
Formal Methods
at Microsoft

Nikolaj Bjørner, Microsoft Research, RiSE
TLA+ Conference @ StrangeLoop
September 22 - 2022

Formal Methods tools
from Design to Diagnoses

Design Implement Test Deploy Diagnose

TLA+

KOKALꓱꓯN

F*

Coyote

NCVS

TorchHyperFuzzer

EverParse

RESTler

Zen

Bosque

EverCrypt

Verus

A tool-oriented view

I will talk about lots of tools:

• Scientific heritage

• Target Use

• Impact

• North Stars

Lots of material, yet very partial

I will not cover: TLA+, LꓱꓯN, Koka,
MakeCode, Orchestration, Parallel
Computation, Synthesis, RegEx

No theorems …. but I will point to a z3 guide

Logic – Calculus of Computation

• Symbolic Model Checking

• Model-Based Testing

• Program Verification

Tomography of Computation

• Concurrency Testing

• Fault Injection

• Fuzzing

Logic and Tomography

• Network Verification

Differential, Integral Calculus

Dynamics, Conduction,..

Matlab, Mathemetica, Simulink

Logic

Computation

Claim: Practically all modern program analysis tools involve solving logical formulas

https://iiclondra.esteri.it/iic_londra/it/gli_eventi/calendario/2017/12/the-genius-of-james-clerk-maxwell.html

Azure Network

Verification

Verified Crypto

Libraries & Protocols

Security Risk

Detection

Dynamics

AX

Verifying C

Compiler

Smart Contract

Verification

Quantum

Compilation

ALIVE2

Translation Validation

for LLVM & Visual C++

SVACE

Static Analysis Engines

Axiomatic

Economics

Assembly Line

Optimization

Biological

Computations

Artificial

Life

Propositional

Satisfiability Solving

Breakthroughs in 2000s

Cheap local Inferences

Garbage collect useless clauses

Breakthroughs in 1960s

Harnessed since 1990s

LP: global Inferences

IP: Cuts, Branch and Bound

Breakthroughs since 1990s

Powerful domain-tailored

global propagators

Breakthroughs late 2000s

SAT + global inferences +

global propagators

SAT

Mixed Integer

Programming MIP

Constraint

Programming CP

Satisfiability Modulo

TheoriesSMT

Predicate
Abstraction (1997)

Yogi (2009)

Proof Rules as Horn
Clauses (2012)

SLAM (2001)

SPACER (2014)

Z3 PDR (2012) Duality (2012)

SMACK (2014)

Interpolation (2000)IC3 (2010)

Corral (2014)

Symbolic Model Checking

Static Driver Verifier

Solidity, MathWorks,..

Global Guidance (2020)

Algebraic DT (2021)
Uninterpreted

Functions (2022)

Crab
(2017)

Crab AI in AFO eBPF filter

Arie Gurfinkel
U. Waterloo

∀𝑿. 𝑿 > 𝟏𝟎𝟎→mc(𝑿,𝑿 − 𝟏𝟎)

∀𝑿, 𝒀, 𝑹. 𝑿 ≤ 𝟏𝟎𝟎 mc(𝑿 + 𝟏𝟏, 𝒀) mc(𝒀,𝑹) →mc(𝑿,𝑹)

∀𝑿,𝑹. mc(𝑿,𝑹) ∧ 𝑿 ≤ 𝟏𝟎𝟏 → 𝑹 = 𝟗𝟏

Solver finds solution for mc (McCarthy 91 function)

Constrained Horn Clauses

../tutorial/mc.smt2

ASML (1999)

SpecExplorer
(2004)

NModel (2004)

Formula (2008)

IVY (2019) Zen (2019)Bosque (2019)

Protocol Specs and Tests

Cloud API Contracts

RFC Spec Exploration

PL for Network Verification

Model Based Testing and Model Programs

Zen
Library

Zen<bool> Allow(Nsg nsg, Zen<Packet> pkt, int i) {
if (i >= nsg.Rules.Length)

return false;
var rule = nsg.Rules[i];
return If(Matches(rule, pkt),

rule.Permit,
Allow(nsg, pkt, i+1));

}

Embedded Domain-Specific Language in C# [1]

SMT solver

BDD engine

Interpreter

Test generator

Backendshttps://github.com/microsoft/zen

Zen - an intermediate policy representation

[1] A General Framework for Compositional Network Modeling, R. Beckett, R. Mahajan, HotNets 2020

https://github.com/microsoft/zen

Bosque - for Financial Compliance (OSFIR)

