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Motivation

➔ Distributed systems are widely 
deployed

➔ Despite this fact, writing correct 
distributed systems is hard
◆ Asynchronous network
◆ Crashes
◆ Network delays, partial failures...

➔ Systems deployed in production 
often have bugs
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Bugs in Distributed Systems
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Protocol Descriptions Are Not Enough

➔ Distributed protocols typically have edge cases
◆ Many of which may lack a precise definition of expected behavior

➔ Difficult to correspond final implementation with high-level 
protocol description

➔ Production implementations resort to ad-hoc error 
handling [1, 2, 3, 4]

4

[1] Ding Yuan et al. Simple Testing Can Prevent Most Critical Failures: An Analysis of Production Failures in Distributed Data-Intensive 
Systems. OSDI 14
[2] Tanakorn Leesatapornwongsa at al. TaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs in Datacenter Distributed 
Systems. ASPLOS 16
[3] Jie Lu et al. CrashTuner: detecting crash-recovery bugs in cloud systems via meta-info analysis. SOSP 19
[4] Yu Gao et al. An empirical study on crash recovery bugs in large-scale distributed systems. FSE 2018



Key problem: Gap between design and implementation
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gap

ImplementationDesign
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PGo: a Tool for Spec2Code

➔ We should automate implementation generation
➔ PGo generates Go code from MPCal
➔ MPCal is a superset / cousin of PlusCal
➔ Things PGo might help you with:

◆ Prototyping something that runs from your TLA+/PlusCal
◆ Code generation for core protocol logic
◆ Having a specific relationship between spec and implementation; an 

opportunity for tracing and other instrumentation



PGo: Generating an implementation

➔ PGo is a compiler from models in 
Modular PlusCal (MPCal) to 
implementations in Go

➔ Capable of generating concurrent 
and distributed systems from 
MPCal specifications
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PGo: Model checking

➔ Modular PlusCal models can be 
model checked

➔ Users define their desired 
properties for the model

➔ Properties can be checked with the 
TLC [1] or Apalache [2] model 
checkers, or the TLAPS proof 
assistant [3]
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… déjà vu?

➔ We were here in 2019, also talking about PGo. What gives?
 

➔ In 2019, our example was a producer-consumer toy
➔ We rewrote PGo in Scala, with a -20k change in LOC
➔ PGo’s improved in several ways:

◆ More and bigger systems (e.g Raft, CRDTs, failure recovery…)
◆ Better performance
◆ Modular verification (connecting multiple specs)
◆ Implementation tracing (runtime analysis of generated code)



 Problem description and motivation
➣ PGo recap

 Raft Implementation
 Performance improvements and challenges
 Modular verification
 Implementation tracing
 Conclusion
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➔ An algorithm description language that can 
be compiled to TLA+.

➔ PlusCal makes it easier to specify systems 
in a procedural style.

PlusCal overview
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process (p ∈ Procs) {
transfer:

if (aliceSavings >= amount) {
aliceSavings := aliceSavings - amount;

    bobSavings := bobSavings + amount;
};

}

Process definition

transfer is a label. 
PlusCal labels are 
translated to TLA+ 
transitions.

PlusCal



Our language: Modular PlusCal (MPCal)

➔ Goal: automatically compile models into 
implementations.

➔ Automatic translation between TLA+ or 
PlusCal models and implementations is 
impractical.

➔ Our approach: a new language on top of 
PlusCal
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Problem: How to implement PlusCal code?
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variables network = <<>>;
...
readMessage: \* blocking read from the network
    await Len(network[self]) > 0;
    msg := Head(network[self]);
    network := [network EXCEPT ![self] = Tail(network[self])];

// blocking read from the network
_, err = network.Read(netRead)
if err != nil {

return err
}
msg := netRead

We model a 
network read, but 
this implementation 
does not do that

Almost all this code 
is for the model 
checker

This algorithm is not 
abstract enough

PlusCal

Go



Invent a new kind of macro: archetype
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archetype AServer(ref network[_], ...)
...
readMessage:
    msg := network[self];

Complex network 
semantics can become a 
variable read or write

Archetypes are 
parameterised by an 
abstraction over the 
environment.

