Formal Methods
at Microsoft

Nikolaj Bjgrner, Microsoft Research, RiSE
TLA+ Conference @ Strangeloop
September 22 - 2022

Formal Methods too

TLA+

S

EverParse

Coyote

Bosque

a® Microsoft

from Design to Diagnoses

LAVN

KOKA

Verus

HyperFuzzer

Torch

RESTler

F*

EverCrypt

Zen

NCVS

A tool-oriented view

| will talk about /ots of tools:
 Scientific heritage

* Target Use

* Impact

* North Stars

Lots of material, yet very partial

| will not cover: TLA+, LAVN, Koka,
MakeCode, Orchestration, Parallel
Computation, Synthesis, RegEx

No theorems but | will point to a z3 guide

Logic — Calculus of Computation
e Symbolic Model Checking
 Model-Based Testing

* Program Verification

Tomography of Computation
* Concurrency Testing

e Fault Injection

* Fuzzing

Logic and Tomography
 Network Verification

Microsoft

== Microsoft

Logic: The Calculus of Computation

Differential, Integral Calculus

Dynamics, Conduction,..
Matlab, Mathemetica, Simulink

STOP s=sr<n s=r<n
u =srl u=(s+1)!
0<n v=r! v=rl
I I
am I
L—:" Si:‘}ﬁr'-)LU:U*’V]-—:—-)(Si:S**‘
|
r<n
u=(r+1)rl
Logic
Computation Py Y
Zg Fridav, 24th June [1849]

Checking a large routine by Dr A, Turing.

Claim: Practically all modern program analysis tools involve solving logical formulas

https://iiclondra.esteri.it/iic_londra/it/gli_eventi/calendario/2017/12/the-genius-of-james-clerk-maxwell.html

2 2 for Software +...

Azure Network
Verification

A\ “5

Verified Crypto
Libraries & Protocols

Security Risk
Detection

Verifying C
Compiler

I5rodhct Cnfigurator

Dynamics
AX

>

v

Smart Contract
Verification

Quantum

Compilation

R ras

S

SVACE

Static Analysis Engines

ALIVE2

Translation Validation
for LLVM & Visual C++

Visual C++

a® Microsoft

Biological
Computations

B U\ L HO, OH

J— J— \[(\/
b :

107050000) 011 58000 wo12880000)

Artificial
Life

Axiomatic Assembly Line
Economics Optimization

== Microsoft

A

Efficiency
Scale

Technology Landscape

SAT -

Hardware Design

Propositional
Satisfiability Solving
Breakthroughs in 2000s

Cheap local Inferences
Garbage collect useless clauses

Automation

Breakthroughs late 2000s
Mixed Integer z3 9

P - IP SAT + global inferences +
rogramming global propagators
Breakthroughs in 1960s ‘ e
Harnessedgsince 1990s Operations SMT Satisfiability Modulo
LP: global Inferences Research Theories
IP: Cuts, Branch and Bound \
Software
Constraint CP Development +...

Programming
Breakthroughs since 1990s
Powerful domain-tailored
global propagators

»
»

Expressive Power

< O m (1) https://microsoft.github.io/z3guide/docs/logic/Quantifiers

Z3 Documentation SMTLIB

Logic
Introduction
Basic Commands
Propositional Logic

Uninterpreted Functions and
Constants

Quantifiers
Lambdas
Recursive Functions
Conclusion
Theories
Strategies
Optimization

FixedPoints

Programming Z3 Playground

v VvV vV Vv

formulas with ground terms that appear in the current search context based on pattern annotations on quantitiers. The

pattern-based instantiation method is quite effective, even though it is inherently incomplete.

Z3 also contains a model-based quantifier instantiation component that uses a model construction to find good terms to

instantiate quantifiers with; and Z3 also handles many decidable fragments.

Modeling with Quantifiers

Suppose we want to model an object oriented type system with single inheritance. We would need a predicate for sub-
typing. Sub-typing should be a partial order, and respect single inheritance. For some built-in type constructors, such as

for array-of, sub-typing should be monotone.

