
Andrey Kuprianov & Daniel Tisdall

TLA+ Specification & Model Checking
of the Agoric Smart Contracts Kernel

TLA+ Conference

30.09.2021

Talk outline

1. Agoric smart contracts engine
• Object capabilities for secure DEFI in JavaScript

2. TLA+ master kernel model
• How TLA+ helps to understand the system

• Experience with typed TLA+ using Apalache

3. Kernel garbage collector
• Abstraction for practical verification

4. Model-based testing of inter-VAT communication
• Generating and running thousands of tests from a model

How we approach Correctness Assurance with TLA+

Agoric Smart Contracts Engine
Object Capabilities for secure DEFI in JavaScript

An Object-Capability (OCAP) is a transferrable, unforgeable authorization to use the object it designates.

• All communication between smart contracts is asynchronous and mediated
• Messages can only be sent along OCAP references
• Completely prevents certain kinds of smart contract attacks (such as Ethereum DAO)

Agoric smart contracts engine
Stack Structure & Protocols

Objects

Liveslots

Swingset machine

Swingset Kernel

VATs… live in

… administered by

… communicate via

… that manages

Swingset Machine

Swingset Kernel

LiveslotsLiveslots

Agoric smart contracts engine
Objects, VATs, Liveslots, Swingsets, Kernel

VAT A
sync

asyncsync

VAT B

sync

async async

Run Queue

Object Table Promise Table

Syscall Dispatch

• Objects are normal JavaScript objects. They are
submerged in SES (Secure ECMAScript) environment.

• VATs are units of synchrony. Synchronous
communication occurs only within a single VAT.

• Liveslots mediate access of user-space VAT code with
external world. Every access comes through translation.

• Swingset Machine may contain multiple VATs, and a
shared kernel. It is a unit of determinism.

• Swingset Kernel orchestrates communication within a
Swingset Machine, very much like a Unix kernel. Every
Syscall (VAT to Kernel) or Dispatch (Kernel to VAT) comes
through translation tables.

Agoric Swingset Kernel Model
How TLA+ helps to understand the system

Agoric Swingset Kernel model
Implementation vs. TLA+ model

Implementation /
Documentation Files LOC

JavaScript 43 10000

Markdown 20 5000

TLA+ model LOC Comments / Types

Main model 350 250

Execution
environment 350 200

vs.

Note: not all of the above implementation and documentation files were needed, but a large number of them
 had to be inspected for the model construction.

• kernel_typedef.tla: types & definitions

• kernel.tla: main model, for each protocol action
• Type

• Pre-condition

• Post-condition (update)

• Changed/unchanged variables

• kernel_exec.tla: execution environment, a step for each protocol action
• Existentially quantifies over action inputs

• Stores inputs, checks the pre-condition, executes the update

• kernel_test.tla: model unit tests (sanity checks)

Agoric Swingset Kernel model
TLA+ model structure

Agoric Swingset Kernel model
TLA+ model example: Send

Precondition

Agoric Swingset Kernel model
TLA+ model example: Send

Changed variables & post-condition

Agoric Swingset Kernel model
TLA+ model example: Send

Protocol action & step

Agoric Swingset Kernel model
How type checking ensures TLA+ model sanity

It is easy to make typing mistakes in TLA+ specs

The model checking with untyped specs (e.g. using TLC) may go fine.

Can you trust the results?

Agoric Swingset Kernel model
How type checking ensures TLA+ model sanity

Apalache type-checking to the rescue!

