Quint
Protocols as code in the logic of TLA*

Shon Feder, Igor Konnov, Jure Kukovec, Gabriela Moreira, Thomas Pani

TLA" Community Meeting

April 22,2023

SSSSSSS

* lines 36-46

P“ne mlse sm * [PBTS-ALG-NEW-PREVOTE. 0] o
e UponProposalInPrevoteOrCommitAndPrevote(p) == m
\E v \in Validvalues, t \in Timestamps, vr \in RoundsOrNil:
/\ step[p]l \in {"PREVOTE", "PRECOMMIT"} * line 36
/\ LET msg ==

Proposer-Based Time - Part |

AsMsg([type |-> "PROPOSAL", src |-> Proposer[round([pl],
round |-> round([pl, proposal |-> Proposal(v, t), validRound |-> vr]) IN
/\ <<p, msg>> \in receivedTimelyProposal * updated line 36
/\ LET PV == { m \in msgsPrevote[round([p]]: m.id = Id(Proposal(v, t)) } IN
/\ Cardinality(PV) >= THRESHOLD2 * line 36
/\ evidence' = PV \union {msg} \union evidence
/\ IF steplp] = "PREVOTE"
THEN * lines 38-41:
/\ lockedvalue' = [lockedValue EXCEPT ![p] = v]
/\ lockedRound' = [lockedRound EXCEPT ![p] = round[p]]
/\ BroadcastPrecommit(p, round[p], Id(Proposal(v, t)))
/\ step' = [step EXCEPT ![p] = "PRECOMMIT"]
EESE
UNCHANGED <<lockedValue, lockedRound, msgsPrecommit, step>>
* lines 42-43
/\ validvalue' = [validvalue EXCEPT ![p] = v]
/\ validRound' = [validRound EXCEPT ![p] = round([p]]
/\ UNCHANGED <<round, decision, msgsPropose, msgsPrevote,
localClock, realTime, receivedTimelyProposal, inspectedProposal,
beginConsensus, endConsensus, lastBeginConsensus, proposalTime, proposalReceivedTime>>
/\ action' = "UponProposalInPrevoteOrCommitAndPrevote"

System Model

Time and Clocks

& [PBTS-CLOCK-NEWTON.0]
There is a reference Newtonian real-time t (UTC).

Every correct validator V maintains a synchronized clock C_V that ensures:

[PBTS-CLOCK-PRECISION.O]

There exists a system parameter PRECISION such that for any two correct validators V and W, a
|C_V(t) - C_W(t)| < PRECISION

Message Delays

We do not want to interfere with the Tendermint timing assumptions. We will postulate a timing re
liveness is preserved.

In general the local clock may drift from the global time. (It may progress faster, e.g., one second
real-time). As a result the local clock and the global clock may be measured in different time units.
in global clock time units. To estimate the correct local timeout precisely, we would need to estim
delay taking into account the clock drift. For simplicity we ignore this, and directly postulate the m
time.

Core Cosmos infrastructure

PODC/DISC style T’

Tendermint consensus:

- Tendermint consensus

- Proposer-based time (safety + accountability)

- Light client - Proposer-based time

- FastSync - Light client

- ABCI++ - FastSync

- Interchain security (complete) - Interchain Security (CCV only)

- Namada’s Proof-of-Stake - IBC: 02, 03, 04, 18

- CosmosSDK Store - (Partial) specs in security audits

- Celestia - Namada’s Proof-of-Stake
INJfOrMma

SYSTEMS

Protocol designers

Onboarding is not too hard

Happy to see counterexamples
Check state invariants with Apalache

& Longer executions? No time for inductive invariants

Apalache is slow
= Ap) Antipatterns
4 Randomized symbolic execution

Parallel execution in the cloud

Blockchain engineers and security auditors

#

) Onboarding is hard — TLA™ is not a programming language
= High expectations from tooling

= Want to write unit tests in Golang/Rust

= Want to use property-based testing

Similar to the experience of:

A. Reid et. al. Towards making formal methods normal: meeting developers where they are (2020)

https://dblp.org/pid/r/AlastairReid.html

The feedback loop

/-» checked properties

. . Model
{erte TLA } I > [checking }

no deliverable

= disappointment 'fj @

/

Looks more like a programming language.
Works well for concurrent algorithms?