(declare-sort Type)
(declare-fun subtype (Type Type) Bool)
(declare-fun array-of (Type) Type)
(assert (forall ((x Type)) (subtype x x)))
(assert (forall ((x Type) (y Type) (z Type))
(= (and (subtype x y) (subtype y z))
(subtype x z))))
(assert (forall ((x Type) (y Type))
(= (and (subtype x y) (subtype y x))
(=xy))))
(assert (forall ((x Type) (y Type) (z Type))
(= (and (subtype x y) (subtype x z))

(or (subtype y z) (subtype z y)))))
(assert (forall ((x Type) (y Type))
(= (subtype x y)
(subtype (array-of x) (array-of y)))))
(declare-const root-type Type)
(assert (forall ((x Type)) (subtype x root-type)))
(check-sat)

A e v 8 @

GitHub % <O-

Madeling with Quantifiers
Patterns

Multi-patterns

No patterns

Model-based Quantifier Instantiation

a® Microsoft

Symbolic Model Checking

Predicate _
Interpolation (2000
Abstraction (1997) IC3 (2010) P (2000)
Static Driver Verifier . S
1 {/’/’
\i/ Proof Rules as Horn

Clauses (2012)

- ~
/// \\
| - ~

Solidity, MathWorks,.. Vo

Yogi (2009)

SMACK (2014) € -------- > Corral (2014)

|

|

|

|

|

|

SLAM (2001) |

R\

Z3 PDR (2012) Duality (2012)

Y

SPACER (2014)

Crab Al in AFO eBPF filter

s - g

Guidance (2020) ||

- g

a® Microsoft

Constrained Horn Clauses

LLVM bltcode

7 5

Legacy Encodlng {Small, SPACER } X CEX
Front-End Large}
Inter Precision = {Register, (Z3-PDR }:> i
procedural Pointer, V
Memorys} { IKOS J

Front End Middle End Back End

vVX. X > 100 > mc(X,X — 10)
VX,Y,R. X < 100 Amc(X + 11,Y) Amc(Y, R) > mc(X, R)
VX,R. mc(X, RAINX<101-R= 91

Solver finds solution for mc (McCarthy 91 function)

Arie Gurfinkel
U. Waterloo

../tutorial/mc.smt2

Model Based Testing and Model Programs

ASML (1999)

ér//////////////'\\\\\\\\\\\\\\\i

Protocol Specs and Tests

PL for Network Verification

SpecExplorer
(2004)

BN
N
| N

N
N
RFC Spec Exploration -
|
\\
v Ny

NModel (2004)

Formula (2008)

Cloud API Contracts

Bosque (2019)

IVY (2019)

Zen (2019)

a® Microsoft

a® Microsoft

/en - an intermediate policy representation

<bool> Allow(Nsg nsg, <Packet> pkt, int i) {
if (i >= nsg.Rules.Length)
return false;

var rule = nsg.Rules[i]; Zen
return If(Matches(rule, pkt), .
rule.Permit, L|bra ry

Allow(nsg, pkt, i+1));

Embedded Domain-Specific Language in C# [1]
https://github.com/microsoft/zen

Backends

[1] A General Framework for Compositional Network Modeling, R. Beckett, R. Mahajan, HotNets 2020

https://github.com/microsoft/zen

== Microsoft

Bosque - for Financial Compliance (OSFIR)

Functional IR (MorphlR)

* Referential Transparency
 Combinators: Map, Fold
* Analysis Friendly

Bosque provides
* Verification
* Test-case generation

typedecl ZipcodeUS = /[0-9]{5}(-[0-9]{4})?/;

function isNYCode(s: StringOf<ZipcodeUS>): Bool {
return s.value().startsWith(/1[0-4]/);

}

iSNYCode('10001'#ZipcodeUS) //true
iSNYCode('87111'#ZipcodeUS) //false

isSNYCode("12") //type error not a StringOf<ZipcodeUS>
isSNYCode('WC1E'#PostcodeUK) //type error not a StringOf<ZipcodeUS>

typedecl Percentage = Nat & {
invariant $value <= 100n;

¥

let a 100#Percentage;
let b 101#Percentage; //Runtime Error
let ¢ a + 25#Percentage; //Runtime Error

== Microsoft

Bosque — The Future of the Cloud is APIs

Cloud Service Compositionality

Cloud Service Contracts
* @requires
* @ensures
* @invariant

String Constraint Types
Bosque provides

* Fuzz Tests
* Auto-Mock

Systems Code Verification
FP & Logics Beegie (2004)
Oret Iresh Alpi) = 1projin v, proj F# (2001) es& g T
otfresh Qro;le; QAP =profs o w () Q' KISS (2004) Spec# (2004)

I I Oret — ’

Verve (2010) N F7(2007)
-) HAVOC (2010) VCC (2009)
~ | Vale (2017) _ F* (2012)
la st h

e) a1,

: Dafny (2010 Chalice (2010
ke EverCrypt (2019) EverParse (2019) 3”@ A) ()
Verona (2022) | . Ironfleet (2015) CIVL (2015) Viper (2016)