Any number of model checker and 
environment behaviors should be defined 
elsewhere, because archetypes only contain 
the system definition.

netRead, err := Read(network, self)
if err != nil { ... }
msg := netRead

MPCal

Go



Invent a new kind of macro: mapping macro

mapping macro TCPChannel{
  read {
    await Len($variable) > 0;
    with (msg = Head($variable)) {
      $variable := Tail($variable);
      yield msg;
    };
  }
  write {
    await Len($variable) < BUFFER_SIZE;
    yield Append($variable, $value);
  }
}

archetype AServer(ref network[_], ...)
...
readMessage:
    msg := network[self];

16
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MPCal



Modular PlusCal Language overview

➔ Archetypes: only contain the system definition 
➔ Mapping Macros: define behavior of the environment
➔ Instances: configures abstract environment for model checking
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mapping macro TCPChannel{
  read {
    await Len($variable) > 0;
    with (msg = Head($variable)) {
      $variable := Tail($variable);
      yield msg;
    };
  }
  write {
    await Len($variable) < BUFFER_SIZE;
    yield Append($variable, $value);
  }
} MPCal

archetype AServer(ref network[_], ...)
...
readMessage:
    msg := network[self];

variables network = <<>>;

process (Server = 0) ==
  instance AServer(ref network[_], ...)
    mapping network[_] via TCPChannel

MPCal

MPCal



Linking Abstractions and Concrete Implementations

➔ PGo is not aware of the concrete representation of 
abstract resources passed to archetypes

➔ Instead, we define a contract that valid implementations 
must follow
◆ Should support diverse implementations
◆ Should allow exploration of non-deterministic program flow
◆ We represent this contract as a Go API and a state machine
◆ Ideally have simple, bug-averse compilation process 
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Defining our Objective

➔ Goal: every execution of the resulting system can be 
mapped to an accepted behavior of the spec (refinement)

➔ Environment modeled abstractly in Modular PlusCal needs 
an implementation in Go with matching semantics

➔ Need to understand how to do this safely
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One-to-one Compilation of MPCal Code

msg := network[self]; MPCal

3 2

1

2

3

netRead, err := iface.Read(network, []tla.Value{iface.Self()})
if err != nil {
   return err
}

err = iface.Write(msg, nil, netRead)
if err != nil {
   return err
} Go

1

PGo compiles all expressions 
and statements 1-to-1 into 
runtime library calls

compilation

20



An MPCal Server Example
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archetype AServer(ref network[_],
                  ref file_system[_])
variable msg;
{
  readMessage:
    msg := network[self];

  sendPage:
    network[msg.client_id] :=
                     file_system[msg.path];
    goto readMessage;
}

MPCal

archetype AClient(ref network[_],
                  ref paths, ref out)
{
  mkRequest:
    with(path = paths) {
      network[SERVER_ID] := [
        client_id |-> self,
        path |-> path
      ];
    };

  rcvResponse:
    out := network[self];
    goto mkRequest;
}

MPCal



More complex models feature 
non-deterministic branching:

Labels Define Atomic Steps
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mkRequest:
  ...

rcvResponse:
  ...
  goto mkRequest;

readMessage:
  ...

sendPage:
  ...
  goto readMessage;

step:
  either { (* option A ... *) }
  or { (* option B ... *) };
  ...

➔ Either all of a step is taken, or none of it
➔ Most programming languages do not work 

like this
➔ Many I/O interactions do not work like this

These concepts form our 
primary implementation 
challenge



Executing an Atomic Step in Go

➔ Compiled archetypes perform a local consensus step 
between resource implementations
◆ Steps in an archetype may be executed concurrently with steps from 

other archetypes, as long as resource implementations consider it safe

➔ Overview of the execution model of a single step (2PC like):
◆ Execute all statements in order, exploring non-determinism (may 

spuriously abort and restart atomic action)
◆ Pre-commit changes to all resources used, seeking consensus
◆ If all resources allow, commit, otherwise abort and retry step
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Critical Section State Machine
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initial state

critical section 
evaluation

ReadValue or 
WriteValue

ReadValue or 
WriteValue

PreCommit

end of critical 
section statements

Abort
(at least one 
resource not 
ok)