Universal,
solid logic foundation

What if we:

keep the logic

but change the syntax
introduce the tools familiar to
engineers?

Quint syntax

Design principles

Least surprise: copy syntax from mainstream languages
Easy to read: keeps the set of ASCII control characters to minimum
Easy to write and parse: a small set of syntactic rules (250 LOC)

(Mostly) compatible with TLA™:

- folds instead of recursive operators
- simplified instances

Command line-first: IDEs change, CLI tools stay

Uniform operators syntax

Two interchangeable forms

union(set1, set2)

set1.union(set2)

/1 works for built-in operators

/1 as well as for user-defined operators

Binding via lambda syntax
set.map(x => 2 * x)
set.filter(x => x % 2 == 0)
set.forall(x => x > 0)
1.to(30).exists(x => x == 22)

Few special forms

e==f,el=f

porq, pandq, pimplies q, p iff q
i>j,i>=j,i<j,i<=]

if (p) e else f

Set(1, 2, 3)

Map(“Alice” -> 3, “Bob” -> 5)

{ error: msg, state: state }
(“TLA+”, 2023)

Layered language

Pure and stateful definitions Actions
pure val MAX_UINT = 27256 - 1 action submit(tx: Transaction): bool = all {
mempool’' = mempool.union(Set(tx)),
pure def sumOverBalances(balances) = { erc20State’ = erc205tate,
balances.keys().fold(0, lastTx' = tx,
(sum, a) => sum + balances.get(a)) }
}
var state: Erc20State Temporal formulas
val totalSupplylnv = isTotalSupplyCorrect(state) temporal totalSupplyNeverChanges =

always(totalSupplylnv)

Isolating non-determinism

action step = {
nondet sender = oneOf(ADDR)
nondet amount = oneOf(AMOUNTS)

Data non-determinism

3 sender € ADDR: ... any {
nondet toAddr = oneOf(ADDR)
Control fromResult(erc20State.transfer(sender, toAddr, amount)),
non-determinism nondet spender = oneOf(ADDR)
V A fromResult(erc20State.approve(sender, spender, amount)),
V A2 nondet fromAddr = oneOf(ADDR)
V A3 nondet toAddr = oneOf(ADDR)

fromResult(erc20State.transferFrom(sender, fromAddr,
toAddr, amount)),

Types are built-in

/1 type aliases /1 arecord type
type Erc20State = {

// a map of addresses to amounts
type Uint = int balanceOf: Address -> Uint,
// the sum of all balances
totalSupply: Uint,
// a map of pairs to amounts

type Address = str

// variables must have a type annotation

var mempool: Set[Transaction]

// operators may have a type annotation allowance: (Address, Address) -> Uint,
// the address of the contract creator

re def isUint(i: int): bool =
PY isUint(i: int) owner: Address,

(0 <=iand i <= MAX_UINT)

Folds instead of recursive operators

pure def simpleHash(word) =

Iteration over lists
\» word.foldl(0, (i, j) => i + j) % BASE

- always terminates
- len(..) iterations

Iteration over sets pure def sumOverBalances(balances) = {
- iterates in some order\feyS(balances)
- always terminates .fold(O,

- size(..) iterations (sum, a) => sum + balances.get(a))

General recursion }

- have a practical example?