Functional IR (MorphIR)

• Referential Transparency

• Combinators: Map, Fold

• Analysis Friendly

Bosque provides

• Verification

• Test-case generation

typedecl ZipcodeUS = /[0-9]{5}(-[0-9]{4})?/;

function isNYCode(s: StringOf<ZipcodeUS>): Bool {
return s.value().startsWith(/1[0-4]/);

}

isNYCode('10001'#ZipcodeUS) //true
isNYCode('87111'#ZipcodeUS) //false
isNYCode("12") //type error not a StringOf<ZipcodeUS>
isNYCode('WC1E'#PostcodeUK) //type error not a StringOf<ZipcodeUS>

typedecl Percentage = Nat & {
invariant $value <= 100n;

}

let a = 100#Percentage;
let b = 101#Percentage; //Runtime Error
let q = a + 25#Percentage; //Runtime Error

Bosque – The Future of the Cloud is APIs

Cloud Service Compositionality

Cloud Service Contracts

• @requires

• @ensures

• @invariant

String Constraint Types

Bosque provides

• Fuzz Tests

• Auto-Mock

KISS (2004)

F* (2012)

CIVL (2015)

VeriSol (2018)Steel (2020)

VCC (2009)

Systems Code Verification

F7 (2007)

Verus (2022)

SLAyer (2008)

Verona (2022)

Armada (2020)

Chalice (2010)

Viper (2016)

Separation Logic (1999)

HAVOC (2010)

Boogie (2004)FP & Logics

EverCrypt (2019) EverParse (2019)

Vale (2017)

F# (2001)

Ironfleet (2015)

Spec# (2004)

Verve (2010)

Dafny (2010)

Embedded
domain-
specific

languages

Interfacing
with existing

toolchains

Logical
foundations
of programs

and proofs

Verified
assembly code

Verified C
programs

Concurrency
& distribution

Languages embedded in F*
Certificate parsers Quantum programs Concurrency & weak memory models

Verified parser
generator

Key Exchange

F*: A Proof-oriented Programming Language

2007 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22

Fable F7 Fine FX F5 F* monadic-F* relational-F* multi-monadic-F* universal-F* meta-F* layered-F*

JavaScript

TLS-1.3
record
layer

HACL*-v1
crypto

EverParse

Vale
asm
crypto

MPC

EverCrypt

Signal

Steel

Quic record layer
DICE

Noise
Zeta

HACL-v2 xN
Compiler
certification

TypeScriptSecure
compilation

Foundations

Applications

• Extensional type theory, with refinement subtyping, proof irrelevance, tactic & SMT-based proofs

• Expressiveness to state and attempt a proof of nearly any statement in mathematics (like Coq, Lean etc.)

• With a focus on programming, including features, like state, exceptions, non-determinism, concurrency, IO

• Integrated with Z3, so that many proofs are automatic,
• but when Z3 gives up, you can fall back on manual proofs

EverParse

Mathematically
proven parser
generator

High-performance
code generation

Integration into
critical systems
code

• Now in Windows 10, 11, and Azure Cloud:
Every network packet passing through
Hyper-V is validated by EverParse’s
formally verified code

• Hand-written alternative: historically 30%
of all Hyper-V bugs are due to parsing

• NVSP, RNDIS, OIDs and NDIS
• Some of which are proprietary
• Other formats (TCP, etc.) in progress

• 5K lines of 3D specification
• 137 structs, 22 casetypes, 30 enum types

• Verified in 82 s

• Generated 23K C code

• High performance: <2% cycles/byte
overhead

EverParse - Hyper-V vSwitch since 2019

A sweet spot for formal proof
• Guarantees of memory safety and functional correctness
• Provably correct by construction: Zero user proof effort
• High-performance code generated from data format

description in a high-level declarative language
• High return on investment wrt. attack surface

Vale - Fast verified crypto (via verified assembly)

Ironclad Apps SHA256 Andrew Appel SHA256

HACL* ChachaPolyVale AES-CBC+Poly1305

Vale AES-GCM-128

Jasmin ChaCha20 +
Poly1305

Vale AES-GCM-128

0

1

2

3

4

5

6

7

2013 2014 2015 2016 2017 2018 2019 2020

G
B

/s

Year

Performance of verified symmetric crypto / hash implementations

EverCrypt
A verified high-performance cryptographic provider
- A collection of algorithms (exhaustive)
- Easy-to-use API (CPU auto-detection)
- Several implementations (multiplexing)
- APIs grouped by family (agility)