Abort
(read/write 
failed)

Commit

success

all resources ok

Happy path
1. Initial state
2. Read/WriteValue
3. PreCommit
4. Commit
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A partial list of specs that we wrote

➔ Raft, and Raft-based Key-Value Store
◆ Based on a draft of the original TLA+ spec

➔ Non-monolithic Raft and Raft-based Key-Value Store
◆ Separates Raft and KV logic

➔ Primary-Backup Replicated Key-Value Store
➔ Distributed Lock Service
➔ AWORSet CRDT (eventually-consistent distributed set)
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More about our Raft[1] KV Store

➔ Supports GET, PUT
➔ All in Go, client library includes PGo-generated code
➔ Model checked in TLC w/ safety and liveness properties
➔ Resilient to server failures

 

➔ 930 lines of MPCal, 7 archetypes, 22 person days dev time 
➔ Runs faster than other Spec2Code solutions we tested[2-4]
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Comparison to other Spec2Code Raft KV Stores
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PGo-RaftKV PGo-RaftKV-Mod

➔ Faster than Ivy, IronKV, Vard (other Spec2Code tools)
➔ etcd scored 5,866-10,504 op/s, beating all Spec2Code



Graph of Failure Recovery in Action for PGo Raft KV
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Systemic Performance Concerns

➔ With enough human effort, PGo-generated code can be 
fast enough for distributed systems

➔ Currently, it takes more effort than we’d like
➔ Key issues:

◆ Non-deterministic branching can waste time
◆ Waiting can waste CPU cycles

31



Non-Determinism Problems

➔ Choosing between I/O behaviors can waste time
➔ Branches are chosen at random, timeouts are serial
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either {
  // read channel A
} or {
  // read channel B
}

MPCal
! Msg on channel A

Wait x ms on channel B

Channel B empty

A or B

Pop msg from A

Do something useful ✅

unlucky

x ms wasted



Await Problems

Await statements may cause busy loops 
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actionA:
await x = 3;
...

... // in another process
actionB:
x := 3;

MPCal ➔ Action A may be repeatedly 
retried if x # 3, in a busywait

➔ If action B is also available, it may 
be starved of CPU cycles

➔ Functional, but not ideal



Opportunities for Performance Improvements

➔ In progress: more intelligent handling of non-determinism
◆ Current exploration of non-deterministic branches is sequential and only 

changes branch on timeout
◆ Ongoing work to concurrently explore branches without waiting
◆ Possibility of implementing a more reactive evaluation model

➔ Opportunity: leverage static analysis and model checking 
to selectively remove unnecessary concurrency control

34
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Modular Verification Support

➔ PGo can generate implementations for a variety of 
systems, including dependencies of other MPCal

➔ Any API can be expressed as message-passing 
communication with a PGo-generated system

➔ PGo provides general-purpose glue code
➔ This technique offers a path away from handwritten 

dependency implementations, when the implementation 
is complex and reliability is a priority
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Example: Modular Raft KV Store

➔ Separately verify:
◆ Raft protocol
◆ KV Store

➔ Each specification 
models a simplified, 
generalized 
representative of 
the other

37

Raft Protocol KV Store

Raft Protocol

KV StoreConsensus Protocol

Abstract Requests

abstract

abstract

implementation
verification



Discussion: Modular Raft KV Store

✔ Advantages
◆ Raft model becomes re-usable
◆ Smaller state space for TLC

❌ Disadvantages
◆ Need to manually co-ordinate separate specifications
◆ Code may be more complex

Idea: could address disadvantages with more automation
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Key problem: Model-Implementation Mismatch

40

Formal System 
Model

Verification / 
Correctness 
Argument

Real System 
Execution

Assumptions 
About 
Execution 
Environment

Implementation Extraction

How do we know this is still 
semantically the same system?



