Interactive TLA+

A. Jesse Jiryu Davis and Samyukta Lanka
MongoDB

Two ways to understand a system

Precise Holistic
Does the system obey a particular Does the system generally conform to
invariant / property? my theory of it?

Holistic understanding usually requires
interaction or visualization.

Lots of powerful tools for this.

Few tools, mostly prototypes.

Programmers understand programs holistically through interaction

(Lnext_tenant_id]) As—MacBook Pro com. apple Xpc.

As-MacBook-Pro com.apple.xpc.

As-MacBook-Pro Google Chrome

—-—— last message repeated 14

entry_type = random.choice([As-MacBook-Pro Google Chrome

antnuv +una —-— : H 1Y As-MacBook-Pro com.apple.xpc.
——— last message repeated 1 time

children, tenant_ids = make_oplog_re(

make_oplog_recursive()

Debug: e TransactionHistoryIterator

debugging logging

.and visualization

blink:.. [BE)

|
| blink: :SimpleShap...
blink: :Font::float...
| blink: :Font: :width
t::handleText

Name

<built-in method builtins.compile>

<method
<method
<method
<method
<method
<method
<method
<method

<method

'find' of 'bytearray' objects>
'get' of 'mappingproxy' objects>
'values' of 'mappingproxy' objects>
'items' of 'mappingproxy' objects>
‘append' of 'list' objects>

'extend' of 'list' objects>

'pop' of 'list' objects>

'bit_length' of 'int' objects>

‘get' of 'dict' objects>

a:never-called

flame charts call graphs

Call Count

Time (ms)

6

Own Time (ms) ¥

TLA+ feels like math.

Interaction and visualization are less well-developed
for TLA+ than for code.

Let's make it more like programming:
interactive, visual.

Our mission

Review existing tools.

Propose ways to make TLA+ easier for programmers
via interaction and visualization.

Your mission

Tell us what tools and techniques we overlooked.

Share your ideas.

Spec authors ask different questions at different times

1))
U
e
=)
o
.
@
=
)
w
BN

Does my spec imply my invariant

Why is my invariant / property false?

What does this TLA+ expression mean?

|

X
2
s the spec generally behaving as intended? W

ﬂ

Why isn't my action enabled?

How did a recent edit change how the spec behaves?

How do | use TLA+ to communicate behavio

/\

rs to other people” \

Decreasingly
well-supported

Why is my invariant / property false?

You have a wrong hypothesis about your spec.
What precisely is the mismatch?

Specifying Systems §14.5.2 "Debugging a Specification"

Why is my invariant / property false?

Error traces

.out file

The following behavior constitutes a counter-example:

@!@!@ENDMSG 2264 @!@!@
@!@!@STARTMSG 2217:4 @!@'@
1: <Initial predicate>

/\ alarmHr = JI

/\ hr = 1

/\ alarm0n = FALSE

@!@!GENDMSG 2217 @!@!@
@!@!@ESTARTMSG 2217:4 @!@!@

2: <SetAlarm line 13, col 5 to line 16, col 23 of mod
/\ alarmHr = 7

/\ hr =1

/\ alarmOn = TRUE

@!@!@ENDMSG 2217 @!@!@

@!@!@STARTMSE 2217:4 @!@!@

3: <SetAlarm line 13, col 5 to line 16, col 23 of mod
/\ alarmHr = 2

/\ hr =1

/\ alarmOn = TRUE

TLA+ Toolbox

Error-Trace

Name

v & <Initial predicate>
& alarmHr
& alarmOn
B hr

v & <SetAlarm line 13,...

& alarmHr
B alarmOn
& hr

v & <SetAlarm line 13,...

B alarmHr
B alarmOn
B hr

& <Stuttering>

4

Value

State (num = 1)
1

FALSE

1

State (num = 2)
7

TRUE

1

State (num = 3)
2

TRUE

1

State (num = 4)

oy
e

sty

VS Code

Errors

Temporal properties were violated.

