
Compiling Distributed System Models
into Implementations with PGo

Finn Hackett, Shayan Hosseini,
Ivan Beschastnikh

Ruchit Palrecha, Yennis Ye,
Renato Costa, Matthew Do

Modular PlusCal

PlusCal

Execution

TLA+

GoLang

Model
Checking

PGo

PCal
Translator

PGo

TLC

Go

https://github.com/DistCompiler/pgo

https://github.com/DistCompiler/pgo

Motivation

➔ Distributed systems are widely
deployed

➔ Despite this fact, writing correct
distributed systems is hard
◆ Asynchronous network
◆ Crashes
◆ Network delays, partial failures...

➔ Systems deployed in production
often have bugs

2Google data center, Douglas County, Georgia

Bugs in Distributed Systems

3

[1] Mark Cavage. There's Just No Getting around It: You're Building a Distributed System. Queue 11, 4, Pages 30, April 2013
[2] Mitchell Clark, Richard Lawler. Spotify, Discord, and others are coming back online after a brief Google Cloud outage. The Verge, Nov. 2021
[3] Greeshma Nayak. 'YouTube Down' Trends On Twitter As App Reports Outage, Fans Spark Meme Fest About It. RepublicWorld, May 2021
[4] Mary Jo foley. Global Azure outage knocked out virtual machines, other VM-dependent services. ZDNet, October 2021
[5] Dan Swinhoe. AWS suffering EC2 and EBS performance issues in Northern Virginia. Data Centre Dynamics Ltd, September 2021
[6] Forbes Technology Council. 15 Actions Businesses Must Consider In Light Of The Recent AWS Outages. Forbes, February 2022

Protocol Descriptions Are Not Enough

➔ Distributed protocols typically have edge cases
◆ Many of which may lack a precise definition of expected behavior

➔ Difficult to correspond final implementation with high-level
protocol description

➔ Production implementations resort to ad-hoc error
handling [1, 2, 3, 4]

4

[1] Ding Yuan et al. Simple Testing Can Prevent Most Critical Failures: An Analysis of Production Failures in Distributed Data-Intensive
Systems. OSDI 14
[2] Tanakorn Leesatapornwongsa at al. TaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs in Datacenter Distributed
Systems. ASPLOS 16
[3] Jie Lu et al. CrashTuner: detecting crash-recovery bugs in cloud systems via meta-info analysis. SOSP 19
[4] Yu Gao et al. An empirical study on crash recovery bugs in large-scale distributed systems. FSE 2018

Key problem: Gap between design and implementation

5

gap

ImplementationDesign

[1] Raft protocol server states; Diego Ongaro el al. In search of an understandable consensus algorithm. Usenix ATC 14

PGo: a Tool for Spec2Code

➔ We should automate implementation generation
➔ PGo generates Go code from MPCal
➔ MPCal is a superset / cousin of PlusCal
➔ Things PGo might help you with:

◆ Prototyping something that runs from your TLA+/PlusCal
◆ Code generation for core protocol logic
◆ Having a specific relationship between spec and implementation; an

opportunity for tracing and other instrumentation

PGo: Generating an implementation

➔ PGo is a compiler from models in
Modular PlusCal (MPCal) to
implementations in Go

➔ Capable of generating concurrent
and distributed systems from
MPCal specifications

7

PGo: Model checking

➔ Modular PlusCal models can be
model checked

➔ Users define their desired
properties for the model

➔ Properties can be checked with the
TLC [1] or Apalache [2] model
checkers, or the TLAPS proof
assistant [3]

8

[1] Lamport, L. TLA+ Tools. https://lamport.azurewebsites.net/tla/tools.html
[2] Igor Konnov et al. TLA+ model checking made symbolic. OOPSLA 19
[3] TLA+ Proof System. https://tla.msr-inria.inria.fr/tlaps/content/Home.html

9

… déjà vu?

➔ We were here in 2019, also talking about PGo. What gives?

➔ In 2019, our example was a producer-consumer toy
➔ We rewrote PGo in Scala, with a -20k change in LOC
➔ PGo’s improved in several ways:

◆ More and bigger systems (e.g Raft, CRDTs, failure recovery…)
◆ Better performance
◆ Modular verification (connecting multiple specs)
◆ Implementation tracing (runtime analysis of generated code)

 Problem description and motivation
➣ PGo recap

 Raft Implementation
 Performance improvements and challenges
 Modular verification
 Implementation tracing
 Conclusion

11

Outline

➔ An algorithm description language that can
be compiled to TLA+.

➔ PlusCal makes it easier to specify systems
in a procedural style.

PlusCal overview

12

process (p ∈ Procs) {
transfer:

if (aliceSavings >= amount) {
aliceSavings := aliceSavings - amount;

 bobSavings := bobSavings + amount;
};

}

Process definition

transfer is a label.
PlusCal labels are
translated to TLA+
transitions.