Clients get state-of-the art performance.
- 130,000 lines of Low* and 24,000 lines of Vale (F* DSLs)
- 65,000 lines of C + 15,000 lines of ASM

Proof : Code ratio ~ 2 : 1

Azure CCF

DICE

EverCrypt: A Fast, Verified, Cross-Platform Cryptographic Provider; IEEE S&P 2020

Verified cryptography in the
Linux kernel

Quic transport,
MSQuic in Windows,

Verified crypto in Firefox,
mbedTLS,

https://ieeexplore.ieee.org/document/9152808

Dafny

Isabelle
HOL

CoqZ3

seL4 (SOSP 2009)

Jitk (OSDI 2014)

FSCQ (SOSP 2015)

CertiKOS (OSDI 2016)

Ironclad (OSDI 2014)

IronFleet (SOSP 2015)

Yggdrasil (OSDI 2016)

Verified systems at SOSP, OSDI

DFSCQ (SOSP 2017)
Komodo (SOSP 2017)

Nickel (OSDI 2018)
DiskSec (OSDI 2018)

Serval (SOSP 2019)

Jitterbug (OSDI 2020)

VeriBetrFS (OSDI 2020)

Vigor (SOSP 2019)

SCFTL (OSDI 2020)
GoJournal (OSDI 2021)

Perennial (SOSP 2019)

AtomFS (SOSP 2019)

SeKVM/VRM (SOSP 2021)

C

Go
Rosette

Agda

VeriFast

C

CSPEC (OSDI 2018)
Hyperkernel (SOSP 2017)

LLVM

Python

assembly

DaisyNFS (OSDI 2022)Knox (OSDI 2022) VIA (OSDI 2022)

Languages for verifying systems code

More like Haskell/ML More like C/C++

DafnyF* VCC
Verified

Rust?

• Rust is like Haskell/ML:
• Type-safe

• Algebraic datatypes

• Pattern matching

• Side effects are restricted

• Rust is like C/C++:
• Low-level pointer manipulation

• No garbage collector

• Structs inside structs

• In-place mutation of fields

• Rust is unique:
• Linear types

• Borrowing

Languages for verifying systems code

More like Haskell/ML More like C/C++

DafnyF* VCCVerus

Steel

• Structured Proofs

• Separation Logic

• Linear Types

Armada

• Refinement

• Weak memory model

• Many concurrency primitives

Verona

• Cloud Scale

• PL for memory safety

Languages for verifying/safe systems code

More like Haskell/ML More like C/C++

DafnyF* VCCVerus

Steel

Scale to Next Order
of Magnitude

Armada

Lock Free Data-structures for
Critical Infrastructure

Verona

Full Stack Security

Rust.Next

Rust Verification

Tomography of Computation

Giovanni Domenico Cassini
Topographic map of France

SVG renderer with MSAGL-JS (microsoft.github.io)

https://microsoft.github.io/msagljs/svg_backend/index.html

KISS (2004)

Part of Windows AppVerifier

Several Kernel OS bugs

Integral to Microsoft dev

Dev/Test of several
main Azure services

Concurrency Testing

Controlled Concurrency Testing

Systematically explore space of program behaviors
…by serializing concurrent program executions
…using a scheduler which resolves control non-determinism
…with deterministic replay

𝑆0

𝑆2𝑆1 𝑆3

𝑆5𝑆4 𝑆6 𝑆7 𝑆8 𝑆9 𝑆10 𝑆11 𝑆12

Bug

https://microsoft.github.io/coyote

https://microsoft.github.io/coyote

Used in multiple Azure services

• Usage ranges from unit testing to end-to-end scenarios

• Covers failover, interleavings, timing, etc.

Downloads 988.1K

Coyote @

Test time in April 2022 (AppInsights) Bugs found in April 2022 (AppInsights)

Coyote @

Azure Networking
5 services

Azure Storage
2 services (1 using the new

C++ Systematic Testing)

Azure Logistics
1 service

20192017 2018 20212020

Coyote

.Net Intrinsics

Azure Blockchain
2 services

Azure Batch
3 services

Azure Compute
>10 services

Microsoft Teams
3 services

2022

P#

State Machines

Coyote

C++

Torch: Discover Synchronization “Torchpoints”

API4(...);

API2(...);

API3(...);

API1(...);

API5(...);

Randomized

Trap at all TorchPoints,
with a probability

+ Emulates a randomized
priority scheduler

+ Finds each bug with a
bounded probability

- Too many traps, may
cause timeouts

Happens-before
tracking

Track happens-before
relationship

Trap at independent
TorchPoints

+ Fewer traps
- High tracking overhead

- Tricky to get right

Happens-before
inference

Infer happens-before
relationship at runtime

Trap at independent
TorchPoints

+ Fewer traps
+ Low tracking overhead

[SOSP’19]

Torch: concurrency and fault-handling bugs

A push-button bug-finding tool for existing systems
• Uses automated instrumentation + intelligent runtime algorithms

• Reports bugs with existing tests, and without false positives
• Concurrency bugs: due to thread-safety and order violation, interleaving, etc.

