Apalache:
symbolic model checker for TLA+

informal


mailto:igor@informal.systems

Material for this talk

| github.com/informalsystems/tla-apalache-workshop |



http://github.com/informalsystems/tla-apalache-workshop

apalache.informal.systems «

-
.
@ [ N ) igor@pumpkin:~/devl/informal/tla-apalache-workshop/examples/clock-sync X1

15:55:02 igor@pumpkin . . . tla—apalache-workshop/examples/clock-sync
3.8.6 2.7.17 RN FITIFE"

Apalache Manual

Authors: Igor Konnov, Jure Kukovec, Andrey Kuprianov, Shon Feder
Contact: {igor,andrey,shon} at informal.systems, jkukovec at forsyte.at

Apalache is a symbolic model checker for TLA+. (Still looking for a better tool name.) Our
checker is a recent alternative to TLC. Whereas TLC enumerates the states produced by
behaviors of a TLA+ specification, Apalache translates the verification problem to a set
constraints. These constraints are solved by an SMT solver, for instance, by Microsoft's
Apalache operates on formulas (i.e., symbolicly), not by enumerating states one by one
enumeration).

Apalache is working under the following assumptions:

1. Asin TLC, all specification parameters are fixed and finite, i.e., the system state is
with integers, finite sets, and functions of finite domains and co-domains.

2. As in TLC, all data structures evaluated during an execution are finite, e.g., a syste
specification cannot operate on the set of all integers.

3. Only finite executions of bounded length are analyzed.

apalache.informal.systems/docs/



Example;

clock synchronization




Clock sync. problem




Property: bounded clock skew

|AC(p) — AC(Q) | < € for p,q € Proc

informat



Algorithm 20 A clock synchronization algorithm for n processors:

=\ YWILEY

code for processor p;, 0 <1< n — 1. X

initially diff{i] = 0 | Distributed
. Computing

1. atfirst computation step: )

fa send HC (current hardware clock value) to all other processors L

3: upon receiving message 7' from some p;:

4. difflj] =T+ d - u/2—HC e

5: if a message has been received from every other processor then R

: e . 1 xTwWM=-1 4




How to turn 6 lines of pseudo-code

INnto 170 lines of TLA+



Incremental spec writing

version 1: version 2: version 3:
Introduce send recelve

clocks messages messages
test 1 test 2 test 3

version 4:
adjust
clocks

skew
invariant &

version 5:
bugfix 1

rounding
error

version 6:
bugfix 2

skew
invariant



Version 1: introduce clocks (1)

| MODULE ClockSyncl

* Incremental TLA+ specification of the clock synchronization algorithm from:

* EXTENDS Int
* Hagit Attiya, Jennifer Welch. Distributed Computing. Wiley Interscience, 2004, n eg ers

* p. 147, Algorithm 20.
*

* Assumptions: timestamps are natural numbers, not reals.
*

* Version 1: Setting up the clocks \/ A RI A B L E S

EXTENDS Integers

VARIABLES the reference clock, inaccessible to the processes

the reference clock, inaccessible to the processes

time, I @ t . [ t .
hardware clock of a process y p e y n ,

Qtype: Str — Int;

he, t :
clock adjustment of a process Zm 6 y

Qtype: Str — Int;
adj

hardware clock of a process

koK KRR KRR KRRk Rk Rk ok DRFINTTTIONS HHkkskskkoksskok stk fskok sk ok ok skok ok sk ok ok ok ok kok —
we fix the set to contain two processes @t . St [ t °
Proc = {"pl", “p2"} | ype . T ) T ]

the adjusted clock of process ¢ h
N A ) .
AC (i) = heli] + adji] C .

clock adjustment of a process

, —
e Qtype: Str — Int; |
—

A adj = [p € Proc — 0]

e e ——

o

let the time flow

AdvanceClocks(delta) =
A delta > 0
A time' = time + delta
A he’ = [p € Proc — he[p] + delta]
/\ UNCHANGED adj

all actions together 10



Version 1: introduce clocks (2)

MODULE ClockSyncl

* Incremental TLA+ specification of the clock synchronization algorithm from:

* Hagit Attiya, Jennifer Welch. Distributed Computing. Wiley Interscience, 2004,
* p. 147, Algorithm 20.

* Assumptions: timestamps are natural numbers, not reals.

