
Interactive TLA+
A. Jesse Jiryu Davis and Samyukta Lanka

MongoDB

Two ways to understand a system

Precise Holistic

Does the system obey a particular
invariant / property?

Does the system generally conform to
my theory of it?

Holistic understanding usually requires
interaction or visualization.

Lots of powerful tools for this.

Few tools, mostly prototypes.

Programmers understand programs holistically through interaction

debugging logging profiling

flame charts call graphs

...and visualization

TLA+ feels like math.

Interaction and visualization are less well-developed
for TLA+ than for code.

Let's make it more like programming:
interactive, visual.

Our mission

Review existing tools.

Propose ways to make TLA+ easier for programmers
via interaction and visualization.

Your mission

Tell us what tools and techniques we overlooked.

Share your ideas.

Spec authors ask different questions at different times

Does my spec imply my invariants / properties?

Why is my invariant / property false?

What does this TLA+ expression mean?

Is the spec generally behaving as intended?

Why isn't my action enabled?

How did a recent edit change how the spec behaves?

How do I use TLA+ to communicate behaviors to other people?

Main purpose of model-checking & proofs

Decreasingly
well-supported

Why is my invariant / property false?

You have a wrong hypothesis about your spec.

What precisely is the mismatch?

Specifying Systems §14.5.2 "Debugging a Specification"

Why is my invariant / property false?
Error traces

.out file TLA+ Toolbox VS Code tla-trace-formatter
(Siyuan Zhou)

Why is my invariant / property false?

github.com/visualzhou/tla-trace-formatter

What does this TLA+ expression mean?

TLC REPL

$ java -cp tla2tools.jar tlc2.REPL

What does this TLA+ expression mean?

TLC REPL

$ java -cp tla2tools.jar tlc2.REPL
Enter a constant-level TLA+ expression.
(tla+)

What does this TLA+ expression mean?

TLC REPL

$ java -cp tla2tools.jar tlc2.REPL
Enter a constant-level TLA+ expression.
(tla+) SetToBag({"a", "b"})

What does this TLA+ expression mean?

TLC REPL

$ java -cp tla2tools.jar tlc2.REPL
Enter a constant-level TLA+ expression.
(tla+) SetToBag({"a", "b"})
[a |-> 1, b |-> 1]

What does this TLA+ expression mean?

TLC REPL

$ java -cp tla2tools.jar tlc2.REPL
Enter a constant-level TLA+ expression.
(tla+) SetToBag({"a", "b"})
[a |-> 1, b |-> 1]
(tla+) SetToBag({1, 2})

What does this TLA+ expression mean?

TLC REPL

$ java -cp tla2tools.jar tlc2.REPL
Enter a constant-level TLA+ expression.
(tla+) SetToBag({"a", "b"})
[a |-> 1, b |-> 1]
(tla+) SetToBag({1, 2})
<<1, 1>>

Is the spec behaving as intended?

Print() expressions are confusing in model-checking mode

---------------------- MODULE HourClock ---------------------
EXTENDS Naturals, TLC
VARIABLE hr
HCini == hr \in (1 .. 12)
HCnxt ==
 /\ hr' = IF hr # 12 THEN hr + 1 ELSE 1
 /\ PrintT(<<"hr is ", hr, "hr' is", hr'>>)
HC == HCini /\ [][HCnxt]_hr
==

Is the spec behaving as intended?

Print() expressions are confusing in model-checking mode

<<"hr is ", 4, "hr' is", 5>>
<<"hr is ", 3, "hr' is", 4>>
<<"hr is ", 2, "hr' is", 3>>
<<"hr is ", 5, "hr' is", 6>>
<<"hr is ", 1, "hr' is", 2>>
<<"hr is ", 6, "hr' is", 7>>
<<"hr is ", 10, "hr' is", 11>>
<<"hr is ", 8, "hr' is", 9>>
<<"hr is ", 12, "hr' is", 1>>
<<"hr is ", 11, "hr' is", 12>>
<<"hr is ", 9, "hr' is", 10>>
<<"hr is ", 7, "hr' is", 8>>