Error Trace Filter
1: Initial predicate
alarmHr 1
alarmOn FALSE
hr 1

2: SetAlarm in AlarmClock
alarmHrM 11
alarmOn M TRUE
hr 1

3: SetAlarm in AlarmClock >
alarmHr M 8
alarmOn TRUE
hr 1

4: Stuttering

tla-trace-formatter
(Siyuan Zhou)

TLA+ Trace

State 1: <Initial predicate>

alarmHr hr alarmOn

1 1 FALSE

State 2: <SetAlarm line 13, col 5 to line 16, col 23 of module AlarmClock>
alarmHr hr alarmOn

7 1 TRUE

State 3: <SetAlarm line 13, col 5 to line 16, col 23 of module AlarmClock>

alarmHr hr alarmOn
11 1 TRUE
State 4:

alarmHr hr alarmOn

Why is my invariant / property false?

github.com/visualzhou/tla-trace-formatter

TLA+ Trace

State 1: <Initial predicate>

alarmHr hr alarmOn

1 1 FALSE
State 2: <SetAlarm line 13, col 5 to line 16, col 23 of module AlarmClock>
alarmHr hr alarmOn

7 1 TRUE

State 3: <SetAlarm line 13, col 5 to line 16, col 23 of module AlarmClock>

alarmHr hr alarmOn
11 1 TRUE
State 4:

alarmHr hr alarmOn

What does this TLA+ expression mean?

TLC REPL

S jJava —-cp tla2tools.jar tlc2.REPL

What does this TLA+ expression mean?

TLC REPL

S jJava —-cp tla2tools.jar tlc2.REPL
Enter a constant-level TLA+ expression.
(tla+)

What does this TLA+ expression mean?

TLC REPL

$ java -cp tla2tools.jar tlc2.REPL
Enter a constant-level TLA+ expression.
(tlat) SetToBag({"a", "b"})

What does this TLA+ expression mean?

TLC REPL

S jJava —-cp tla2tools.jar tlc2.REPL
Enter a constant-level TLA+ expression.
(tla+) SetToBag({"a", "b"})

[a |-> 1, b |-> 1]

What does this TLA+ expression mean?

TLC REPL

S jJava —-cp tla2tools.jar tlc2.REPL
Enter a constant-level TLA+ expression.
(tla+) SetToBag({"a", "b"})

[a |-> 1, b |-> 1]

(tla+) SetToBag({l, 2})

What does this TLA+ expression mean?

TLC REPL

S jJava —-cp tla2tools.jar tlc2.REPL
Enter a constant-level TLA+ expression.
(tla+) SetToBag({"a", "b"})

[a |-> 1, b |-> 1]

(tla+) SetToBag({l, 2})

<1, 1>>

Is the spec behaving as intended?

Print() expressions are confusing in model-checking mode

EXTENDS Naturals, TLC
VARIABLE hr
HCini == hr \in (1 .. 12)
HCnxt ==
/\ hr' = r # 12 THEN-hr <+ 1 ELSE 1
PrintT (<<"hr is ", hr, "hr' is", hr'>>)
HC == HCini /\ [][HCnxt] hr

Is the spec behaving as intended?

Print() expressions are confusing in model-checking mode

<<"hr
<<"hr
<<"hr
<<"hr
<<"hr
<<"hr
<<"hr
<<"hr
<<"hr
<<"hr
<<"hr
<<"hr

is
is
is
is
is
is
is
is
is
is
is

is

"
"
"
"hp
"
—_—
"
"
"
"hp
"
"

5>>
4>>
3>>
6>>
2>>
7>>
11>>
9>>
1>>
12>>
10>>
8>>

is",
is",
iS",
is",
is",
iS",
is",
iS",
is",
is",
iS",

is",

Is the spec behaving as intended?