* Version 1: Setting up the clocks we fix the set to contain two processes

EXTENDS Integers

VARIABLES PTOC 'y 1” L 2”
the reference clock, inaccessible to the processes - p 7 p

Qtype: Int;

time,
hardware clock of a process
Qtype: Str — Int;

he. the adjusted clock of process ¢

clock adjustment of a process

AC(i) 2 heli] + adj[i

we fix the set to contain two processes

Proc = {"pl", "p2"} >K 2K K 5K 5K 3K K 5K 5K 3K K K 5K 5K K K 5K K K KK KK KK K INITIALIZATION XK K X

the adjusted clock of process ¢

AC (i) = heli] + adjli]

************************** INITIALIZATION ¥kkskskskokskokofskskokoskokfokskokokskokfokskokskok ok ‘ d
Initialization Inlt ].aJl].Z at lon d 0
Init 2 A e

A time € Nat ] ’t O U

A he € [Proc — Nat] n/I/ E—

A adj = [p € Proc — 0]

****************************** T T A time € Nat c ‘r J C‘ U (
let the time flow

e Clcia i) = A he € |Proc — Nat)

A time’ = time + delta
it sy A adj = |p € Proc — 0]

all actions together



Version 1: introduce clocks (3)

| MODULE ClockSyncl

* Incremental TLA+ specification of the clock synchronization algorithm from:
* Hagit Attiya, Jennifer Welch. Distributed Computing. Wiley Interscience, 2004,

* p. 147, Algorithm 20.
*

* Assumptions: timestamps are natural numbers, not reals.
*

* Version 1: Setting up the clocks let t he t ime ﬂOW

EXTENDS Integers

A
e — AdvanceClocks(delta) =

Qtype: Int;

= A delt 0
hardware clock of a process 6 al >

Qtype: Str — Int;

(PR A time' = time + delta

Qtype: Str — Int;

¥ A hc" = |p € Proc — hc|p] + delta]

e A\ UNCHANGED adj

the adjusted clock of process ¢

AC(i) = heli] + adj[i]

all actions together
Initialization

Im;/f tz':me € Nat Next é

A he € [Proc — Nat]
A adj = [p € Proc — 0]

let the time flow A d Cl k d l
AdvanceClocks(delta) = Ua/n Ce OC 8 ( 6 ta’

A delta > 0
A time’ = time + delta

A he’ = [p € Proc — he[p] + delta]
A UNCHANGED adj

all actions together 12




Run apalache

-

0O igor@pumpkin:~/devl/informal/tla-apalache-workshop/examples/clock-sync N #1

17:58:22 igor@pumpkin ... tla-a
AENNWEAYVE) Y nain x »

alache-workshop/examples/clock-sync




bounded model checking
explained



Symbolic execution

Frame O Frame 1 Frame 2 Frame 10
timey = 0 fime; = timegy + 0, timey = time| + 0, time g = timeg + 0y
hC[Z]O — Cz hC[2]1 — hC[Z]O + 51 hC[Z]z — hC[2]1 + 52 hC[2]10 — hC[2]9 + 510
adj[1]y =0 Ji Ji Ji i Ji i
d = d d = d a =
adjl2], = 0 J1 Jo Jo = Adj, J10 = 449

A frame represents multiple concrete states (symbolically)

15

INformal

SYSTEMS



Bounded model checking (0 steps)

timey = 0

A

hel[1]p = ¢ Apalache: satisfiable?
/\

hC[2]O —_ C2

/N\
adj[11y =0 Apalache: one more step

A

adj|2]y =0

Z3: Yes, here is a model



Bounded model checking (1 step)

timeop = 0 time; = timegy + 0,
/\ A\

he[llg = ¢ he[1]; = hellly+6,  Apalache: satisfiable?
/\ A\ A

hel2]y = ¢, hel2], = hel2, +6, £3: Yes, here I1s a model
A A

adj[1]y =0 Apalache: one more step
/\ adj, = adjo

adj|2]y =0



Bounded model checking (2 steps)

timey = 0 fime; = timeg + 0, timey = time| + 0,

A A A A: SAT?
hellly = ¢ hell]; = hell]y + 04 hell], = hcl 1], + 0,

A A A A A Z3: yes
hel2]y = ¢, hel2], = he[2], + 6, hel2], = he[2], + 6,

/\
adj[1]y =0 A /

A adj, = adj, adj, = adj,
adj[2]y =0

s INformal
MS



Symbolic exploration

one action

By default, Apalache:

- finds enabled actions, e.g., AdvanceClocks
- adds non-deterministic choice of one enabled action

- extends the symbolic execution by one more step
two actions

- until the bound iIs reached, e.g., 10 steps

19




Symbolic vs. concrete executions

timey = 0 time| = timegy + 0, time, = time;| + 0,
/\ A A
hell]y = ¢

A

hC[Z]O — Cz
/\
adj[1], =0
/\ adj, = adj, adj, = adj,
adj|2]y =0




Checking an invariant (candidate)

timey = 0
the adjusted clock of process ¢ /\
AC(i) = heli] + adjli]
hell]y = ¢
NaiveSkewIny = /\ /\ helply + adjlply # helqly + adjlqly
Vp,q € Proc: hel2]y) = ¢,
A — A
Clp) = 4C00) A Apalache: SAT?
adj[1], =0 73:
. YeS
A y
adj[2]y = 0 A: error! &

informat



> Your types are great! 1@15:59:54.017
> All expressions are typed 1@15:59:54.018
PASS #13: BoundedChecker 1@15:59:54.064

Step 0: picking a transition out of 1 transition(s) 1@15:59:54.539
Step 1: picking a transition out of 1 transition(s) 1@15:59:54.591
Step 2: picking a transition out of 1 transition(s) 1@15:59:54.622
Step 3: picking a transition out of 1 transition(s) 1@15:59:54.653
Step 4: picking a transition out of 1 transition(s) 1@15:59:54.687
Step 5: picking a transition out of 1 transition(s) 1@15:59:54.715
Step 6: picking a transition out of 1 transition(s) 1@15:59:54.750
Step 7: picking a transition out of 1 transition(s) 1@15:59:54.782
Step 8: picking a transition out of 1 transition(s) 1@15:59:54.824
Step 9: picking a transition out of 1 transition(s) 1@15:59:54.856
Step 10: picking a transition out of 1 transition(s) 1@15:59:54.884
The outcome 1s: NoError 1@15:59:54.904
PASS #14: Terminal 1@15:59:54.908
Checker reports no error up to computation length 10 1@15:59:54.911
It took me @ days @ hours @ min 3 sec® I@15:59:54.914

Total time: 3.813 sec
EXITCODE: OK

1@15:59:54.916

21:51:39 1.or@.umpk1n .« . tla—apalache-workshop/examples/clock-sync P2allc
> 3080 21217 f main X # *

22



Writing basic tests

INSTANCE ClockSyncl

| MODULE MC_ClockSyncl

test that the clocks are non-decreasing
A

Testl_Init =
A time € Nat
A he € [Proc — Nat]
A adj € |Proc — Int|

VARIABLES
the reference clock, inaccessible to the processes
Qtype: Int;

time,
hardware clock of a process
Qtype: Str — Int;

hce,
clock adjustment of a process
Qtype: Str — Int;

adj

INSTANCE ClockSyncl

test that the clocks are non-decreasing Tes t 1— N ex t

Test1l_Init =

A time € Nat d delta € Int :

A hc € [Proc — Nat]

A adj € [Proc — Int AdvanceClocks(delta)

Testl_Next =
d delta € Int :

A

AdvanceClocks(delta) T€St 1_ In,U é
Testl_Inv = . .
A time' > time A\ tzme’ Z time

AN p € Proc : hc'[p] > help]

' I AN p € Proc: hc'|p| > hc

23

D
informal



version 2: sending messages



States CONSTANTS

minimum message delay

CONSTANTS @type Int ]

minimum message delay
Qtype: Int; t_ mzn

t_min, ?
maximum message delay
Qtype: Int;

l-maz Qtype: Int;

ASSUME (t_min > 0 A t_maz > t_min) t
~max

maximum message delay

VARIABLES
the reference clock, inaccessible to the processes
Qtype: Int; . .
time, ASSUME (t_min > 0 A t_mazx > t_min)
hardware clock of a process

Qtype: Str — Int;
he,

clock adjustment of a process VA RIABLES
Qtype: Str — Int;
adyj,
messages sent by the processes messages Seﬂt by the pI'O CESSES