SLAyer (2008) Steel (2020) | Verisol (2018)
3 YO j Armada (2020)
Verus (2022) oot e o b
S Separation Logic (1999) §

Languages embedded in F* B microsof

\

4

Certificate parsers Key Exchange Quantum programs Concurrency & weak memory models A
ASN1* \ Noise™ Q* Armada
Embedded
EverParse i S
Verified C . £
- e programs Verified specitic
Verified parser Low Va | @ | assembly code languages
generator
S I Concurrency
teel | & distribution
_/
<
Logical
foundations
of programs
and proofs
_/
Interfacing

with existing
Assembly toolchains

WebAssembly

F*: A Proof-oriented Programming Language

EverParse Steel
TLS-1.3
record Vale Quic record layer
layer asm DICE
crypto EverCrypt Noise
Compiler _ Secure TypeScript HACL*-v1 Zeta
certification Javascript compilation crypto MPC Signal HACL-v2 xN Applications
F* monadic-F* relational-F* multi-monadic-F* universal-F* meta-F* layered-F* Foundations

Extensional type theory, with refinement subtyping, proof irrelevance, tactic & SMT-based proofs

Expressiveness to state and attempt a proof of nearly any statement in mathematics (like Coq, Lean etc.)

With a focus on programming, including features, like state, exceptions, non-determinism, concurrency, 10

Integrated with Z3, so that many proofs are automatic,
* but when Z3 gives up, you can fall back on manual proofs

EverParse

Mathematically
proven parser
generator

High-performance
code generation

Integration into
critical systems
code

Starting from a high-level language
of message formats

EverParse auto-generates F* parsing code that is
- Safe

- Correct

- Fast (zero-copy)

Correctness:
parse (serialize msg) = msg
valid msg ==> serialize (parse msg) = msg

F*: A programming language and
proof assistant based on type
theory that can prove theorems
about programs.

== Microsoft

Format description:

typedef struct _Sa (mutable PUII out) {
Ul 2 MajorVersion { MajorVersion == 1};
MinorVersion { MinorVersion == 01} ;
Min;
Max { Min <= Max }

F* code

formal low-level verified libraries
specification implementation for combinators

Safe high-performance C code

EverParse - Hyper-V vSwitch since 2019

* Now in Windows 10, 11, and Azure Cloud:
Every network packet passing through
Hyper-V is validated by EverParse’s
formally verified code

* Hand-written alternative: historically 30%
of all Hyper-V bugs are due to parsing

* NVSP, RNDIS, OIDs and NDIS
* Some of which are proprietary

* Other formats (TCP, etc.) in progress A sweet spot for formal proof

* 5K lines of 3D specification * Guarantees of memory safety and functional correctness
* 137 structs, 22 casetypes, 30 enum types * Provably correct by construction: Zero user proof effort

e Verified in 82 s * High-performance code generated from data format

. Generated 23K C code description in a high-level declarative language

) * High return on investment wrt. attack surface
* High performance: <2% cycles/byte
overhead

== Microsoft

Vale - Fast verified crypto (via verified assembly)

I I
Performance of verified symmetric crypto / hash implementations : Fastest :
1 OpenSSL
7 Vale AES-GCM-128 I [
___ ! assembly
eE == I
; ' code n
|
W 4
~~
o
O,
2 Jasmin ChaCha20 +
Poly1305

Vale AES-GCM-128
9
Vale AES-CBC+Poly1305 | HACL® ChachaPoly

Andrew Appel SHA256

(%

Ironclad Apps SHA256 ;

0 ™ ?

2013 2014 2015 2016 2017 2018 2019 2020

Year

Algorithm
AEAD

AES-GCM

Chacha20-Poly1305

ECDH
Curve25519
P-256
Signatures
Ed25519
P-256

Hashes

MD5

SHA1
SHA2-224,256
SHA2-384,512
SHA3

Blake2

Key Derivation
HKDF

Ciphers
Chacha20
AES-128,256
MACS

HMAC

Poly1305

Portable C (HACL*) Intel ASM (Vale)

v (AES-NI + CLMUL)

v (+ AVX,AVX2)
v (BMI2 + ADX)
v
v
v
v v (SHAEXT)
v
v
v (+ AVX,AVX2)
v v (see notes below)
v (+ AVX,AVX2)
v (AES-NI + CLMUL)
v v (see notes below)
v (+ AVX,AVX2) v (X64)