• Fault-handling bugs: due to runtime faults

Integrated into Microsoft’s
• Each day: ~300K tests are run with Torch, Torch reports bugs in ~1K tests

• So far: reported ~3K unique bugs in ~30 Microsoft services

DART & CUTE (2005)

SAGE (2006) Pex (2006)

HyperFuzzer (2019)

IntelliTest (202..)

Mocks (2011)

RESTler (2019)

Symbolic Execution

Vigilante (2008) Yogi (2007)

Grey Box – Model Based

Billions of Queries
Million $ Bugs

100s of Azure API bugs

11+ Hypervisor bugs

In Visual Studio Enterprise

Fuzzing @

OneFuzz (2020)

RESTler: REST API Fuzzing

RESTler = 1st Stateful REST API Fuzzer

• Takes an API specification and automatically generates tests

• Finds security and reliability bugs in REST services
• Systematic state-space search and learning from responses

• Input payload (schema and value) fuzzing

• Targeted checks for security property violations

• Open sourced on GitHub (since November 2020)

RESTler: beyond fuzz

RESTler
core

Security
validation

Regression
& Parity

validation

Reliability
validation

“is authorization
working properly
across the entire
API”?

“are there resource
leaks when running
a workload with
resource creation
errors?”

“Does the service
have the same API
behavior across the
different regions
where it is deployed?”

Automatically
generate tests

Many inputs
same API

Sequences
of inputs
same API

Same
input
API v1
API v2

Same
input

API loc1
API loc2

HyperFuzzer – Fuzzing the Hypervisor

Traditional fuzzing rely on an OS layer for capturing
instructions

The hypervisor does not have an OS…, doh

• mixed executions between the guest and the hypervisor?

• “hidden” hardware checks?

• hypervisor internal states?

Unchartered territory

Key insight: It’s the VM state that drives the hypervisor execution

Instruction Sequence

+

VM State

=

Symbolic Execution

1000+
tests/second

95%
accuracy

11 bugs

HyperFuzzer – Nimble white + Grey box fuzzing

Hypervisor bug
bounty @250K$

Availability, Reliability and the 5 9’s

What is a correct-by-
construction network?

Reality ≡ Intent

The Ideal of Verified Networks

The ideal of
verified software
Tony Hoare, 2007

1. How is intent specified?

2. Correct by construction: How is intent translated to configurations?

3. How is drift tracked and remediated?

4. How can we prevent changes from violating intent?

Main
questions
in the back
of our minds

 Azure Network Verification 2011-22

Lasting power of abstraction:
Internet Protocol

isolated from
underlying transport

Vint Cerf

Network Verification - a timeline

SecGuru
DC ACLs &

Migration of Edge ACLs

2012 2013 2014 2015 2016

NoD
Network

Optimized
Datalog

For generic
reachability in

virtual networks

Symmetries
and surgeries

All-pairs
reachability

in DCs

RCDC v1
Reachability Checker

Azure Data Centers

NSG & UDR v1
Reachability for
customer Vnets

NLS v1

2018 2019 2020 2021

NSG v2
Catch live
misconfigs

Prototype

Research paper

Deployment

RCDC v2
Fully deployed

NCVS Network Change Verification System

Spock, Zen, NLS, ONE

VNetVerifier v1
Reachability for
customer VNets

VNetVerifier v2
Azure Virtual

Network Manager

Jitu
Forms
Azure
NWV
Team

R1 R2 R3 R4

D1 D2 D3 D4

A1 A2 A3 A4 B1 B2 B3 B4

ToR1 ToR2 ToR4ToR3

Reachability
invariants

Topology Database

Error Reports
10.0.0.0/16 11.0.0.0/16 12.0.0.0/16 13.0.0.0/16

Global reachability as local contracts

✓Each router has a fixed rule for a set of
addresses

✓Enough to verify rule is enforced on
each router

5 Billion Z3 queries per day [Jayaraman et al, Sigcomm 2019]

Live Monitoring of Forwarding Behavior

Spock + Zen: programming local checks for each device

[SpockClassInitialize]
public void Initialize(Network n) {
this.ComputeExpectedNextHops(n.Topology)