Q@type: Set([src: Str, ts : Int]);

msgs. Q@type: Set(|src: Str, ts : Int]);

the control state of a process

Qtype: Str — Str;
state msqgs,
ok kb Aok Aok k4 DEFINITIONS #5907 the control state of a process
we fix the set to contain two processes . .
Proc A Qtype: Str — Str;
control states Sta/te

State = {"init", “sent”, “done” }

the adjusted clock of process 4 25



Action SendMsg

AC(i) = heli] + adj[i]

Initialization
A

Init =
A ttme € Nat
A hc € [Proc — Nat]

A adj = |p € Proc — 0]
A state = [p € Proc — “init"]

A msgs = {}

send the value of the hardware clock

A

SendMsg(p) =
A state[p] = "init”

A msgs’ = msgs U {[src — p, ts — hc[p]]}
A state’ = [state EXCEPT ![p] = “sent”]
A\ UNCHANGED (time, hc, adj)

let the time flow

AdvanceClocks(delta) =
A delta > 0
A time’ = time + delta

A hc' = [p € Proc — help] + delta
A UNCHANGED (adj, msgs, state)

all actions together
A

Next =
V ddelta € Int :

AdvanceClocks(delta)

V dp € Proc :
SendMsg(p)

SendMsg(p) =

Next =

send the value of the hardware clock

A

A state|p| = “init”

A msgs’ = msgs U {|src — p, ts — hc|p]|}
2PT ! p]
A UNCHANGED (time, hc, adj)

A state’ = [state EXC:

all actions together

A

V ddelta € Int :

AdvanceClocks(delta)

V dp € Proc :

SendMsg(p)

“sent” |



Testing 2.1

| MODULE MC_ClockSync2 — —

17 | MODULE MC_ClockSync2 —

91

t_min
t_max

e e

VARIABLES

the reference clock, inaccessible to the processes

t_min
P t_max

hardware clock of a process

17
91

A
A

Qtype: Str — Int;
hc
clyock adjustment of a process VARIAB LES
Qtype: Str — Int;
adj,
messages sent by the processes
Qtype: Set([src: Str, ts : Int]);
msgs,
the control state of a process
Qtype: Str — Str;
state

INSTANCE ClockSync2

INSTANCE ClockSync2

like TypeOK , but used only in initialization

Typelnit = like TypeOK , but used only in initialization

A time € Nat A

A hc € [Proc — Nat] Typeant p—

A adj € [Proc — Int]

A state € |Proc — State )
P A A time € Nat

€ [Proc — Int] :

s S s et € e A he & [Proc — Nafl recall, bounded

test that the clocks are non-decreasing
A

e A adj € [Proc — Int] data structures!
Test1_Neat 2 A state € |Proc — State]

ddelta € Int :

AdvanceClocks(delta) /\ EI t E [PTOC — Int] .
festidn = msgs € SUBSET {|src — p, ts — t|p]|: p € Proc}

AN p € Proc : hc'[p] > he[p]
27



Testing 2.2

igor@pumpkin:~/devl/informal/tla-apalache-workshop/examples/clock-sync

A% .4

PASS #12: PostTypeCheckerSnowcat 1@09:23:24.646
> Running Snowcat .::. 1@09:23:24.647
> Your types are great! 1@09:23:25.260
> All expressions are typed 1@09:23:25.261

PASS #13: BoundedChecker 1@09:23:25.343

State 0: Checking 1 state invariants 1@09:23:25.917

Step @: picking a transition out of 1 transition(s) 1@09:23:25.943

State 1: Checking 1 state invariants 1@09:23:25.996

Step 1: picking a transition out of 1 transition(s) 1@09:23:26.011

State 2: Checking 1 state invariants 1@09:23:26.049

Step 2: picking a transition out of 1 transition(s) 1@09:23:26.064

Step 3: Transition #0 1is disabled 1@09:23:26.092

Found a deadlock. Check the counterexample in: counterexample@.tla, MC@.out, cou

nterexample@. json E@09:23:26.214

The outcome 1is: Deadlock 1@09:23:26.230

Checker has found an error 1@09:23:26.233

It took me @ days @ hours © min 5 sec 1@09:23:26.236

Total time: 5.169 sec 1@09:23:26.237

EXITCODE: ERROR (12)

28

test that messages are sent

Test2_Inv =

A

Vp € Proc :

Test2_Inat

state|p| =
dm € msgs :
m.src = p

A

A Typelnait
A Test2_Inv

Test2_Next

A

p € Proc :
SendMsg(p)

Hsent” E



version 3: recelving messages



MODULE ClockSync3

Recelve messages

|
* Incremental TLA+ specification of the clock synchronization algorithm from:
*k

* Hagit Attiya, Jennifer Welch. Distributed Computing. Wiley Interscience, 2004,
* p. 147, Algorithm 20.