Agile API (EverCrypt)

AU U S N

EverCrypt

EVERCRYPT

A verified high-performance cryptographic provider
- A collection of algorithms (exhaustive)

- Easy-to-use APl (CPU auto-detection)

- Several implementations (multiplexing)

- APIs grouped by family (agility)

Clients get state-of-the art performance.
- 130,000 lines of Low™* and 24,000 lines of Vale (F* DSLs)
- 65,000 lines of C + 15,000 lines of ASM

Proof : Coderatio ~2:1

DICE R Windows

EverCrypt: A Fast, Verified, Cross-Platform Cryptographic Provider: IEEE S&P 2020
@® signal

& arm
‘ MBED
Azure CCF
ElectionGuard e' @ E

Verified cryptography in the

Quic transport,
MSQuic in Windows,

Linux kernel

Verified crypto in Firefox,
mbedTLS,

https://ieeexplore.ieee.org/document/9152808

a® Microsoft

Verified systems at SOSP, OSDI g

seL4 (SOSP 2009) HOL

Python

Ironclad (OSDI 2014)

Jitk (OSDI 2014
A‘v = lronFleet (SOSP 2015) ()
\/

assembly

FSCQ (SOSP 2015)

“ Yggdrasil (OSDI 2016)

X CertiKOS (OSDI 2016
,‘\' Komodo (SOSP 2017) | LCEMHKOS ()
DFSCQ (SOSP 2017)

Dafny ‘ '
LLVM \\/'

C

AN

N

/ .
‘/}f‘} Hyperkernel (SOSP 2017)

R CSPEC (OSDI 2018) m—miiei o5
ERRY | - q
Z3 ‘\\ ~—==! Nickel (OSDI 2018) ”(~
| Disk DI 201
\\t Serval (SOSP 2019) iskSec (05DI 2018) /Iﬂ
R\ = Perennial (SOSP 2019) §444
ROSCHLE \\Q\\ Vigor (SOSP 2019) () 7 Lo
VeriFast s S\AN\ P - AtomFS (SOSP 2019)
\\\\ Jitterbug (OSDI 2020) U
Agda \\ SCFTL (0SDI 2020) GoJournal (OSDI %021)
VeriBetrFs (OSDI 2020) SeKVM/VRM (SOSP 2021)

Knox (OSDI 2022) |\ DaisyNFS (OSDI 2022) H(/IA (0SDI 2022)

a® Microsoft

Languages for verifying systems code

Vore fike Haskell/ MLMM‘“ ke C/Ct+

e
- -

- ~
~
-7 R

° @ /" Verified ™ @
/ Rust? \
* Rust is like Haskell/ML: / * Rust is like C/C++:
« Type-safe * Rust is unique: * Low-level pointer manipulation
* Algebraic datatypes * Linear types * No garbage collector
* Pattern matching » Borrowing * Structs inside structs
* Side effects are restricted * In-place mutation of fields

a® Microsoft

Languages for verifying systems code

Vore fike Haskell/ ML_M‘“ ke C/Ct+

e Cloud Scale

* Structured Proofs * Refinement
* Separation Logic * Weak memory model

* Linear Types * Many concurrency primitives

a® Microsoft

Languages for verifying/safe systems code

Hore e Heskel/V. 4 —— ' "

>k Full Stack Security

Rust @ Verification *

Q Rust.Next

Jﬁ

Scale to Next Order
of Magnitude

Lock Free Data-structures for
Critical Infrastructure

%

<@

JF

a® Microsoft

Tomography of Computation

Channzl() el
¢1 BeginOpen() earl

cl, c0F
i b 0 BeginOpen()/car)

<0.Closa)

L W
?Callback{carl} Sertel, ob) - -
el.Cloze()

Timeout(00:00:00.0500000))
ol BeginOpen()/car) cl BaginOpen()/carl Timeout(00-00-00
1 EndOpenicarl)

o1 Closel)

Set{cl, 0}

20 BegmOpen()icarl TCallbackizarl)

Timeout(00:00:00 Y
o0 Clozsl) o1 EndOpan(ezrl)
o0l EndOpan(carQ)] ol Closa()

¢l BeginOpen() farl

@‘Lcc}

o] BegmOp:

S BEEmO e ATt |

Timeq Callbackicart) c1.C1
- Timeouy
oll Cllnsel) f
Callbacki b ey ExdUpen] Tlezel) U EndOpenieard) .] 7b
. i 1|EndOpdn{earl) 0.Closel] c EndOpen(carl) o1.Clo:
*Callback [l |l <0.Llazel) 0.Clos=()
1 N

ef).Cllpse{)