Print() expressions plus simulation mode

] Configuration

Number of worker threads: 1 v

Fraction of physical memory allocated to TLC:

Log base 2 of number of disk storage files: 1

=] Checking Mode
Model-checking mode

View:

Depth-first
Depth: 100
© Simulation mode
Maximum number of traces: 1
Maximum length of each trace: 100 \
Seed:

Aril:

Is the spec behaving as intended?

Print() expressions plus simulation mode

<<"hr is ", "hr' is", 5>>
<<"hr is ", "hr' is", 6>>
<<"hr is ", "hr' is", 7>>
<<"hr is ", "hr' is", 8>>

<<"hr is ", &, "hr' is", 9>>
<<"hr is ", 9, "hr' is", 10>>
<<"hr is ", 10, "hr' is", 11>>
<<"hr is ", 11, "hr' is", 12>>
<<"hr is ", 12, "hr' is", 1>>
<<"hr is ", 1, "hr' is", 2>>
<<"hr is ", 2, "hr' is", 3>>
<<"hr is ", 3, "hr' is", 4>>
<<"hr is ", 4, "hr' is", 5>>
<<"hr is ", 5, "hr' is", 6>>
<<"hr is ", 6, "hr' is", 7>>

Is the spec behaving as intended?

Simulation mode — constraining the model to show interesting traces

-] What is the behavior spec?

Initial predicate and next-state relation

hr = 4<"__>

Init:

HCnxt
Next:

Is the spec behaving as intended?

GraphViz

TLC command line parameters: -dump dot,colorize,actionlabels HourClock.dot

Is the spec behaving as intended?

GraphViz

Is the spec behaving as intended?

GraphViz

Is the spec behaving as intended?

* Incorrectly add am/pm to HourClock

EXTENDS Naturals
VARIABLE hr, am
HCini == hr \in (1
HCnxt ==

/\ hr' = IF hr

* Oops, AM/PM

12 THEN hr + 1 ELSE 1
should flip at noon/midnight,

12) /\

MODULE HourClockAMPM

am = TRUE

am' = IF hr

12 THEN

~am ELSE am

HC == HCini /\

[] [HCnxt] <<hr,

am>>

not 1 o'clock.

Nam = FALSE
Nhr=8

HCnxt

am = FALSE

am = TRUE

Nam =TRUE
Ahr=9

Aam =TRUE

HENXIA am = TRUE

HCnxt

HCnxt

X,
— o e o - —

[—————

Receive DonorStartMigrationResponse Action

R s
it RREN DR
SRl B

L RR B O T

oty m.:—:l_'“..* £)
RSP A U T

3
G THH Teuey :v‘."c.‘\‘;‘&w

(o
black is the new black " l"’

/\ <\ /e
ReceiveRecipientSyncDataReturnAfterPinningResponseAction \\k

Is the spec behaving as intended?

Profiling

New example: an alarm clock.

VARIABLES hr, alarmHr, alarmOn
vars == <<hr, alarmHr, alarmOn>>
HCini ==

/\ hr \in (1 .. 12)

/\ alarmHr \in (1..12) J

/\ alarmOn = FALSE

(AdvanceHour ==)
/\ hr' = IF hr # 12 THEN hr + 1 ELSE 1
L /\ UNCHANGED <<alarmHr, alarmOn>>
(SetAlarm ==)
/\ alarmHr' \in (1..12)
* Oops, forgot to set alarmOn' = TRUE
\ /\ UNCHANGED <<hr, alarmOn>>)
(Ring ==)

oops, alarmOn is always FALSE

/\ alarmOn -=—
/\ hr = alarmHr
/\ alarmOn' = FALSE
_ /\ UNCHANGED <<alarmHr, hr>> /
HC == HCini /\ [][AdvanceHour \/ SetAlarm \/ Ring] vars /\ SF vars (Ring)

Is the spec behaving as intended?