Runs (new)

- sequence of actions

- A.then(B) is A \cdot B of TLA*

- unit tests and property-based

- evidence of liveness

run transferFromWhileApprovelnFlightTest = {
all {
erc20State’ = newErc20("alice”, 91),
mempool’ = Set(), lastTx' = NoneTx,

3

.then(submit(ApproveTx("alice”, "bob", 92)))
then(submit(TransferFromTx("bob", "alice", "eve", 54)))
.then(submit(ApproveTx("alice”, "bob", 9)))

.then(commit(ApproveTx("alice”, "bob", 92)))

.then(commit(TransferFromTx("bob", "alice”, "eve", 54)))

3

Quint tools

“corner-cases”
syntax errors —>
errors i appy paths

e
—>
basic runtime errors
type errors
>

effects &
mode errors

Is it even possible?

4 N

L)

syntax errors

:
o

type errors

'\)

=

“?'.’/!’{I;
effects &

~

“corne

errors %ppy pa

\~

/

L

basic runtime errors

\\ mode errors /

VSCode: syntax, types, effects, modes

-

pr-cases’”

ths

_ /

REPL: interactive debugging

. /

Unit tests, randomized tests

TN

Is it even
possible?

_

/

Model checking

Quint

Parser and VSCOde plugin Informal Systems | & 37installs | (0) | Free

Language support for Quint specifications

Lol S 2 quint
Install Trouble Installing? 2

erc20.qnt @

examples > solidity > ERC20 > erc20.gnt
13 module erc20 {

Overview Version History Q&A Rating & Review

209 pure def sumOverBalances(balances: Address —> int): int = {

210 balances.keys().fold(@, (sum, a) => sum + balances.get(a) Quint
61 211 }

212 This extension provides language support for Quint, the specification language.

213 // The total supply, as stored in the state,

214 // is equal to the sum of amounts over all balances.

215 pure def isTotalSupplyCorrect(state: Erc20State): bool = {

216 state.balanceOf.sumOverBalances() == state.totalSupply =

217 }

218 *

219| |]

220 // Zero address should not carry coins.

224 pure def isZeroAddressEmpty(state: Erc2@0State): bool = {

222 state.balanceOf.get(ZERO_ADDRESS) ==

223 }

224

225 // There are no overflows in totalSupply, balanceOf, and approve.

226 pure def isNoOverflows(state: Erc20State): bool = and {

227 isUint(state.totalSupply),

228 state.balanceOf.keys().forall(a => isUint(state.balanceOf.get(a))),

\ ol :

0 ~ = = () =18 = =
X ¥ igorfverify740* O LF Quint [Chronicler: 00:01

Type errors =€

Fri, Dec 23, 9118 AM ﬁ «
to tlaplus ~

Hello,

a few quick comments on your spec:

- all actions should determine the values of all state variables at the successor state, so you should adg’”’/\ ack' = ack" to the definition of Send,
- seq is used as a sequence, but then you write "x \in seq™: TLA+ doesn't allow you to use set-theggétic operators for sequences,

- your protocol will only ever send and receive the constant value N, wouldn't it be more interesting to send different values? *

Also, as written, your channels only grow, so the state space of your protocol is infinite?Given that sender and receiver strictly alternate their actions,

why use a channel at all?
Have you looked at some introductory material about TLA+ and PlusCal

Regards,

[1] https://lamport.azurewebsites.net/tla/learning.h
[2] https:/learntla.com

On 23 Dec I =t 08:51 > wrote:

two emails, 27 minutes

Type checker ¢ o o -
xamples > solidity > ERC20 > erc20.gnt
13 module erc20 {
206 // Properties that do not belong to the original EIP20 spec,
Type feedback in 1s 207 // but they should hold true.
208
209 pure def sumOverBalances(balances: Address —> int): int = {
210 balances.keys().fold(@, (sum, a) => sum + balances.get(a))
211 }
212
213 // The total supply, as stored in the state, L_
214 // is equal to the sum of amounts over all balances.
215 pure def isTotalSupplyCorrect(state: Erc2@State): bool = {
216 state.balanceOf.sumOverBalances() == state.totalSupply
217 }
218
219 // Zero address should not carry coins.
220 pure def isZeroAddressEmpty(state: Erc2@State): bool = {
221 state.balanceOf.get(ZERO_ADDRESS) ==
222 | *
223 ¥
224
225 // There are no overflows in totalSupply, balanceOf, and approve.
icNnoOve AStA = hnn

orjverify740* <& ® 0A 0 I Pull Request #787 -- INSERT -- LF Quint [Chronicler: 00:01 & Q)

