
reTLA: Towards an automatic transpiler

from TLA+ to VMT
TLA+ Conference 2022

Jure Kukovec1,5, Aman Goel2, Igor Konnov1, Stephan Merz3, and
Karem Sakallah4

1Informal Systems, Austria
2Amazon Web Services, USA

3University of Lorraine, CNRS, Inria, LORIA, Nancy, France
4University of Michigan, Ann Arbor, USA

5Email: jure@informal.systems

In this talk, we present our ongoing attempts to bring the capability of
automatically inferring inductive invariants for specifications written in a subset
of TLA+, through automatic translation of a restricted fragment of TLA+ to
VMT [3]1 using Apalache [10], followed by automatic inference of quantified
inductive invariants using IC3PO [6, 5].

IC3PO for inductive invariant inference. IC3PO is a recently-developed
model checker that utilizes different structural features in protocol specifica-
tions to prove the safety of distributed protocols by automatically inferring
compact quantified inductive invariants. The key insight underlying IC3PO is
that structural regularity and quantification are closely related concepts that
express protocol invariance under different re-arrangements of its components
and its unbounded evolution over time. IC3PO utilizes the inherent spatial and
temporal regularity in protocol specifications to significantly boost IC3/PDR-
style2 verification and learn quantified predicates. For safe protocols, IC3PO
systematically computes quantified inductive invariants over protocol instances
of increasing sizes, until protocol behaviors saturate, concluding with an induc-
tive proof that works for all protocol instances. Else, a finite counterexample
trace is produced if instead the protocol can violate the safety property. In
particular, IC3PO was recently shown in [7] to automatically infer an inductive
invariant for Paxos [8], that identically matches the human-written proof previ-
ously derived with significant manual effort using interactive theorem proving.

1VMT format is an extension of SMT-LIB [1] to represent symbolic transition systems.
2IC3 [2] and PDR [4] are state-of-the-art model checking algorithms that are widely adopted

for hardware verification.

1



Translating TLA+ to VMT in Apalache. As TLA+ is an incredibly ex-
pressive language, we first restrict the fragment, for which we attempt an auto-
matic translation. We dub this fragment reTLA, short for relational TLA+, as
the fragment is centered around relations or, in a more general sense, functions
with primitive-valued (co)domains (e.g., integers or strings, but not records). A
complete characterization of reTLA is available in the Apalache documentation
[9]. For each valid reTLA expression, we construct an automatic translation
to VMT. The restrictions imposed on reTLA ensure that the translated formu-
las fall into the (quantified) logic of equality with uninterpreted functions. We
leverage Apalache’s type system [11], to determine the sorts of the expressions
in the VMT encoding. For example, take the TLA+ definition

A
∆
= [F except ![1] = true]

where F is some function whose Apalache type is Int → Bool . Assume that the
VMT translation of F is some function f , declared as (declare-fun f (Int) Bool).
The translation of A gives us a function a, defined as

(define-fun a ((x Int)) Bool (ite (= x 1) true (f x)))

Note that reTLA currently does not permit sets-valued data. Concretely,
(certain) sets are allowed to be quantified over, but set operators, such as union
or intersection, are disallowed in the fragment.

Integers as a total order. Our encoding supports integer values, but not
integer arithmetic. We do this as a form of syntactic sugar: in our encoding,
Apalache integers are translated not to VMT integers, but to an uninterpreted
sort Int with a defined operator <Int , which satisfies the axioms of a total
order. Then, integer literals are translated to distinct constants of the Int sort,
such that their relative order w.r.t. <Int matches their standard integer order.
One may use integer (in)equality notation (<,>,≤,≥), which gets translated
to the equivalent combination of <Int and equality. Importantly, this allows us
to remain outside the integer-arithmetic fragment of VMT. Note that, because
we treat integers as syntactic sugar, there are a few consequences which are
counter-intuitive, such as the formula ∃j ∈ Int : 1 < j < 2 not being trivially
false. Since 1 and 2 are just syntax sugar for two totally-ordered constants of
the Int sort, there is no constraint on the existence of “gap” values. We accept
this as a trade-off, to retain the ease of use, which comes from being able to use
the standard integer and (in)equality notation in TLA+.

Evaluation and future work. As a proof of concept, we were able to express
a number of distributed algorithms in reTLA, including a client-server protocol,
decentralized lock, sharded key-value store, and two-phase commit, to automat-
ically translate them into VMT using Apalache, and verify their safety proper-
ties for arbitrary instance sizes using IC3PO. Other protocols such as versions
of Paxos and Raft are currently outside the scope of reTLA. These preliminary
results encourage us to extend the scope of the translation and hopefully provide
another tool for the automatic verification of TLA+ specifications.

2



References

[1] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Mod-
ulo Theories Library (SMT-LIB). www.SMT-LIB.org. 2016.

[2] Aaron R. Bradley. “SAT-Based Model Checking without Unrolling”. In:
Proceedings of the 12th international conference on Verification, model
checking, and abstract interpretation. VMCAI’11. Austin, TX, USA: Springer-
Verlag, 2011, pp. 70–87. isbn: 978-3-642-18274-7. url: http://dl.acm.
org/citation.cfm?id=1946284.1946291.

[3] Alessandro Cimatti et al. Verification Modulo Theories. http://www.vmt-
lib.org. 2011.

[4] Niklas Een, Alan Mishchenko, and Robert Brayton. “Efficient Implemen-
tation of Property Directed Reachability”. In: Proceedings of the Inter-
national Conference on Formal Methods in Computer-Aided Design. FM-
CAD ’11. Austin, Texas: FMCAD Inc, 2011, 125–134. isbn: 9780983567813.

[5] Aman Goel and Karem A. Sakallah. IC3PO: IC3 for Proving Protocol
Properties. https://github.com/aman-goel/ic3po.

[6] Aman Goel and Karem A. Sakallah. “On Symmetry and Quantification:
A New Approach to Verify Distributed Protocols”. In: 13th Intl. Symp.
NASA Formal Methods (NFM 2021). Ed. by Aaron Dutle et al. Vol. 12673.
LNCS. Springer, 2021, pp. 131–150.

[7] Aman Goel and Karem A. Sakallah. “Towards an Automatic Proof of
Lamport’s Paxos”. In: Formal Methods in Computer-Aided Design (FM-
CAD). Ed. by Ruzica Piskac and Michael W Whalen. New Haven, Con-
necticut, 2021, pp. 112–122. doi: 10.34727/2021/isbn.978-3-85448-
046-4_20.

[8] Leslie Lamport. “The part-time parliament”. In: ACM Transactions on
Computer Systems (TOCS) 16.2 (1998), pp. 133–169.

[9] Relational TLA+. https://apalache.informal.systems/docs/adr/
016adr-retla.html.

[10] The Apalache model checker for TLA+. https://apalache.informal.
systems.

[11] Types in Apalache. https://apalache.informal.systems/docs/adr/
002adr-types.html.

3