Profiling

Module

AlarmClock
AlarmClock
AlarmClock
AlarmClock

Action
AdvanceHour
SetAlarm
Ring

HCini

Location

line 9, col 1 toline 9, col 11
line 12, col 1 to line 12, col 8
line 16, col 1 to line 16, col 4
line 5, col 1toline 5, col 5

States Found
144

1,728

0

144

Distinct States
0

0

0

144

Is the spec behaving as intended?

1 MODULE AlarmClock
I 2 EXTENDS Naturals
Profiling 3 VARIABLES hr, alarmHr, alarmon
4 vars == <<hr, alarmHr, alarmOn>>
5 [HCinl ==
6 I\ Br \dn (1 =« 12)
7 /\ alarmHr \in (1..12)
8 /\ alarmOn = FALSE
9 AdvanceHour ==
10 /\ hr' = IF hr # 12 THEN hr + 1 ELSE 1
11 /\ UNCHANGED <<alarmHr, alarmOn>>
12 SetAlarm ==
13 /\ alarmHr' \in (1..12)
14 * Oops, forgot to set alarmOn' = TRUE
15 /\ UNCHANGED <<hr, alarmOn>>
416 IRing is never enabled.
7 /\ alarmOn
18 /\ hr = alarmHr
19 /\ alarmOn' = FALSE
20 /\ UNCHANGED <<alarmHr, hr>>

21 HC == HCini /\ [][AdvanceHour \/ SetAlarm \/ Ring]_vars /\ SF_vars(Ring)

Is the spec behaving as intended?

1 MODULE AlarmClock
=1 2 EXTENDS Naturals

FDrOfHH19 3 VARIABLES hr, alarmHr, alarmOn
4 vars == <<hr, alarmHr, alarmOn>>
5 HCini ==
6 /\ BENNINRUINEN12)
7 /\ alarmHr \in (1..12)
8 /\ alarmOn = FALSE
9 AdvanceHour: ==
10 /\ hr* = IF hr # 12 THEN hr + 1 ELSE 1
11 /\ UNCHANGED <<alarmHr, alarmOn>>
12 SetAlarm ==
13 /\ alarmHr' \in (1..12) Feature proposal:
14 \x Oops, forgot to set alarmOn' = TRUE fail model-checking if
%Z ﬁi‘ﬁg'i/l:UNCHANGED <<hr, alarmOn>> any action is never
170 /\ alarmOn enabled
18 /\ hr = alarmHr uh oh
19 /\ alarmOn' = FALSE <—
20 /\ UNCHANGED <<alarmHr, hr>>|

21 HC == HCini /\ [][AdvanceHour \/ SetAlarm \/ Ring]_vars /\ SF_vars(Ring)

Why isn't my action enabled?

"Staring really hard"?

This is an area for research.

Why isn't my action enabled?

Push (stack, x) ==

stack' = Append(stack, x)
Pop (stack) ==

stack' = SubSeqg(stack, 1, Len(stack) - 1)
Init == myStack = <<"x">>
SomeAction ==

/\ Pop (myStack) equivalent to stack = <<>> /\ stack = <<"y">>
/\ Push (myStack, "y") < whichis FALSE

Proposal: prohibit contradictory uses
of a primed variable in an action

Is the spec behaving as intended?
ShiViz

For specs with multiple processes that exchange messages with a vector clock

TN actens IEWDSThan 'E WO e rrd b O Dt iod

e L WO terrrangticrOeleciss

http://www.youtube.com/watch?v=5Jt5jj-ugPU

———————————— MODULE EWD998ChanID shiviz ----—-—-——-—————————-
EXTENDS EWD998ChanID, Json

(* ... deleted code ... *)
Alias ==

Host |—-> host
,Clock |-> ToJdsonObject (clock[host])

,active |-> active
,color |-> color

, counter |-> counter
, inbox |-> inbox

249 actions

Find network motifs:

_) 2-event motifs
3-event motifs
] 4-event motifs

Motif 1 :