Type checker mirroring Apalache

- Damas & Milner type inference + row types

- No inductive types, no subtyping, no ad-hoc polymorphism

records, tuples, maps, and lists have distinct operators

Int Bool Str
UNINTERPRETED Set[a] List[a]

a->b (a, b, ¢)

{f1:a,f2: b, f3:c} Tag1(a) | Tag2(b) | Tag3(c) (a,b,c)=>d

work-in-progress ¥4

)

.

Mode checker 3,

erc20.gnt @ m -
. examples > solidity > ERC20 > erc20.gnt
- States and actions not 233 module erc20Tests {
. 259 action step = {
allowed in pure def 263 any {
270 // transferFrom
271 nondet fromAddr = oneOf(ADDR)
. . 272 nondet toAddr = oneOf (ADDR)
- AC’[IOHS nOt allowed In def 273 fromResult(erc20State.transferFrom(sender, fromAddr, toAddr, amoun
274 }
and val P }
276
277 // check the following invariants via:
278 // quint run ——verbosity=3 --main=erc2@0Tests ——invariant=noOverflowsInv er
279 al totalSupplyInv = isTotalSupplyCorrect(erc20State)
[[[+
- Ever tried to write in TLA™? 2% |
281 val zeroAddressInv = isZeroAddressEmpty(erc20State)
282
{ y’ =X+ 1:x\in S } 283 val noOverflowsInv = isNoOverflows(erc20State)
284
285 // Randomized tests that test whether postconditions holds true.
286
287 // Since we want to test ERC2@0 methods in arbitrary states,

<O ®O0AO0 9 Pull Request #787

por/verify740* 1 change; before #7 4 seconds ago

Bogus unchanged and missing X' = e 3,

.\)

lemmy commented on Nov 3, 2021 - edited ~ Member

With lemmy/raft.tla@ 17a4f67 , smoke testing reliably finds the bogus UNCHANGED! On average, simulation takes 10k
states, 26 traces, less than a second, and traces of 21 steps to find the UNCHANGED (dataset ~300 runs). The important
part was to slightly increase the number of initial states to >=512. It appears as if a subset of initial states make it either
impossible or extremely unlikely to find the bogus UNCHANGED. In other words, smoke testing works surprisingly well even
for large specs/state spaces. :-)

®@

This is what the effects checker is looking for
no model checker is needed

erc20.gqnt @

EﬁeCtS Ch eCker e;(:r;ples > solidity > ERC20 > erc20.qnt

“flf'-'ll

module mempool {

412
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

action submit(tx: Transaction): bool = all {

}

// an auxilliary action that assigns variables from a method execution res
action fromResult(tx: Transaction, r: Erc2@Result): bool = all {

val status = if (r.returnedTrue and r.error != "") r.error else "succe
lastTx' = tx.with("status", status),
erc20State' = r.state,

// commit a transaction from the memory pool
action commit(tx: Transaction): bool = all {
mempool' = mempool.exclude(Set(tx)),

any {
all {
tx.kind == "transfer", .
fromResult(tx, transfer(erc20State, tx.sender, tx.toAddr, tx.a
}l
all {

tx.kind == "approve",

REPL erc20.gnt X @ Il

examples > solidity > ERC20 > erc20.qnt
13 module erc20 {

LT 7 T

- Interactive |earning 131 pure def transfer(state: Erc20State, sender: Address,
132 toAddr: Address, amount: Uint): Erc2@Result = {
133 // “transfer® always returns true, but we should check Erc20Resu
134 _transfer(state, sender, toAddr, amount)
135 1
- Step-by-step PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL COMMENTS (3) zsh-ErRc20 + v (M W -+ -

debugging

PR3Py lp igor@crash 2 0 igor/erc20-fix x

$ quint -r erc20.qntf

Random simulator

action step =

any {
- oneOf(S) randomly selects a set element nondet sender = oneOf(ADDR)

nondet amount = oneOf (AMOUNTS)

any { // transfer
nondet toAddr = oneOf(ADDR)
submit(TransferTx(sender, toAddr, amount)),
// approve and transferFrom