Agoric Swingset Kernel model
How type checking ensures TLA+ model sanity

The type bug (one of many!) discovered by the Apalache type-checker

Kernel Garbage Collector
Abstraction for practical verification

Kernel Garbage Collector

Overview

Kernel

Exporter Importer

✅ ✅

Kernel KV store entry

Kernel per-Vat id translation✅

✅ = table entry exists

= Vat knows about item

Kernel Garbage Collector

Overview

Kernel

Vat
Syscalls:
•dropImport
•retireImport
•retireExport

Dispatch:
•dropExport
•retireImport
•retireExport

Kernel Garbage Collector

Malicious importer

Kernel

Exporter Importer Importer (Malicious)

✅ ✅ ✅

Kernel KV store entry

Kernel per-Vat id translation✅

✅ = table entry exists

= Vat knows about item

Kernel Garbage Collector

Model structure Maybe dispatch

Maybe syscall

Additional GC logic

Kernel Garbage Collector

Invariants

Kernel

Exporter Importer
Importer

(Malicious)

❌ ❌ ❌

❌
Kernel KV store entry

Kernel per-Vat id translation

Kernel Garbage Collector

Invariants

Kernel

Exporter Importer
Importer

(Malicious)

✅ ✅ ✅

Kernel KV store entry

Kernel per-Vat id translation✅

Kernel Garbage Collector

Invariants

Kernel

Exporter Importer
Importer

(Malicious)

✅ ✅ ✅

❌
Kernel KV store entry

Kernel per-Vat id translation

Kernel Garbage Collector
Invariants

Kernel

Exporter Importer
Importer

(Malicious)

❌ ❌ ✅

✅
Kernel KV store entry

Kernel per-Vat id translation

Kernel Garbage Collector

Summary

• Lightweight model
• Easy checked with TLC in a second
• Models logic spread over ~4k lines of
code in < 200 lines of TLA+!

• Gives high degree of confidence of
protocol, in the face of difficult-to-
reason-about process interleaving

• Final spec is a more precise description
of the protocol than the documentation,
and much easier to read

Model-based testing of inter-vat
communication

Generating and running thousands of tests

Model-based testing of inter-vat communication

Userspace code

Vat BVatA

…

…

…

…

Model-based testing of inter-vat communication

Decomposition of behaviours

Vat A Vat B Vat C

Shared universe of items

Model-based testing of inter-vat communication

Decomposition of behaviours

Vat A Vat B Vat C

Shared universe of items

vA vB

Model-based testing of inter-vat communication

Decomposition of behaviours

Vat A Vat B Vat C

Shared universe of items

vA vB p0
px = promise #x
rx = resolver #xr0r1 p1

Model-based testing of inter-vat communication

Decomposition of behaviours

Vat A Vat B Vat C

Shared universe of items

vA vB p0
px = promise #x
rx = resolver #xr0vA

Model-based testing of inter-vat communication

Decomposition of behaviours

Model-based testing of inter-vat communication

Generating executions with the Apalache model checker

• 3 components
- Historical traces
- Able to generate multiple executions for each invariant
- ‘View’ projection allows control over counterexample differentiation

Model-based testing of inter-vat communication

Generating executions with the Apalache model checker

Acting vat is different in states [I+1] and [j]

jth step is not merely a transfer of control

Promise resolution

Some other vat has access to the resolved promise

Model-based testing of inter-vat communication

Generating executions with the Apalache model checker

“States A and B are different if the step variable is
different and one of the states has a step count of 4 or

more.”

Model-based testing of inter-vat communication

Effort to reward ratio

• Generate thousands of tests for a given behaviour
• Behaviours can be as complex or as simple as wished
• A very abstract model can generate tests for a complex runtime environment
• Tests may be easily incorporated into a CI or regression suite

• ~ 200 lines driver code
• ~ 300 lines glue code
• ~ 200 lines TLA+
• Generate a trace in seconds/minutes

Thank you!
• agoric.com

• agoric-sdk/SwingSet/kernel

• informal.systems

• apalache.informal.systems

• github.com/informalsystems/modelator

• informal.systems/services/security-audits

Check it out & happy to connect
andrey / daniel @ informal.systems

http://agoric.com
https://github.com/Agoric/agoric-sdk/tree/master/packages/SwingSet/src/kernel
https://informal.systems
https://apalache.informal.systems
https://github.com/informalsystems/modelator
https://informal.systems/services/security-audits