}

[SpockTestMethod(scope: Device)]
public void LocalNextHopsTest(Device d) {
foreach (var (prefix, nexthops) in this.expectedNextHops[d]) {
if (prefix == "0.0.0.0/0") {
var rule = d.Fib.GetEntry(prefix);
Assert.AreNotEqual(rule, null);
Assert.AreEqual(nexthops, rule.Interfaces);

} else {
Assert.AllPackets(

If(ContainedBy(prefix),
NextHops(d, hops => nexthops.SetEquals(hops))));

}
}

}

Initialization
Precompute expected next hops
For each device in the network

Verification
Check that all possible packets
are forwarded correctly.

Local scope
Check each device
separately, in parallel

Correct local forwarding

Network Verification – Scope and Targets

Internal
(Azure Ops)

External
(Customers)

Network Wide Router Local

Design Time
(Control Plane)

Runtime
(Data Plane)

SecGuru

NoD

Symmetries
and surgeries

RCDC

NSG

AVNM
VNetVerifier

NCVS

Enablers –Automated Reasoning Engines

Zen

NLS

ONE

C# reflection:
Code and Configurations Constraints
BDDs, Z3

Virtual Machines
Emulation
Fidelity at Level of Router Software

Network Logic Solver
Simulation
Fidelity at Level of Standards and Firmware

NCVS: Network Change Verification System

L2

T3 T4

SoNiC

NLS: Simulation

ONE: Emulation

RNG RNG

DC DC DC DC
DC DC

Topology

Configurations

Manual
Operating
Procedure

(MOP)

Output: Routing tables
(RIBs)

Spock

100s of migrations verified
Dozens of Sev 1 & 2 outages prevented

Virtual deployment
pulled via public REST APIs

If

&& false

==

...

guard else
then

...

10.0.*.*Field

DstIp

Virtual policy IR
captures policy semantics

Abstract network graph
represents topology connectivity

z

x

y

Backend solver
SMT, BDDs, etc.

ZenGuru - Virtual Network Verifier internals

Backends

Zen
Library

Zen<bool> Allow(Nsg nsg, Zen<Packet> pkt, int i) {
if (i >= nsg.Rules.Length)

return false;
var rule = nsg.Rules[i];
return If(Matches(rule, pkt),

rule.Permit,
Allow(nsg, pkt, i+1));

}

Embedded Domain-Specific Language in C# [1]

SMT solver

BDD engine

Interpreter

Test generator

Backendshttps://github.com/microsoft/zen

Zen: an intermediate policy representation

[1] A General Framework for Compositional Network Modeling, R. Beckett, R. Mahajan, HotNets 2020

https://github.com/microsoft/zen

NSGs

Route Tables VNets

FirewallsService Endpoints

Private Endpoints

Service Firewalls

ASGs

Virtual WAN

Virtual Peering

fwdD1,I2 = (b1∧ b4) ∨ ¬b7
fwdD1,I2 = ¬fwdD1,I2 ∧ b16

b1 b2 b3 b4 b5 b6 b7 | …

Constraint Solver

Error!
Success!

System of equationsSymbolic packet

Complex translations
Must implement one per policy type

Zen: an intermediate modeling language

Zen: an intermediate modeling language

fwdD1,I2 = (b1∧ b4) ∨ ¬b7
fwdD1,I2 = ¬fwdD1,I2 ∧ b16

b1 b2 b3 b4 b5 b6 b7 | …

Constraint Solver

Error!
Success!

System of equationsSymbolic packet

NSGs

Route Tables VNets

FirewallsService Endpoints

Private Endpoints

Service Firewalls

ASGs

Virtual WAN

Virtual Peering

ZenSimple translations
one translation to a high-level policy IR

Symmetries in Datacenter Networks

IP header space vs. Forwarding Equivalence Classes

Modularity of Forwarding Tables

BGP Synchronization

Capturing Semantics of Policies

Bi-simulation and Congruences

Hash-tries, Header Space Algebras and BDDs

Floyd-Hoare and Rely/Guarantee Proof Rules

Abstract Dijkstra and A*

Reflection, Meta-programming

SDN Programming Languages

Confluences

Summary: Logic, Tomography and Networks