Is the spec behaving as intended?
Print() expressions plus simulation mode

Is the spec behaving as intended?
Print() expressions plus simulation mode

<<"hr is ", 4, "hr' is", 5>>
<<"hr is ", 5, "hr' is", 6>>
<<"hr is ", 6, "hr' is", 7>>
<<"hr is ", 7, "hr' is", 8>>
<<"hr is ", 8, "hr' is", 9>>
<<"hr is ", 9, "hr' is", 10>>
<<"hr is ", 10, "hr' is", 11>>
<<"hr is ", 11, "hr' is", 12>>
<<"hr is ", 12, "hr' is", 1>>
<<"hr is ", 1, "hr' is", 2>>
<<"hr is ", 2, "hr' is", 3>>
<<"hr is ", 3, "hr' is", 4>>
<<"hr is ", 4, "hr' is", 5>>
<<"hr is ", 5, "hr' is", 6>>
<<"hr is ", 6, "hr' is", 7>>

Is the spec behaving as intended?

Simulation mode — constraining the model to show interesting traces

Is the spec behaving as intended?

GraphViz

Is the spec behaving as intended?

GraphViz

Is the spec behaving as intended?

GraphViz

Is the spec behaving as intended?

* Incorrectly add am/pm to HourClock
---------------------- MODULE HourClockAMPM ------------------
EXTENDS Naturals
VARIABLE hr, am
HCini == hr \in (1 .. 12) /\ am = TRUE
HCnxt ==
 /\ hr' = IF hr # 12 THEN hr + 1 ELSE 1
 * Oops, AM/PM should flip at noon/midnight, not 1 o'clock.
 /\ am' = IF hr = 12 THEN ~am ELSE am
HC == HCini /\ [][HCnxt]_<<hr, am>>
==

am = TRUE

am = FALSE

black is the new black

Is the spec behaving as intended?

Profiling

New example: an alarm clock.

VARIABLES hr, alarmHr, alarmOn
vars == <<hr, alarmHr, alarmOn>>
HCini ==
 /\ hr \in (1 .. 12)
 /\ alarmHr \in (1..12)
 /\ alarmOn = FALSE
AdvanceHour ==
 /\ hr' = IF hr # 12 THEN hr + 1 ELSE 1
 /\ UNCHANGED <<alarmHr, alarmOn>>
SetAlarm ==
 /\ alarmHr' \in (1..12)
 * Oops, forgot to set alarmOn' = TRUE
 /\ UNCHANGED <<hr, alarmOn>>
Ring ==
 /\ alarmOn
 /\ hr = alarmHr
 /\ alarmOn' = FALSE
 /\ UNCHANGED <<alarmHr, hr>>
HC == HCini /\ [][AdvanceHour \/ SetAlarm \/ Ring]_vars /\ SF_vars(Ring)

oops, alarmOn is always FALSE

Is the spec behaving as intended?

Profiling

Is the spec behaving as intended?

Profiling

Is the spec behaving as intended?

Profiling

uh oh

Feature proposal:
fail model-checking if
any action is never
enabled

Why isn't my action enabled?

"Staring really hard"?

This is an area for research.

Why isn't my action enabled?
Push(stack, x) ==

stack' = Append(stack, x)

Pop(stack) ==
stack' = SubSeq(stack, 1, Len(stack) - 1)

Init == myStack = <<"x">>

SomeAction ==
 /\ Pop(myStack)
 /\ Push(myStack, "y")

equivalent to stack = <<>> /\ stack = <<"y">>
which is FALSE

Proposal: prohibit contradictory uses
of a primed variable in an action

ShiViz

For specs with multiple processes that exchange messages with a vector clock

Is the spec behaving as intended?

http://www.youtube.com/watch?v=5Jt5jj-ugPU

------------ MODULE EWD998ChanID_shiviz -------------------
EXTENDS EWD998ChanID, Json

(* ... deleted code ... *)

Alias ==
 [
 Host |-> host
 ,Clock |-> ToJsonObject(clock[host])

 ,active |-> active
 ,color |-> color
 ,counter |-> counter
 ,inbox |-> inbox
]
==

How did a recent edit change how the spec behaves?