ES

* Assumptions: timestamps are natural numbers, not reals.
*

* Version 3: Receiving messages
* Version 2: Sending messages
* Version 1: Setting up the clocks

EXTENDS Integers

CONSTANTS
minimum message delay
Qtype: Int;
t_min,
maximum message delay
Qtype: Int;
t_mazx

ASSUME (t_min > 0 A t_mazx > t_min)

VARIABLES
the reference clock, inaccessible to the processes
Qtype: Int;
time,
hardware clock of a process
Q@type: Str — Int;
hce,
clock adjustment of a process
Qtype: Str — Int;
adja
messages sent by the processes
@type: Set([src : Str, ts : Int]);
msgs,
messages received by the processes
Q@type: Str — Set([src: Str, ts : Int]);
revd,
the control state of a process
Q@type: Str — Str;
state

we fix the set to contain two processes

P’rOC é { upln , up2n }

messages received by the processes

@type: Str — Set(|src : Str, ts : Int]);
reud,

ReceiveMsg(p) =
A dm € msgs

A m & rcud|p]

the message cannot be received earlier than after {_min

A he|m. S’FC] > m.ts + t_min

A rcvd’ = [rcvd EXCEPT !|p| = rcvd|p] U {m}]

A\ UNCHANGED (time, hc, msgs, adj, state)

control states

State = {“init", “sent”, “sync”}

the adjusted clock of process @

AC(i) = heli] + adj]i]

i

Initialization

Init =
A time € Nat
A he € [Proc — Nat]
A adj = [p € Proc — 0]
A state = [p € Proc — "init"]
A msgs = {}
A revd = [p € Proc — {}]

send the value of the hardware clock

SendMsg(p) =

AdvanceClocks(delta) =

A state[p] = “init”
A msgs’ = msgs U {[src — p, ts — he[p]]} /\ delta > O
A state’ = [state EXCEPT ![p| = "sent"|

A UNCHANGED (time, hc, adj, rcvd)

clocks can be advanced only if there is no pendmg message

receive a message sent by another process r —_— — — —_— ‘]
A

ReceiveMsg(p) =

Vo Sl | AY m € msgs :

AN m & rcod|p

the message cannot be received earlier than after t_min hc I:m. 8/”“6] _I_ delta/ > t_maaj j
Vp € Proc

A helm.src] > m.ts + t_min
m € rcvd|m.src] N

A revd’ = [revd EXCEPT ![p] = rcvd[p] U {m}]
A UNCHANGED (time, hc, msgs, adj, state)

let the time flow

AdvanceClocks(delta) =

A delta > 0
/i:l\(v)/c;{; ceanisegzd:vanced only if there is no pending message ClOCkS are advanced uniformly
he[m.src] + delta > t_max = . / o
Vo € Proc; A time’ = time + delta

m € rcvd|[m.src]
clocks are advanced uniformly
A time’' = time + delta
A he" = [p € Proc — he[p] + delta]
A UNCHANGED (adj, msgs, state, rcvd)

A hce’ = |[p € Proc — hc|p| + delta)

—_ /A UNCHANGED (adj, msgs, state, rcvd)



Testing 3.1

i) ® igor@pumpkin:~/devl/informal/tla-apalache-workshop/examples/clock-sync

> Running analyzers...
> Introduced expression grades
> Introduced 2 formula hints
PASS #12: PostTypeCheckerSnowcat
> Running Snowcat .::.
> Your types are great!
> ALl expressions are typed
PASS #13: BoundedChecker
State 0: Checking 1 state invariants
Step 0: picking a transition out of 1 transition(s)
State 1: Checking 1 state invariants
Step 1: picking a transition out of 1 transition(s)
The outcome is: NoError
PASS #14: Terminal
Checker reports no error up to computation length 1
It took me @ days @ hours @ min 4 sec
Total time: 4.827 sec
EXITCODE: OK