<1 EndOpencar])

Timsout(00 o0 EndOpen
Callbackfearl) ¢l Close() <0 Erdskn(card) 0.Closal) ¢0EndOpen(eard) el Ené
hicar]))
le1 BndOpenjledr]) |

fﬁ{icf_ IS

|20 EndOpenear)

c0.Closel)

1 EndOpen(earl)

SVG renderer with MSAGL-JS (microsoft.github.io) Giovanni Domenico Cassini
Topographic map of France

https://microsoft.github.io/msagljs/svg_backend/index.html

Concurrency

Part of Windows AppVerifier

Integral to Microsoft dev

Dev/Test of several
main Azure services

esting

KISS (2004)

[L

VeriSoft (1996)

Stateless Model
Checking

Chess (2008)

Cuzz (2010)

A 4

Probabilistic

Concurrency

Testing

Torch (2019)

a® Microsoft

SPIN

4
Zing (2004)

Stateful Model
Checking

. 4
P (2013)

Programming
Model

P# (2015)

Threads / Tasks

Coyote (2020)

Programming
¢ Model

State Machines

== Microsoft

Controlled Concurrency Testing

Systematically explore space of program behaviors

...by serializing concurrent program executions

...using a scheduler which resolves control non-determinism
...with deterministic replay

0 GitHub

Home

Concurrency Unit Testing with Coyote
Fearless coding for concurrent software
Explore Coyote

» Overview
» Get started with Coyote
v Tutorials
Overview
Write your first concurrency unit test
Test concurrent CRUD operations
» Writing mocks
Testing an ASP.NET service
Test failover and liveness
» Actors and state machines
» Concepts
v How-to guides
Integrate with a unit testing framework
Find liveness bugs effectively
Track code and actor activity coverage
Generate DGML diagrams
v Samples
Overview
v Task-based C# programs
Deadlock in bounded-buffer
» Actors and state machines
» Case studies

» API documentation

Key benefits

Concurrency Unit Testing with Coyote

Coyote is .NET library and tool designed to help ensure that your code is free of concurrency bugs.

Too often developers are drowning in the complexity of their own code and many hours are wasted trying to track down
impossible-to-find bugs, especially when dealing with concurrent code or various other sources of non-determinism (like
message ordering, failures, timeouts and so on).

o ® b . b o
® /o
. []
o) .
o.‘
. ®
‘ L]
@
L . \ ‘
.‘
. 3
> 009/029 0 1

Coyote helps write powerful, expressive tests for your code. We call these concurrency unit tests. You can declare sources
of non-determinism (such as timeouts and failures) as part of your Covote tests. The Covote testing tool can systematically

https://microsoft.github.io/coyote

CoyOte @ at Microsoft

Used in multiple Azure services

* Usage ranges from unit testing to end-to-end scenarios

* Covers failover, interleavings, timing, etc.

O GitHUb 11175, Test time in April 2022 (Applnsights) l157. Bugs found in April 2022 (Applnsights)

800k 180

700k 160 i

vy 1.2k stars o

WY NuGet | H -
Downloads 988.1K 1 LA _V\/\ A /\AA

Apr 3 Apr 10 Apr 17 Apr 24

!

'

3

!

u |

[

.

i

'

.

v

.

o

.

.

!

" "l
et wol

Apr 24 uTC-

COyOte @ =' Microsoft

/// \\\\ .
E" / @ ‘.: Coyote ! “3,’.‘ Coyote
\ G L]
.Net Intrinsics — C++
i Azure Logistics , [
Azure Batch Azure;jeer;[i::/\e/sorkmg i 1 service i Microsoft Teams
3 services E E 3 seryices
O— O O o— O o |
2017 2018 2019 2020 | 2021 2022 \
! | »
P#

State Machines Ca

Azure Compute
>10 services

B

Azure Storage

2 services (1 using the new
C++ Systematic Testing)

Azure Blockchain
2 services

a® Microsoft

Torch: Discover Synchronization “Torchpoints”

Randomized

Happens-before

tracking

Trap at all TorchPoints,
with a probability

+ Emulates a randomized
priority scheduler
+ Finds each bug with a
bounded probability
- Too many traps, may
cause timeouts

Track happens-before
relationship
Trap at independent
TorchPoints

+ Fewer traps
- High tracking overhead
- Tricky to get right

I API1(...); I

API2(..