666 actions: 24 instances
> 249 actions: 10 instances

Motif 2 :

666 actions: 96 instances

249 actions: 37 instances

78 actions
(EWD998Chan!EWD998!terminationDetected): 10
instances

-

X 10 INSTANCES IN VIEW

SendMsg

host:
active:

n3
(n1:>

FALSE

@@ n2 :> TRUE
@@ n3 :> TRUE
@@ n4 :> TRUE
@@ n5 :> TRUE
@@ n6 :> TRUE
@@ n7 :>

TRUE)

laa

v e eiuiln®

How did a recent edit change how the spec behaves?

* Incorrectly add

EXTENDS Naturals
VARIABLE hr, am

HCini == hr \in (1
HCnxt ==
/\ hr' = IF hr

am/pm to HourClock

—-——- MODULE HourClockAMPM

12) /\ am = TRUE

12 THEN hr + 1 ELSE 1
* Oops, AM/PM should flip at noon/mi

\ am' = IF hr

= 12 THEN ~am ELSE am

HC == HCini /N 11 HCxtT —<<hr;, am>>

dnight, not 1 o'clock.

How did a recent edit change how the spec behaves?
TLA+ Debugger

RUN AND DEBUG HourClockAMPM.tla X

v VARIABLES Users > samy > Documents > = HourClockAMPM.tla > {} HourClockAMPM > {
v Action 1 HourClockAMPM
Naturals, TLC
hr, am

HCnxt: [am UE, am'

am : TRUE

am’: 5 HCini == hr (1 .. 12) /\ am = TRUE
hr : 6 HCnxt ==

hr': 7 /\ hr' 2 ™ + 1
v Trace ‘ /\ am' | Dhr = 12 |~am
9 HC == HCini — am>>

(CZ: <HCnhxt line acol 5 to line 8, col 40 of module ..

am:
hr: 8
v 1: <HCini 1line 5, ol 10 to line 5, col 38 of module..

m:

\hr‘:Zr /

https://docs.google.com/file/d/1KZolUIYQvFMdp5Xhxd5JMjgetJGVL-hS/preview

How do | use TLA+ to communicate behaviors to other
people?

TLA+ Animation: https://github.com/will62794/tlaplus_animation

Circle: Active, Black: Tainted
Line: Message, Arrow: Receiver
Level: 1

3
5.
oo

Future of interactive TLA+ spec development

Tools already exist to address precise questions

Let’s build more tools to help us better holistically understand specs

lterative Spec Development

TLA+ Debugger is one way to achieve this

Key: Quickly see effects of our changes

Extensions to the TLA+ Debugger: Watchpoints

= HourClockAMPM.tla X

Users > samy > Documents > = HourClockAMPM.tla > ...

HourClockAMPM

Naturals, TLC
hr, am

HCini == hr (1 .. 12) /\ am = TRUE
HCnxt ==
/\ hr' = Nei 2 hr + 1 1

HC == HCini /\ [][HCnxt]_<<hr, am>>

Extensions to the TLA+ Debugger: Watchpoints

RUN AND DEBUG HourClockAMPM.tla X N < Y T O 0O

\ VARIABLES & Users > samy > Documents > = HourClockAMPM.tla > {} HourClockAMPM > & H
v Action 1 , »
2 HourClockAMPM
3 Naturals, TLC
hr, am

v HCnxt: [am |-> TRUE, am' |-> FALSE, hr

am 3

'

am @
e 8l 6 HCini == hr (1 .. 12) /\ am = TRUE
hr: il HCnxt ==

/NPhr = hr # 12 hr + 1
v Trace

v 2: <HCnxt 1line 8, col 5 to line 10, col 40 of module.. D /A Danm' = Y) ~am

am: 11 HC == HCini /\ [][HCnxt]_<=nT;
hr; A

v 1: <HCini line 6, col 1@ to line 6, col 38 of module..
am: -

hr:ailZ

Extensions to the TLA+ Debugger: Conditional Breakpoints

Breakpoint that only pauses execution if the supplied predicate is true

hr = 12

hr \in {11, 12, 1}

am false

Extensions to the TLA+ Debugger: Conditional Breakpoints

RUN AND DEBUG = HourClockAMPM.tla X [2 L

\ VARIABLES & Users > samy > Documents > = HourClockAMPM.tla > {} HourClockAMPM >