* Incorrectly add am/pm to HourClock
---------------------- MODULE HourClockAMPM ------------------
EXTENDS Naturals
VARIABLE hr, am
HCini == hr \in (1 .. 12) /\ am = TRUE
HCnxt ==
 /\ hr' = IF hr # 12 THEN hr + 1 ELSE 1
 * Oops, AM/PM should flip at noon/midnight, not 1 o'clock.
 /\ am' = IF hr = 12 THEN ~am ELSE am
HC == HCini /\ [][HCnxt]_<<hr, am>>
==

How did a recent edit change how the spec behaves?
TLA+ Debugger

https://docs.google.com/file/d/1KZolUIYQvFMdp5Xhxd5JMjgetJGVL-hS/preview

How do I use TLA+ to communicate behaviors to other
people?

TLA+ Animation: https://github.com/will62794/tlaplus_animation

Future of interactive TLA+ spec development

Tools already exist to address precise questions

Let’s build more tools to help us better holistically understand specs

Iterative Spec Development

TLA+ Debugger is one way to achieve this

Key: Quickly see effects of our changes

Extensions to the TLA+ Debugger: Watchpoints

Extensions to the TLA+ Debugger: Watchpoints

Extensions to the TLA+ Debugger: Conditional Breakpoints

Breakpoint that only pauses execution if the supplied predicate is true

hr = 12

hr \in {11, 12, 1}

am = false

Extensions to the TLA+ Debugger: Conditional Breakpoints

Iterative Spec Development

TLA+ Debugger is one way to achieve this

Key: Quickly see effects of our changes

Key: Experiment with expressions

Extensions to the TLA+ Debugger: Watch Expressions

Iterative Spec Development

Should be able to better understand if our spec behaves as intended

Still doesn’t take into account areas of the spec we didn’t inspect

Graph of actions that enable other actions

VARIABLES hr, alarmHr, alarmOn
vars == <<hr, alarmHr, alarmOn>>
HCini ==
 /\ hr \in (1 .. 12)
 /\ alarmHr \in (1..12)
 /\ alarmOn = FALSE
AdvanceHour ==
 /\ hr' = IF hr # 12 THEN hr + 1 ELSE 1
 /\ UNCHANGED <<alarmHr, alarmOn>>
SetAlarm ==
 /\ alarmHr' \in (1..12)
 * Oops, forgot to set alarmOn' = TRUE
 /\ UNCHANGED <<hr, alarmOn>>
Ring ==
 /\ alarmOn
 /\ hr = alarmHr
 /\ alarmOn' = FALSE
 /\ UNCHANGED <<alarmHr, hr>>
HC == HCini /\ [][AdvanceHour \/ SetAlarm \/ Ring]_vars /\ SF_vars(Ring)

oops, alarmOn is always FALSE

Graph of actions that enable other actions

“Always Be Suspicious of Success”

But where do we direct our suspicions?

We need more sanity checks that don’t rely on us defining the perfect invariant

Sanity Check: Variable Ranges

---------------------- MODULE Loop ------------------
EXTENDS Naturals
VARIABLE x
Init == x \in (1 .. 10)
ActionOne ==
 /\ x = 10
 /\ x’ = 1
ActionTwo ==

* Oops, this could cause x’ to be 11.
 /\ x' = x + 1
...
==

x \in 1..100

---------------------- MODULE Loop ------------------
EXTENDS Naturals
VARIABLE x
Init == x \in BOOLEAN
Action ==
 /\ x

* Oops, we meant x’ = ~x
 /\ x’ = x
...
===

Values of x:
TRUE: 95%
FALSE: 5%

Questions for the Audience

What use cases did we miss? What questions have you had about a spec that you
didn’t know how to answer?

What features and tools did we miss? How can they be better promoted so
programmers like us would find them next time?

What's the right direction for making TLA+ easier - more tools, or consolidate more
features in one tool? Is that one tool the Toolbox or VS Code or what?