I API3(.. I I APIA(.. I
I API5(...); i

Happens-before

inference

Infer happens-before
relationship at runtime
Trap at independent
TorchPoints

+ Fewer traps
+ Low tracking overhead

[SOSP’19]

Torch: concurrency and fault-handling bugs

A push-button bug-finding tool for existing systems
* Uses automated instrumentation + intelligent runtime algorithms

* Reports bugs with existing tests, and without false positives
* Concurrency bugs: due to thread-safety and order violation, interleaving, etc.
* Fault-handling bugs: due to runtime faults

Integrated into Microsoft’s & cloudsuild
e Each day: ~300K tests are run with Torch, Torch reports bugs in ~1K tests
* So far: reported ~3K unique bugs in ~30 Microsoft services

Microsoft

Fuzzing @ g7 Microsoft

Research

Grey Box — Model Based

DART & CUTE (2005)

v Symbolic Execution

Billions of Queries
Million S Bugs SAGE (2006) Pex (2006)
Vigilante (2008) Yogi (2007)
100s of Azure API bugs

Mocks (2011)

RESTler (2019)
11+ Hypervisor bugs
HyperFuzzer (2019)
In Visual Studio Enterprise

OneFuzz (2020)

Y

IntelliTest (202..)

== Microsoft

RESTler: REST API Fuzzing

RESTler = 15t Stateful REST API Fuzzer
* Takes an API specification and automatically generates tests

* Finds security and reliability bugs in REST services
e Systematic state-space search and learning from responses
* Input payload (schema and value) fuzzing
» Targeted checks for security property violations

* Open sourced on GitHub (since November 2020)

a8 Microsoft

RESTler: beyond fuzz

Automatically
generate tests

A

a4 Open API

RESTler VI‘\' Specification

core

“Does the servic
have the same API Regression
behavior across the & Parity

different regions validation
where it is deployed?”

“are there resource
leaks when running Reliability

a workload Wlt.h validation
resource creation

errors?”

“is authorization
working properly Security

across the entire validation
API”?

Same
input

Many inputs Sequences

of inputs
same API

same API

APl locl
APl loc2

a® Microsoft

HyperFuzzer — Fuzzing the Hypervisor

Unchartered territory

Traditional fuzzing rely on an OS layer for capturing
instructions

The hypervisor does not have an OS..., doh

* mixed executions between the guest and the hypervisor?
* “hidden” hardware checks?
* hypervisor internal states?

== Microsoft

HyperFuzzer — Nimble white + Grey box fuzzing

Key insight: It’s the VM state that drives the hypervisor execution

VM State

Task Register

Vector

EFLAGS Register

Control Registers

CR4
CR3
CR2
CR1
CRO

Interrupt Descriptor

Segment Selector

Physical Address
>

Linear Address

D

Segment Selector

=

Global Descriptor
Table (GDT)

Segment Sel. »| Seg. Desc.
Interrupt TSS Seg. Sel. @ TSS Desc.

- - - > Seg. Desc. |

Code, Data or

Stack Segment

Task-State
Segment (TSS)

Current
TSS

Task-State

Table (IDT) » TS5 Desc. | Segment ETSS)’
Interrupt Gate| — — - LDT Desc. } >
-
Task Gate
GDTR
“»| Trap Gate - ‘
Local Descriptor Exception Handler
R Table (LDT)
Call-Gate + | Seg.Desc

XCRO (XFEM)

Linear Address Space

Linear Addr. |—

CR3*

Call Gate

Protected Procedure

>
Code

Current- —

"

Linear Address

»| Dir Table Offset

Page Directory

Page Table Page

| Physical Addr.

Pg. Dir. Eniry |- lm| Pg. Tbl_Entry

This page mapping example is for 4-KByte pages

and 32-bit paging.

Instruction Sequence

Symbolic Execution

© ©

1000+ 95%

tests/second accuracy

e o
® . ® 11 bugs
e O
Hypervisor bug

bounty @250KS

-
-
.
’
-
.
.
.
.
L]
L
.
L4
R
.
- pe s
o8 =

e —
———
s » 3 -
L
i
'
e —
'
R
1
L]
i
i
. .
.
.

. .
- .
- “ees
i -

N sailability, Reliability andt.h'e;.S 9’s

-
-
-
-
-
. -
-
-
pre
-

What is a correct-by-
construction network?