v Action

v HCnxt: [am HourClockAMPM

Naturals, TLC
am @
hr, am
hr : 6 HCini == hr (1 .. 12) /\ am = TRUE
hr': 7/ HEnXt ==

/\ hr' = hr # 12 hr + 1
v Trace

v 2: <HCnxt line 8, col 5 to line 10, AT e = 12 ~ (

am: 11 HC == HCini /\ [] [HCnxt}—<<htrs—am=>—
hr: 1

v 1: <HCini line 6, col 10 to line 6,
am:

hr: 12

lterative Spec Development

TLA+ Debugger is one way to achieve this

Key: Quickly see effects of our changes

Key: Experiment with expressions

Extensions to the TLA+ Debugger: Watch Expressions

RUN AND DEBUG = HourClockAMPM.tla X B

> VARIABLES Users > samy > Documents > = HourClockAMPM.tla > ...
v WATCH + & & 1 HourClockAMPM
2 Naturals, TLC
hr, am

HCini == hr (1 .. 12) /\ am = TRUE
HCnxt ==
/\ hr' hr # 12 hr + 1
/\ am' Ohr =12 ~am
HC == HCini /\ [][HCnxt]_<<hr, am>>

lterative Spec Development

Should be able to better understand if our spec behaves as intended

Still doesn’t take into account areas of the spec we didn’t inspect

Graph of actions that enable other actions

AdvanceHour

VARIABLES hr, alarmHr, alarmOn
vars == <<hr, alarmHr, alarmOn>>
HCini ==

/\ hr \in (1 .. 12)

/\ alarmHr \in (1..12)

/\ alarmOn = FALSE

AdvanceHour ==
/\ hr' = IF hr # 12 THEN hr + 1 ELSE 1
/\ UNCHANGED <<alarmHr, alarmOn>>

SetAlarm ==
/\ alarmHr' \in (1..12)
* Oops, forgot to set alarmOn' = TRUE
/\ UNCHANGED <<hr, alarmOn>>

(Ring ==)

oops, alarmOn is always FALSE

/\ alarmOn -=—

/\ hr = alarmHr

/\ alarmOn' = FALSE

_ /\ UNCHANGED <<alarmHr, hr>> /
HC == HCini /\ [][AdvanceHour \/ SetAlarm \/ Ring] vars /\ SF vars (Ring)

Graph of actions that enable other actions

AdvanceHour

“Always Be Suspicious of Success”

But where do we direct our suspicions?

We need more sanity checks that don’t rely on us defining the perfect invariant

Sanity Check: Variable Ranges

—————————————————————— MODULE Loop --—-——————————————-—
EXTENDS Naturals
VARIABLE x
Init == x \in (1 .. 10)
ActionOne ==
(/\ x = 10 x\in 1..100
/N xT =1 J

ActionTwo ==
4
* Oops, this could cause x’ to be 11. J

/\ x' = x + 1

EXTENDS Naturals
VARIABLE x

Tnit == x \in BOOLEAN Values of x:
Action == TRUE: 95%
/\ x FALSE: 5%

* Oops, we meant x’' = ~X

/\ x' = x

Questions for the Audience

What use cases did we miss? What questions have you had about a spec that you
didn’t know how to answer?

What features and tools did we miss? How can they be better promoted so
programmers like us would find them next time?

What's the right direction for making TLA+ easier - more tools, or consolidate more
features in one tool? Is that one tool the Toolbox or VS Code or what?

