;
multicast(network, [self, p \in Proc \ {self} |->

Release(clock)]);

exit(self) ==
/\ pc[self][1] = "exit"
/\ clock’ = [clock EXCEPT ![self] = clock[self] + 1]
/\ network’ = [<<slf, p>> \in DOMAIN network |->

IF
slf = self /\ p \in Proc \ { self }

THEN
Append(network[slf, p], Release(clock’[self]))

ELSE
network[slf, p]]

Translation
Multicast

/\ pc’ = [pc EXCEPT ![self][1] = "ncs"]
/\ UNCHANGED << req, ack, sndr, msg >>

15 / 16

Contributions and future work

Contributions
I An extension of PlusCal offering the possibility to define

I Sub-Processes
I Communication Channels

I A backward compatible translator to TLA+

https://github.com/hebaalkayed/DistributedPlusCal

Future Work

I Introduce more types of communication channels
I Consider defining channel operations in a TLA+ module

16 / 16

https://github.com/hebaalkayed/DistributedPlusCal

	Introduction
	Distributed PlusCal
	Motivating example - Lamport's Mutex Algorithm
	Distributed PlusCal to TLA+
	Communication Channels
	Program counter