Reality = Intent

The |deal of Verified Networks

[\-

The ideal of
verified software Lasting power of abstraction:
Tony Hoare, 2007 Internet Protocol
isolated from
underlying transport
Main 1. How is intent specified? Vint Cerf
guestions 2. Correct by construction: How is intent translated to configurations?
in the back 3. How is drift tracked and remediated?
of our minds 4. How can we prevent changes from violating intent?

— Azure Network Verification 2011-22

Prototype

Network Verification - a timeline e ey

Deployment

2012 2013 2014 2015 2016

SecGuru NoD Symmetries RCDCv1 NSG & UDR v1 Jitu
DC ACLs & Network and surgeries Reachability Checker =~ Reachability for Forms
Migration of Edge ACLs Optimized All-pairs Azure Data Centers customer Vnets Azure
Datalog reachability NLS v1 NWV
For generic in DCs Team

reachability in
virtual networks
2018 2019

2020 2021
NSG v2 RCDC v2 VNetVerifier vl VNetVerifier v2
Catch live Fully deployed Reachability for Azure Virtual
misconfigs NCVS nNetwork Change Verification System

customer VNets

Net kM
Spock, Zen, NLS, ONE etwork Manager

== Microsoft

Live Monitoring of Forwarding Behavior

Global reachability as local contracts

v' Each router has a fixed rule for a set of
addresses

v Enough to verify rule is enforced on
Topology Database each router

|

Reachability
invariants

M'NNN DI
for, [N ror, I JToR. N JToR,

10.0.0.0/16 11.0.0.0/16 12.0.0.0/16 13.0.0.0/16

Error Reports

5 Billion Z3 queries per day [Jayaraman et al, Sigcomm 2019]

Spock + Zen: programming local checks for each device

Initialization
Precompute expected next hops
For each device in the network

[SpockClassInitialize]
public void Initialize(Network n) {
this.ComputeExpectedNextHops(n.Topology) Local scope
¥ ./r— Check each device
[SpockTestMethod(scope: Device)] separately, in paraIIeI

public void LocalNextHopsTest(Device d) {
foreach (var (prefix, nexthops) in this.expectedNextHops[d]) {
if (prefix == "0.0.0.0/0") {
var rule = d.Fib.GetEntry(prefix);
Assert.AreNotEqual(rule, null);
Assert.AreEqual(nexthops, rule.Interfaces);

} else {
s g - o e e = = e N | Assert.AllPackets(
SEEEEE SHEESS HESEES If(ContainedBy(prefix),
NextHops(d, hops => nexthops.SetEquals(hops))));
Correct local forwarding ! -\
}

N
Verification
Check that all possible packets
are forwarded correctly.

Network Verification — Scope and Targets

Network Wide

Internal
(Azure Ops)

Design Time
(Control Plane)

SecGuru

NoD

Symmetries
and surgeries

RCDC

NSG

NCVS

AVNM
VNetVerifier

Router Local

External
(Customers)

Runtime
(Data Plane)

== Microsoft

== Microsoft

Enablers —Automated Reasoning Engines

z 5 Efficient Symbolic Solver

Text and Programmatic API
Leonardo de Formalism support datatypes used in software

Moura
\/

Efficient search algorithms
+

Solvers tuned for datatypes used in software

NN N\

(optimal) Infeasible

. Consequences
Solution Core

Zen

ONE

NLS

CH reflection:
Code and Configurations = Constraints
BDDs, Z3

Virtual Machines
Emulation
Fidelity at Level of Router Software

Network Logic Solver
Simulation
Fidelity at Level of Standards and Firmware

== Microsoft

NCVS: Network Change Verification System

. .

s @
\ Topology NLS: Simulation | — [
PN ﬁj

Manual
Operating — ’ S"L':'C Output: Routing tables
Procedure = ' — (RIBs)
(MOP) — h (,'JT_ T4

Configurations

ONE: Emulation

100s of migrations verified
Dozens of Sev 1 & 2 outages prevented

a® Microsoft

/enGuru - Virtual Network Verifier internals

Virtual deployment Abstract network graph Virtual policy IR Backend solver
pulled via public REST APIs represents topology connectivity captures policy semantics SMT, BDDs, etc.

| |
Z3

Backends

a® Microsoft

/en: an intermediate policy representation

<bool> Allow(Nsg nsg, <Packet> pkt, int i) {
if (i >= nsg.Rules.Length)
return false;

var rule = nsg.Rules[i]; Zen
return If(Matches(rule, pkt), .
rule.Permit, L|bra ry

Allow(nsg, pkt, i+1));

