
1

Quint
Protocols as code in the logic of TLA+

Shon Feder, Igor Konnov, Jure Kukovec, Gabriela Moreira, Thomas Pani

TLA+ Community Meeting

April 22, 2023

PODC/DISC style TLA+

Core Cosmos infrastructure

PODC/DISC style
- Tendermint consensus
- Proposer-based time
- Light client
- FastSync
- ABCI++
- Interchain security (complete)
- Namada’s Proof-of-Stake
- CosmosSDK Store
- Celestia

TLA+

- Tendermint consensus:
(safety + accountability)

- Proposer-based time
- Light client
- FastSync
- Interchain Security (CCV only)
- IBC: 02, 03, 04, 18
- (Partial) specs in security audits
- Namada’s Proof-of-Stake

Protocol designers

✅ Onboarding is not too hard

✅ Happy to see counterexamples

✅ Check state invariants with Apalache

😕 Longer executions? No time for inductive invariants

😕 Apalache is slow ✅ Antipatterns

✅ Randomized symbolic execution

✅ Parallel execution in the cloud

Blockchain engineers and security auditors

😕 Onboarding is hard – TLA+ is not a programming language

😕 High expectations from tooling

😕 Want to write unit tests in Golang/Rust

😕 Want to use property-based testing

Similar to the experience of:

A. Reid et. al. Towards making formal methods normal: meeting developers where they are (2020)

https://dblp.org/pid/r/AlastairReid.html

The feedback loop

Write TLA+ Model
checking

✅ checked properties

⏱ no deliverable

⇒ disappointment 😕

PlusCal
Quint

TLA+

Universal,
solid logic foundation

Looks more like a programming language.
Works well for concurrent algorithms?

What if we:
- keep the logic

but change the syntax
- introduce the tools familiar to

engineers?

Quint syntax

Design principles

Least surprise: copy syntax from mainstream languages

Easy to read: keeps the set of ASCII control characters to minimum

Easy to write and parse: a small set of syntactic rules (250 LOC)

(Mostly) compatible with TLA+:

- folds instead of recursive operators
- simplified instances

Command line-first: IDEs change, CLI tools stay

Uniform operators syntax

Few special forms

 e == f, e != f

 p or q, p and q, p implies q, p iff q

 i > j, i >= j, i < j, i <= j

 if (p) e else f

 Set(1, 2, 3)

 Map(“Alice” -> 3, “Bob” -> 5)

 { error: msg, state: state }

 (“TLA+”, 2023)

Two interchangeable forms
 union(set1, set2)

 set1.union(set2)

 // works for built-in operators

 // as well as for user-defined operators

Binding via lambda syntax
 set.map(x => 2 * x)

 set.filter(x => x % 2 == 0)

 set.forall(x => x > 0)

 1.to(30).exists(x => x == 22)

Layered language

Pure and stateful definitions

pure val MAX_UINT = 2^256 - 1

pure def sumOverBalances(balances) = {

 balances.keys().fold(0,

 (sum, a) => sum + balances.get(a))

}

var state: Erc20State

val totalSupplyInv = isTotalSupplyCorrect(state)

Actions

 action submit(tx: Transaction): bool = all {

 mempool' = mempool.union(Set(tx)),

 erc20State' = erc20State,

 lastTx' = tx,

 }

Temporal formulas
 temporal totalSupplyNeverChanges =

 always(totalSupplyInv)

Isolating non-determinism

action step = {

 nondet sender = oneOf(ADDR)

 nondet amount = oneOf(AMOUNTS)

 any {

 nondet toAddr = oneOf(ADDR)

 fromResult(erc20State.transfer(sender, toAddr, amount)),

 nondet spender = oneOf(ADDR)

 fromResult(erc20State.approve(sender, spender, amount)),

 nondet fromAddr = oneOf(ADDR)

 nondet toAddr = oneOf(ADDR)

 fromResult(erc20State.transferFrom(sender, fromAddr,

 toAddr, amount)),

 }

}

Data non-determinism

 ∃ sender ∈ ADDR: …

Control
non-determinism

 ∨ A1
 ∨ A2
 ∨ A3

Types are built-in

// type aliases

type Address = str

type Uint = int

// variables must have a type annotation

var mempool: Set[Transaction]

// operators may have a type annotation

pure def isUint(i: int): bool =
 (0 <= i and i <= MAX_UINT)

// a record type
type Erc20State = {
 // a map of addresses to amounts
 balanceOf: Address -> Uint,
 // the sum of all balances
 totalSupply: Uint,
 // a map of pairs to amounts
 allowance: (Address, Address) -> Uint,
 // the address of the contract creator
 owner: Address,
}

Folds instead of recursive operators

pure def simpleHash(word) =

 word.foldl(0, (i, j) => i + j) % BASE

pure def sumOverBalances(balances) = {

 keys(balances)

 .fold(0,

 (sum, a) => sum + balances.get(a))

}

Iteration over lists
- always terminates
- len(..) iterations

Iteration over sets
- iterates in some order
- always terminates
- size(..) iterations

General recursion
- have a practical example?