PlusCal

Our language: Modular PlusCal (MPCal)

➔ Goal: automatically compile models into
implementations.

➔ Automatic translation between TLA+ or
PlusCal models and implementations is
impractical.

➔ Our approach: a new language on top of
PlusCal

13

Problem: How to implement PlusCal code?

14

variables network = <<>>;
...
readMessage: * blocking read from the network
 await Len(network[self]) > 0;
 msg := Head(network[self]);
 network := [network EXCEPT ![self] = Tail(network[self])];

// blocking read from the network
_, err = network.Read(netRead)
if err != nil {

return err
}
msg := netRead

We model a
network read, but
this implementation
does not do that

Almost all this code
is for the model
checker

This algorithm is not
abstract enough

PlusCal

Go

Invent a new kind of macro: archetype

15

archetype AServer(ref network[_], ...)
...
readMessage:
 msg := network[self];

Complex network
semantics can become a
variable read or write

Archetypes are
parameterised by an
abstraction over the
environment.

Any number of model checker and
environment behaviors should be defined
elsewhere, because archetypes only contain
the system definition.

netRead, err := Read(network, self)
if err != nil { ... }
msg := netRead

MPCal

Go

Invent a new kind of macro: mapping macro

mapping macro TCPChannel{
 read {
 await Len($variable) > 0;
 with (msg = Head($variable)) {
 $variable := Tail($variable);
 yield msg;
 };
 }
 write {
 await Len($variable) < BUFFER_SIZE;
 yield Append($variable, $value);
 }
}

archetype AServer(ref network[_], ...)
...
readMessage:
 msg := network[self];

16

MPCal

MPCal

Modular PlusCal Language overview

➔ Archetypes: only contain the system definition
➔ Mapping Macros: define behavior of the environment
➔ Instances: configures abstract environment for model checking

17

mapping macro TCPChannel{
 read {
 await Len($variable) > 0;
 with (msg = Head($variable)) {
 $variable := Tail($variable);
 yield msg;
 };
 }
 write {
 await Len($variable) < BUFFER_SIZE;
 yield Append($variable, $value);
 }
} MPCal

archetype AServer(ref network[_], ...)
...
readMessage:
 msg := network[self];

variables network = <<>>;

process (Server = 0) ==
 instance AServer(ref network[_], ...)
 mapping network[_] via TCPChannel

MPCal

MPCal

Linking Abstractions and Concrete Implementations

➔ PGo is not aware of the concrete representation of
abstract resources passed to archetypes

➔ Instead, we define a contract that valid implementations
must follow
◆ Should support diverse implementations
◆ Should allow exploration of non-deterministic program flow
◆ We represent this contract as a Go API and a state machine
◆ Ideally have simple, bug-averse compilation process

18

Defining our Objective

➔ Goal: every execution of the resulting system can be
mapped to an accepted behavior of the spec (refinement)

➔ Environment modeled abstractly in Modular PlusCal needs
an implementation in Go with matching semantics

➔ Need to understand how to do this safely

19

One-to-one Compilation of MPCal Code

msg := network[self]; MPCal

3 2

1

2

3

netRead, err := iface.Read(network, []tla.Value{iface.Self()})
if err != nil {
 return err
}

err = iface.Write(msg, nil, netRead)
if err != nil {
 return err
} Go

1

PGo compiles all expressions
and statements 1-to-1 into
runtime library calls

compilation

20

An MPCal Server Example

21

archetype AServer(ref network[_],
 ref file_system[_])
variable msg;
{
 readMessage:
 msg := network[self];

 sendPage:
 network[msg.client_id] :=
 file_system[msg.path];
 goto readMessage;
}

MPCal

archetype AClient(ref network[_],
 ref paths, ref out)
{
 mkRequest:
 with(path = paths) {
 network[SERVER_ID] := [
 client_id |-> self,
 path |-> path
];
 };

 rcvResponse:
 out := network[self];
 goto mkRequest;
}

MPCal

More complex models feature
non-deterministic branching:

Labels Define Atomic Steps

22

mkRequest:
 ...

rcvResponse:
 ...
 goto mkRequest;

readMessage:
 ...

sendPage:
 ...
 goto readMessage;

step:
 either { (* option A ... *) }
 or { (* option B ... *) };
 ...