11:24:18 igor@pumpkin _JRYEREIELETERCIE S TIDE
1 :"/ 3-8-6 2-7-17 Pmain X % %

1@09:
1@09:
1@09:
1@09:
1@09:
1@09:
1@09:
1@09:
1@09:
1@09:
1@09:
1@09:
1@09:
1@09:
1@09:
1@09:
1@09:

24:16.
24:16.
24:16.
24:16.
24:16.
24:16.
24:16.
24:16.
24 =07

24:17
24:17

24:17

AW 3

228
273
274
277
278
875
876
959
502

. 527
.574
24:17.
24:17.
24:17.
24:17.
24:17.
.622

593
609
613
617
621

31

test that messages are received within [t_min, t_max]

Test3_Inv =
[AVm € msgs :

|

|
|
|

|

Test3_Init =

Test3_Next

| m € rcvd|p]

A

no messages from the future
m.ts < hc|m.src]
AV p € Proc :
V'm € rcud|p| :
the message is received no earlier than after t_min
hc|\m.src] > m.ts + t_min
AV m € msgs :
the message is received no later than before t_mazx
m.ts > hc|m.src| + t_mazr =
Vp € Proc :

—— e — e ——————— e — S — — e e — —

]
|
H

A

A Typelnit
N Test3_Inv

A

V ddelta € Int :
AdvanceClocks(delta)

Vdp € Proc :
ReceiveMsg(p)

—

e




version 4: adjusting clocks



Adjust clocks

Initialization
Init =
A time € Nat
A he € [Proc — Nat]
A adj = [p € Proc — 0]
A diff = [(p, q) € Proc x Proc — 0]
A state = [p € Proc — “init"]
A msgs = {}
Arevd = [p € Proc — {}]

send the value of the hardware clock
SendMsg(p) =
A state[p] = “init”
A msgs’ = msgs U {[src — p, ts — he[p]]}
A state’ = [state EXCEPT ![p] = “sent”]
A UNCHANGED (time, he, adj, diff, rcvd)

If the process has received a message from all processes,
then adjust the clock. Otherwise, accumulate the difference.
Qtype: (Str, (Str, Str) — Int,
Set([src : Str, ts : Int])) = Bool;
AdjustClock(p, newDiff , newRcvd) =
LET fromAll = {m.src : m € newRcvd} = ProcIN
IF fromAll
THEN
Assuming that Proc = {“pl”, “p2"}.
See ClockSynch for the general case.
A adj’ = [adj EXCEPT ![p] = (newDiff[p, “pl"] + newDiff [p, “p2"]) + 2]
A state’ = [state EXCEPT ![p] = “sync”]
ELSE
UNCHANGED (adyj, state)

Adjust the clock if the message has been rece
ReceiveMsg(p) =
A state[p] = “sent”
Adm € msgs :
A m ¢ revd[p]

ived from all processes.

the message cannot be received earlier than after t_min
A he[m.sre] > m.ts + t_min
accumulate the difference and adjust the clock if possible
ALET delta = m.ts — help] + (t-min + t_maz) + 2 IN
LET newDiff [diff EXCEPT ![p, m.src| = delta]IN
LET newRcvd = revd[p] U {m}IN
A AdjustClock(p, newDiff , newRcvd)
A revd” = [revd EXCEPT ![p] = newRcvd]
A diff’ = newDiff
A UNCHANGED (time, hc, msgs)

let the time flow

AdvanceClocks(delta) =
A delta > 0
clocks can be advanced only if there is no pending message
AV m € msgs :

he[m.sre] + delta > t_maz =
Vp € Proc:
m € rcvd[m.src]

clocks are advanced uniformly
A time’ = time + delta
A he' = [p € Proc — help] + delta]
A UNCHANGED ({adj, diff, msgs, state, rcvd)

all actions together
Next =
V ddelta € Int :
AdvanceClocks(delta)
V dp € Proc :
V SendMsg(p)
V ReceiveMsg(p)

If the process has received a message from all processes,
then adjust the clock. Otherwise, accumulate the difference.
@type: (Str, (Str, Str) — Int,

Set(|src : Str, ts : Int])) = Bool;

AdjustClock (p, newDiﬁ newRcvd) =
LET fromAll =
IF fromAll

{m.src : m € newRcvd} = ProcIN

THEN

e e e ——

Assuming that Proc = {“p

evry n
See ClockSynch for the general case.