Runs (new)

- sequence of actions

- A.then(B) is A \cdot B of TLA+

- unit tests and property-based

- evidence of liveness

run transferFromWhileApproveInFlightTest = {
 all {
 erc20State' = newErc20("alice", 91),
 mempool' = Set(), lastTx' = NoneTx,
 } // alice sets a high approval for bob
 .then(submit(ApproveTx("alice", "bob", 92)))
 // bob immediately initiates his transaction
 then(submit(TransferFromTx("bob", "alice", "eve", 54)))
 // alice changes her mind and lowers her approval to bob
 .then(submit(ApproveTx("alice", "bob", 9)))
 // but the previous approval arrives at the ledger
 .then(commit(ApproveTx("alice", "bob", 92)))
 // bob transfers more than alice wanted to
 .then(commit(TransferFromTx("bob", "alice", "eve", 54)))
}

Quint tools

🪰

syntax errors

🦋
type errors

effects &
mode errors

🐛
basic runtime errors

🪲

errors in happy paths🪳🐞

“corner-cases”

🕷

Is it even possible?

🪰

syntax errors

🦋
type errors

effects &
mode errors

🐛
basic runtime errors

🪲

errors in happy paths🪳🐞

“corner-cases”

🕷

Is it even
possible?

VSCode: syntax, types, effects, modes REPL: interactive debugging Unit tests, randomized tests Model checking

Parser and VSCode plugin

🪰

Type errors 🦋

two emails, 27 minutes

🦋

Type checker 🦋

🦋

Type feedback in 1s

Type checker mirroring Apalache

- Damas & Milner type inference + row types

- No inductive types, no subtyping, no ad-hoc polymorphism

records, tuples, maps, and lists have distinct operators

Int Bool Str

UNINTERPRETED Set[a] List[a]

a -> b (a, b, c)

{ f1: a, f2: b, f3: c } Tag1(a) | Tag2(b) | Tag3(c) (a, b, c) => d

work-in-progress 🚧

Mode checker 🐛
- States and actions not

allowed in pure def

- Actions not allowed in def
and val

- Ever tried to write in TLA+?

{ y’ = x + 1: x \in S }

Bogus unchanged and missing x’ = e 🐛

This is what the effects checker is looking for
no model checker is needed

Effects checker
🐛

REPL

- Interactive learning

- Step-by-step
debugging

Random simulator

- oneOf(S) randomly selects a set element

- special syntax form: nondet x = oneOf(S)

- any { A1, …, An } randomly selects an action

- produce runs up to --max-steps

- checks state invariants

action step =
 any {
 nondet sender = oneOf(ADDR)
 nondet amount = oneOf(AMOUNTS)
 any { // transfer
 nondet toAddr = oneOf(ADDR)
 submit(TransferTx(sender, toAddr, amount)),
 // approve and transferFrom
 …
 },
 all {
 mempool != Set(),
 nondet tx = oneOf(mempool)
 commit(tx)
 }
 }

Finding counterexamples

$ quint run \
 --invariant=noTransferFromWhileApproveInFlight \
 --verbosity=3 \
 erc20.qnt

$ ❌ in 10.853 s ± 8.359 s

Trace viewer

by Hernan Vanzetto @ Informal

Testing framework
- Unit tests and PBT tests

- The standard *unit UX

- Easy to use with continuous

integration

Model checker – Apalache

- Finishing the integration

- Quint IR and Apalache IR are quite similar

- Subtle differences: Quint is lambda-centric, indices start with 0, etc.

$ quint verify \
 --invariant=noTransferFromWhileApproveInFlight \
 erc20.qnt

…next week(s) 😀

Quint workflow

Programming
language:

state +
transitions

Invariants
temporal properties

Environment

Engineers

Protocol designers
- Execution (TypeScript)

- Testing

- Random simulation

- Interactive debugging ⚙⛭⛭⚙
⛭⛭

- Symbolic simulation

- Model checking

Auditors

Where we are
- Finishing the integration between Apalache and Quint

- Talking to the first users

- Fixing irregularities in Quint

- Open source

- Contributions are welcome

github.com/informalsystems/quint

As one engineer said

TLA+: OK, it works for consensus

But it will not work for my problem

Quint: OK, it works for consensus and smart contracts

But it will not work for my problem