➔ Either all of a step is taken, or none of it
➔ Most programming languages do not work

like this
➔ Many I/O interactions do not work like this

These concepts form our
primary implementation
challenge

Executing an Atomic Step in Go

➔ Compiled archetypes perform a local consensus step
between resource implementations
◆ Steps in an archetype may be executed concurrently with steps from

other archetypes, as long as resource implementations consider it safe

➔ Overview of the execution model of a single step (2PC like):
◆ Execute all statements in order, exploring non-determinism (may

spuriously abort and restart atomic action)
◆ Pre-commit changes to all resources used, seeking consensus
◆ If all resources allow, commit, otherwise abort and retry step

23

Critical Section State Machine

24

initial state

critical section
evaluation

ReadValue or
WriteValue

ReadValue or
WriteValue

PreCommit

end of critical
section statements

Abort
(at least one
resource not
ok)

Abort
(read/write
failed)

Commit

success

all resources ok

Happy path
1. Initial state
2. Read/WriteValue
3. PreCommit
4. Commit

 Problem description and motivation
 PGo recap

➣ Raft Implementation
 Performance improvements and challenges
 Modular verification
 Implementation tracing
 Conclusion

25

Outline

A partial list of specs that we wrote

➔ Raft, and Raft-based Key-Value Store
◆ Based on a draft of the original TLA+ spec

➔ Non-monolithic Raft and Raft-based Key-Value Store
◆ Separates Raft and KV logic

➔ Primary-Backup Replicated Key-Value Store
➔ Distributed Lock Service
➔ AWORSet CRDT (eventually-consistent distributed set)

26

More about our Raft[1] KV Store

➔ Supports GET, PUT
➔ All in Go, client library includes PGo-generated code
➔ Model checked in TLC w/ safety and liveness properties
➔ Resilient to server failures

➔ 930 lines of MPCal, 7 archetypes, 22 person days dev time
➔ Runs faster than other Spec2Code solutions we tested[2-4]

27

[1] Ongaro, Diego, and John Ousterhout. "In search of an understandable consensus algorithm." 2014 USENIX ATC’14.
[2] Jeffrey S Foster, Dan Grossman, Marcelo Taube, Giuliano Losa, Kenneth L McMillan, Oded Padon, Mooly Sagiv, Sharon Shoham, James R
Wilcox, and Doug Woos. Modularity for decidability of deductive verification with applications to distributed systems. ACM SIGPLAN’18.
[3] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D. Ernst, and Thomas Anderson. Verdi: a framework
for implementing and formally verifying distributed systems. ACM SIGPLAN’15.
[4] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath Setty, and Brian Zill. IronFleet: Proving
Safety and Liveness of Practical Distributed Systems. Commun. ACM’17.

Comparison to other Spec2Code Raft KV Stores

28

PGo-RaftKV PGo-RaftKV-Mod

➔ Faster than Ivy, IronKV, Vard (other Spec2Code tools)
➔ etcd scored 5,866-10,504 op/s, beating all Spec2Code

Graph of Failure Recovery in Action for PGo Raft KV

29

 Problem description and motivation
 PGo recap
 Raft Implementation

➣ Performance improvements and challenges
 Modular verification
 Implementation tracing
 Conclusion

30

Outline

Systemic Performance Concerns

➔ With enough human effort, PGo-generated code can be
fast enough for distributed systems

➔ Currently, it takes more effort than we’d like
➔ Key issues:

◆ Non-deterministic branching can waste time
◆ Waiting can waste CPU cycles

31

Non-Determinism Problems

➔ Choosing between I/O behaviors can waste time
➔ Branches are chosen at random, timeouts are serial

32

either {
 // read channel A
} or {
 // read channel B
}

MPCal
! Msg on channel A

Wait x ms on channel B

Channel B empty

A or B

Pop msg from A

Do something useful ✅

unlucky

x ms wasted

Await Problems

Await statements may cause busy loops

33

actionA:
await x = 3;
...

... // in another process
actionB:
x := 3;

MPCal ➔ Action A may be repeatedly
retried if x # 3, in a busywait

➔ If action B is also available, it may
be starved of CPU cycles

➔ Functional, but not ideal

Opportunities for Performance Improvements

➔ In progress: more intelligent handling of non-determinism
◆ Current exploration of non-deterministic branches is sequential and only

changes branch on timeout
◆ Ongoing work to concurrently explore branches without waiting
◆ Possibility of implementing a more reactive evaluation model

➔ Opportunity: leverage static analysis and model checking
to selectively remove unnecessary concurrency control

34

 Problem description and motivation
 PGo recap
 Raft Implementation
 Performance improvements and challenges

➣ Modular verification
 Implementation tracing
 Conclusion

35

Outline

Modular Verification Support

➔ PGo can generate implementations for a variety of
systems, including dependencies of other MPCal

➔ Any API can be expressed as message-passing
communication with a PGo-generated system

➔ PGo provides general-purpose glue code
➔ This technique offers a path away from handwritten

dependency implementations, when the implementation
is complex and reliability is a priority

36

Example: Modular Raft KV Store

➔ Separately verify:
◆ Raft protocol
◆ KV Store

➔ Each specification
models a simplified,
generalized
representative of
the other