Embedded Domain-Specific Language in C# [1]
https://github.com/microsoft/zen

Backends

[1] A General Framework for Compositional Network Modeling, R. Beckett, R. Mahajan, HotNets 2020

https://github.com/microsoft/zen

/en: an intermediate modeling language

Virtual WAN Service Firewalls Service Endpoints
Route Tables Virtual Peering Private Endpoints

Complex translations
Must implement one per policy type

Symbolic packet System of equations

___ Y
i deDl:IZ = (bl/\ b4) \% —|b7 Error! i
by by | by [by | bs [b [by | ... gy, 3, = —wdp, 1, Abye el

/en: an intermediate modeling language

Virtual WAN Service Firewalls Service Endpoints
Route Tables Virtual Peering Private Endpoints

T

Simple translations
one translation to a high-level policy IR

deDl,Iz = (bl/\ b4) VvV _Ib7

Error!
[(by [by [bs [by|bs|bg by |...] fwdp, , = ~fwdp, ;. A by

Success!

Symbolic packet System of equations

a® Microsoft

Confluences

SDN Programming Languages
Symmetries in Datacenter Networks Bi-simulation and Congruences
IP header space vs. Forwarding Equivalence Classes Hash-tries, Header Space Algebras and BDDs
Modularity of Forwarding Tables Floyd-Hoare and Rely/Guarantee Proof Rules
BGP Synchronization Abstract Dijkstra and A*

Capturing Semantics of Policies Reflection, Meta-programming

a® Microsoft

Summary: Logic, Tomography and Networks

Symbolic Model Checking

Predicate

Interpolation (2000
Abstraction (1997) 163(2010) P ()

Static Driver Verifier

<
Proof Rules as Horn

= Clauses (2012)

SLAM (2001) ‘
T N . : AY

Solidity, MathWorks,..
‘ Z3 PDR (2012) Duality (2012)

Yogi (2009)

Crab Al in AFO eBPF filter
SMACK (2014) €-------= > Corral (2014)

X 1

SPACER (2014) ‘ "a 7

‘ VeriSoft (1996) | ‘ SPIN

Concurrency Testing

Statsless Model v
e Zing (2004)
Several Kernel OS bugs Chess (2008)
Sistsul Mode

i Chacking

Cuzz (2010)
Part of Windows AppVerifier

Probabilistic P (2013)
\, Concurrency
N Testing
\ Frogrammng
Integral to Microsoft dev Modod

P# (2015)

/’/ e
Torch (2019) ay "y

Coyote (2020)

Dev/Test of several

main Azure services

Threads / Tasks
State Machines

Model Based Testing and Model Programs

‘ ASML (1999) ‘

NModel (2004)

Formula (2008) ‘

e
SpecExplorer
Protocol Specs and Tests (2004)

PL for Network Verification |

RFC Spec Exploration

¥ 4
Cloud API Contracts
‘ Bosque (2019) ‘ VY (20189) ‘ ‘ Zen (2019) ‘

i | L EVH
Fuzzing @ &% Microsoft

DART & CUTE (2005)
Grey Box — Model Based v Symbolic Execution
Billions of Queries
Million $ Bugs SAGE (2006) ‘ Pex (2006) ‘
Vigilante (2008) ‘ Yogi (2007) ‘

100s of Azure APl bugs

RESTler (2019)

11+ Hypervisor bugs
HyperFuzzer (2019)

L

¥

In Visual Studio Enterprise IntelliTest (202..)

L

OneFuzz (2020)

Maocks (2011)

Systems Code Verification
#P & Logics eogie (2008)
Ge ek A= J‘;»:qu proj| F# (2001) bs&gr)
KISS (2004)

e fresh Qrole G D = Proj,,

N Spec# (2004)
Verve (2010) [= { F7 (2007)

\ : “ HAVOC (2010) Ve (2009)
| vdleorn) | F*(2012) | i =
I
[== ¥ Chalice (2010,
‘ EverCrypt (2019) | | EverParse (2019) Dafny (2010) ‘ alice (2010)
} | L

Verona (2022) ‘ CIVL (2015) Viper (2016)

Ironfleet (2015)

SLAyer (2008) Steel (2020) | Verisol (2018)

e e ortd]| Anmada (2020)
. ‘

Verus (2022) !
Separation Logic (1999)

NCVS: Network Change Verification System

Spack

= Mc
B, = £~

Manual
Operating]l . Output; Routing tables
Procedure (RIBs)

[(e]

Configurations

ONE: Emulation