A adj’ = |adj EXCEPT ![p] (netzﬁ[p,
A state” = [state EXCEPT ![p] = "sync’

L] + newDiff lp, 'p2")) = 2]]

ELSE

Adjust the clock if the message has been received from all processes.
A

ReceiveMsg(p) =
A state|p] = “sent”
A dm € msgs :
A m & rcud|p]
the message cannot be received earlier than after i_min
A he|m.src] > m.ts + t_min

accumulate the difference and adjust the clock if possible

[ALET delta = m. ts — help] + (t_min + t_maz) = 2 IN
LET newDiff

|diff EXCEPT !|p, m.src|] = alelta]INH

LET newRcvd = rcvd|p| U {m}IN

L_ﬁ/\ AdjustClock (p, netzﬁ newRcvd)
[rcvd EXCEPT ![p] = newRcuvd]

UNCHANGED (adyj, state)

A

H
1

A revd =
A diff = newDiff
/A UNCHANGED (time, hc, msgs)



Specifying bounded clock skew

Theorem 6.15 from AW 04:

Algorithm achieves u * (1 — 1/n)-synchronization for n processors.
A
Skewlnv =
A

LET allSync =
Vp € Proc : state|p| = “sync”

IN
LET boundedSkew =
LET bound = (t—mazxz — t_man) * (NProc — 1)

IN

TVE, g € Proc: o - ’H
LET df = AC(p)— AC(q) |
IN |

L —jbaunjci_g jdf *TN}Z'E)_C A CQ[ * ]\17}1’00 < bOUZLi J

S————

IN
allSync = boundedSkew

34



Check Skewlnv

O @ igor@pumpkin:~/devl/informal/tla-apalache-workshop/examples/clock-sync xR
Checker options: filename=MC_Clock4.tla, init=, next=, inv=ClockSkewInv I@15:39:
22.451

Tuning: 1@15:39:23.047
PASS #0: SanyParser 1@15:39:23.050

File does not exist: /opt/apalache/src/tla/var/apalache/MC_Clock4.tla while look
ing in these directories: /opt/apalache/src/tla/, jar:file:/opt/apalache/mod-dis
tribution/target/apalache-pkg-0.16.3-SNAPSHOT-full.jar!/tla2sany/StandardModules

/
Error by TLA+ parser: xxk Abort messages: 1

Unknown location

Cannot find source file for module /var/apalache/MC_Clock4.tla.

Sy b e S
It took me @ days O hours O min 0 sec 1@15:39:23.129
Total time: 0.841 sec 1@15:39:23.132

EXITCODE: ERROR (255)

alache-workshop/examples/clock-sync

35



Analyzing the counterexample

(*# Transition 2 to State8 %) Adjustlng own

SR N clocks!
adj = "pl" :> -42 @@ "p2" > -2

np1n>> :> _1> aa <<np1n’ up2u>> :> _81>

A hc = "pi™ "*167'aa" BIT :> 165
A msgs = { [src = "pl1", ts = 34], [src = "p2", ts I 32] }

= "p1" :> { [src = "pl1", ts I 34], [src = "p2", ts = 32] }
o "p2" > { [src = "p1", ts = 34], [src = "p2", ts = 32] }
A state = "pl1" :> "sync" @@ "p2" :> "sync"
A time

I
2
W
W

INformal
M S

SYSTE

36



Check the pseudo-code

Algorithm 20 A clock synchronization algorithm for n processors:
code for processor p;, 0 <2< n — 1.

initially diff{i] = 0

I: at first computation step:

F i send HC (current hardware clock value) to all other processors
3:  upon receiving message 7' from some p;:

4:  diffj]:=T+d-u/2 —HC G .

S: if a message has been received trornever otherrocessor then
6: adj := L 507 diff{k]

P —— P san o

37



Fix in ClockSync5

O ® igor@pumpkin:~/devl/informal/tla-apalache-workshop/examples/clock-sync AW 3

38



what about? . and?, 7



Parameterized time bounds

ASSUME(z,. <t

min max)

use —cinit = Constinit to check tor all t_min and t_max
A

Constinit =
A t_min € Nat

A t_mazx € Nat Fix by increasing the bounds:

apalache check —-cinit=ConstInit\

A
__inv=SkewInv MC_ClockSyncé.tla LET bouna =
(t—max — t_min) * (NProc — 1)

+ NProc x NProc

% error due to integer rounding!
) N fo rmal



Next steps



Does it work?