37

Raft Protocol KV Store

Raft Protocol

KV StoreConsensus Protocol

Abstract Requests

abstract

abstract

implementation
verification

Discussion: Modular Raft KV Store

✔ Advantages
◆ Raft model becomes re-usable
◆ Smaller state space for TLC

❌ Disadvantages
◆ Need to manually co-ordinate separate specifications
◆ Code may be more complex

Idea: could address disadvantages with more automation

38

 Problem description and motivation
 PGo recap
 Raft Implementation
 Performance improvements and challenges
 Modular verification

➣ Implementation tracing
 Conclusion

39

Outline

Key problem: Model-Implementation Mismatch

40

Formal System
Model

Verification /
Correctness
Argument

Real System
Execution

Assumptions
About
Execution
Environment

Implementation Extraction

How do we know this is still
semantically the same system?

Potential Model-Implementation Mismatches

41

➔ Systems can be mis-configured
➔ Systems can be run in situations that do not match model

assumptions
◆ Model might assume an incorrect model of network communication

e.g not accounting for packet size ceiling in UDP
◆ Model might not account for certain failure scenarios

➔ Code generation can be buggy
➔ Glue code (between model and environment) can be buggy

Implementation Tracing Goals

42

➔ We could capture and analyze anything the system does if
we trace the implementation…

➔ We want to cross-check full system behavior
◆ Including implementation quirks
◆ Including full configuration / deployment data

➔ So, try to holistically trace implementation behavior
➔ We should double check those traces match the original

MPCal spec

Introducing PGo-TraceCheck

43

Abstract System
Model (MPCal)

PGo-Generated
Distributed

System
Trace

…

PGo-TraceCheck

✔ ❌

Instruments
PGo-generated
implementations

Verifies that
implementation
behavior matches
model behavior

Project Challenges

44

➔ Understand how MPCal executes, especially the
relationship between MPCal model and implementation

➔ Derive expected behavior from MPCal that can be
compared with the implementation traces

➔ Efficiently compare implementation and model information

What to trace?

45

➔ All MPCal behavior is expressed as atomic actions
➔ Anything more precise than an action is not modeled
➔ So, only need to record each critical section

readMessage:
 ...

sendPage:
 ...

Tracing Critical Section Behavior

46

read .pc -> “readMessage”
read network[self] -> value
write msg <- value
write .pc <- “sendPage”

readMessage:
 msg := network[self];
 goto sendPage;

➔ MPCal communication occurs only via side-effects
➔ PGo-generated code relies on real-world implementations

of environment features
➔ So, give up on inspecting e.g the network implementation,

but trace everything that goes into or out of it.

Tracing Causality with Vector Clocks

47

Local computation...

➔ Some critical sections are causally related, others are not
➔ Implementation must record causality via vector clocks

Send message...

Receive message...Local computation...

Node A

Node B

What is a Vector Clock?

48

➔ Track whether one event happens-before another by
marking each event with per-node logical clocks

➔ Defines a partial order between events
◆ Locally, each event necessarily happens-before the next
◆ Across nodes, events might happen-before one another
◆ Some remote events do not have a relative order: they are concurrent, and

could have happened in any order

Implementation Tracing Challenges

49

➔ Critical sections can spontaneously abort and roll back:
◆ Network timeout
◆ Attempt to read unavailable information
◆ Custom condition (e.g await x = 5)

➔ Multiple heterogeneous environment implementations
(resources) coexist

➔ Need to achieve consensus between environment
components whether the critical section can finish

Two-Phase Commit-like Critical Section Operation

50

initial state

critical section
evaluation

ReadValue or
WriteValue

ReadValue or
WriteValue

PreCommit

end of critical
section statements

Abort
(at least one
resource not
ok)

Abort
(read/write
failed)

Commit

success

all resources ok

Happy path
1. Initial state
2. Read/WriteValue
3. PreCommit
4. Commit

Trace
read/write
ops here

Collect vector
clock info and
record one trace
element here

Implementation Traces Have Multiple Possible Orderings

51

Example
3-node
system
trace

Total order A

Total order B

For example:

Edges represent
direct causality

Matching Partial Order with Total Order

52

➔ Model explorations form a total order, while
implementation executions form a partial order
So, we need to totally-order the implementation tracing.

➔ Any implementation path respecting partial order should be
valid: if one path is invalid, there is definitely a bug

➔ But, if one path passes, it does not guarantee all paths do
◆ Our current prototype checks only one trace
◆ We have found bugs despite this limitation

PGo Takeaways

➔ MPCal cleanly separates the
system from its environment

➔ PGo generates correct distributed
systems

➔ Results improve on state of the
art solutions that require years of
manual work

➔ We are actively improving PGo’s
output and tooling to match
production quality systems code

53
https://github.com/DistCompiler/pgo

https://github.com/DistCompiler/pgo