Potential Model-Implementation Mismatches
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➔ Systems can be mis-configured
➔ Systems can be run in situations that do not match model 

assumptions
◆ Model might assume an incorrect model of network communication

e.g not accounting for packet size ceiling in UDP
◆ Model might not account for certain failure scenarios

➔ Code generation can be buggy
➔ Glue code (between model and environment) can be buggy



Implementation Tracing Goals
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➔ We could capture and analyze anything the system does if 
we trace the implementation…

➔ We want to cross-check full system behavior
◆ Including implementation quirks
◆ Including full configuration / deployment data

 
➔ So, try to holistically trace implementation behavior
➔ We should double check those traces match the original 

MPCal spec



Introducing PGo-TraceCheck
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Abstract System
Model (MPCal)

PGo-Generated
Distributed

System
Trace

…

PGo-TraceCheck

✔ ❌

Instruments 
PGo-generated 
implementations

Verifies that 
implementation 
behavior matches 
model behavior



Project Challenges
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➔ Understand how MPCal executes, especially the 
relationship between MPCal model and implementation

➔ Derive expected behavior from MPCal that can be 
compared with the implementation traces

➔ Efficiently compare implementation and model information



What to trace?
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➔ All MPCal behavior is expressed as atomic actions
➔ Anything more precise than an action is not modeled
➔ So, only need to record each critical section

readMessage:
  ...

sendPage:
  ...



Tracing Critical Section Behavior
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read .pc -> “readMessage”
read network[self] -> value
write msg <- value
write .pc <- “sendPage”

readMessage:
  msg := network[self];
  goto sendPage;

➔ MPCal communication occurs only via side-effects
➔ PGo-generated code relies on real-world implementations 

of environment features
➔ So, give up on inspecting e.g the network implementation, 

but trace everything that goes into or out of it.



Tracing Causality with Vector Clocks
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Local computation...

➔ Some critical sections are causally related, others are not
➔ Implementation must record causality via vector clocks

Send message...

Receive message...Local computation...

Node A

Node B



What is a Vector Clock?
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➔ Track whether one event happens-before another by 
marking each event with per-node logical clocks

➔ Defines a partial order between events
◆ Locally, each event necessarily happens-before the next
◆ Across nodes, events might happen-before one another
◆ Some remote events do not have a relative order: they are concurrent, and 

could have happened in any order



Implementation Tracing Challenges
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➔ Critical sections can spontaneously abort and roll back:
◆ Network timeout
◆ Attempt to read unavailable information
◆ Custom condition (e.g await x = 5)

➔ Multiple heterogeneous environment implementations 
(resources) coexist

➔ Need to achieve consensus between environment 
components whether the critical section can finish



Two-Phase Commit-like Critical Section Operation
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initial state

critical section 
evaluation

ReadValue or 
WriteValue

ReadValue or 
WriteValue

PreCommit

end of critical 
section statements

Abort
(at least one 
resource not 
ok)

Abort
(read/write 
failed)

Commit

success

all resources ok

Happy path
1. Initial state
2. Read/WriteValue
3. PreCommit
4. Commit

Trace 
read/write 
ops here

Collect vector 
clock info and 
record one trace 
element here



Implementation Traces Have Multiple Possible Orderings
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Example
3-node 
system 
trace

Total order A

Total order B

For example:

Edges represent 
direct causality



Matching Partial Order with Total Order
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➔ Model explorations form a total order, while 
implementation executions form a partial order
So, we need to totally-order the implementation tracing.

➔ Any implementation path respecting partial order should be 
valid: if one path is invalid, there is definitely a bug

➔ But, if one path passes, it does not guarantee all paths do
◆ Our current prototype checks only one trace
◆ We have found bugs despite this limitation



PGo Takeaways

➔ MPCal cleanly separates the 
system from its environment 

➔ PGo generates correct distributed 
systems

➔ Results improve on state of the 
art solutions that require years of 
manual work

➔ We are actively improving PGo’s 
output and tooling to match 
production quality systems code
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