- Parameterize by the set of processes: ClockSync6p
- Check 4 unit tests
- Check for 2 and 3 processes

and ¢, (with ConstInit)

tmin max

)y YWW &

- Check an inductive invariant

- Check for arbitrary

42




Inductive Invariants

IndInv \

Find a predicate IndInv over states:
1. Init = IndIny
2. IndInv A Next = IndInv’

3. IndInv = SkewlInv

SkewlInv

Shallow queries of length 0 and 1 in Apalache!

[need one more session]

43



github.com/1informalsystems/apalache «

Pull requests Issues Marketplace Explore

O Search or jump to...

B informalsystems / apalache

<> Code @ Issues 158 I} Pullrequests 9 L)) Discussions (>) Actions L) wWiki
Pinned issues

Feature FTC: type checker Snowcat x Feature FlI1: infrastructure

#350 opened on Dec 6, 2020 by konnov improvements 1
#351 opened on Dec 6, 2020 by konnov

() Open ®open [J1
Filters + (O is:issue is:open
) (@ 158 Open 232 Closed Author ~ Label ~

) O [BUG] Configuration pass should produce an error when a CONSTANT is not initialized Alpha Centauri

FUser usability

#669 opened 12 hours ago by konnov 9‘3‘ April iteration

) (O [FEATURE] Experiment with ExprCache to see if it is a translation bottleneck FSMT

refactoring

#666 opened 2 days ago by konnov @ April iteration

enhancement refactoring

] (O IFEATURE] Remove FailPredT FSMT
665 opened 3 days ago by konnov QD April iteration

L] () IEFATLIRF] Intradiice a vercinn of ? far atune FETC-Snowcat [ enhancement ' - refactorina

enhancement

< ZULIP

= All messages

& Private messages
@ Mentions

# Starred messages
© Recent topics
W Unstar 188

¢ Unwatch ~ 1 % Fork 8

STREAMS
# apalache

!Questions

) Security |~ Insights 5! Settings

Type annotations

Checking two invariants?
more topics

core team

X ::  Feature FAF: Stabilizing the X
assignment finder
#353 opened on Dec 6, 2020 by konnov

®open [J1

disco
i general

 Introductions

© Add streams

© Labels 46 ¢ Milestones 5

Projects ~ Milestones ~ Assignee ~ Sort ~

)

O

44

Apalache commandline e...
Loading additional TLAm...

Zulip - informal.systems

&
LD

# apalache &12 Asymbolic model checker for TLA+ -- https://github.com/informalsystems/apalache

&7

- IQuestions

Vitor Enes

Isit possible to parse a TLA module u

@ Igor Konnov

yes. The command parse doesn

or at least it should. If it runs type in

l apalache >  !Questions

,‘-4essage #apalache > !Questions

Drafts Help

chat

1h zulip

INformal

SYSTEMS



Our mission is to bring
verifiability to distributed
systems and organizations.

Our vision is an open-source ecosystem of
cooperatively owned and governed
distributed organizations running on reliable

distributed systems.

INTor

=zQ
V) —

SYS

4
m

45



| Formal Verification Tools

We build formal verification tools that we leverage in our protocol
design, engineering, and security audits

Apalache Model Based Testing
Symbolic model checker for
TLA+ — formally verify TLA+ A methodology and tool
specifications for real-world used to auto-generate tests
distributed systems for real implementations
protocols from an underlying TLA+
model.

INTor

=zQ
V) —

SYS

4
m



| Blockchain Infrastructure

We are core developers of the Tendermint and IBC projects, with
a focus on software implementations in Rust.

O

tendermint-rs

Tendermint is a Byzantine
Fault Tolerant state
machine replication engine
for applications written in
Rust.

INTor

A

ibc-rs

Inter-Blockchain
Communication (IBC) is a

protocol for secure, packet-

based communication
between distinct
blockchains.

Hermes

Hermes is an open-source
Rust implementation of a
relayer for IBC, released
under the ibc-relayer-cli

crate.

=zQ
) —

SYS

4
m

47