- special syntax form: nondet x = oneOf(S)

-any {A,, .., A_} randomly selects an action

- produce runs up to --max-steps

3
all {

- checks state invariants mempool != Set(),
nondet tx = oneOf(mempool)

commit(tx)

Finding counterexamples

[Frame 1]
q::stepAndInvariant() = true
L q::step() = true
L step() = true
- submit({ kind: "approve", status: "pending", sender: "0"
, spender: "alice", fromAddr: "0", toAddr: "@", amount: 9499149855
952627483612320222626754637905070307164024751215513669077045436651
7 }) = true
L ApproveTx("0", "alice", 94991498559526274836123202226
267546379050703071640247512155136690770454366517) = { kind: "“appr
ove", status: "pending", sender: "0", spender: "alice", fromAddr:
"0", toAddr: "0", amount: 9499149855952627483612320222626754637905
0703071640247512155136690770454366517 }

[State 16]

erc20State: { balanceOf: Map("0" — 0, "alice" — 0, "bob" - 0,
"eve" — 791721037759798107063077463563162357503204582894890020713
73698387586366560739), totalSupply: 791721037759798107063077463563
16235750320458289489002071373698387586366560739, allowance: Map(("
", "o") » o, ("o", "alice") — 0, ("0", "bob") — 0, ("0", "eve"

S quint run \
“invaI'iant=noTransferFromWhiIeApproveInFIight \
-verbosity=3 \
erc20.qnt

$Xin10.853 s+ 8.359 s

Trace viewer

lastTx

mempool

owner D reve”

kind : "transferFrom"

status : "success"

sender :"bob"

fromAddr : "eve"

toAddr : "eve"

amount : #bigint : "233254274130610816161613290071109715620853 %
spender :"0"

{

kind : "approve"

status : "pending"

sender :"bob"

spender : "alice"

fromAddr : "0"

toAddr :"O"

amount : #bigint : "53653445602568159182393139999041208419205
|

ITF Trace Viewer
Informal Systems | & 62installs |

View nicely formatted ITF trace files

Install Trouble Installing? 2

Overview Version History Q&A Rating & Review

ITF Trace Viewer

VS Code extension for viewing ITF trace files as nicely formatted tables.

0) | Free

by Hernan Vanzetto @ Informal

Testing framework

'$ quint test --main=erc20Tests erc20.qnt - Unit tests and PBT tests

erc20Tests - The standard *unit UX

ok transferTest passed 10000 test(s) _ _
- Easy to use with continuous

1 passing (895ms) integration %

$ quint test --main=mempool erc20.gnt

mempool
ok transferFromWhileApproveInFlightTest passed 1 test(s)

1 passing (133ms)

Model checker — Apalache S quint verify \

--invaria Nt=noTransferFromWhileApprovelnFlight \
erc20.gnt

- Finishing the integration .next week(s) @

- Quint IR and Apalache IR are quite similar

- Subtle differences: Quint is [lambda-centric, indices start with O, etc.

Quint workflow

Programming

Engineers BT ~

A\ transitions Auditors

LA)
O" N)_T Environment
\ / > Protocol designers
- Execution (TypeScript) D - Symbolic simulation
- Testing Invariants - Model checking
temporal properties)

- Random simulation)}

3@ T

- Interactive debugging T-‘T | o

Where we are

- Finishing the integration between Apalache and Quint

- Talking to the first users e github.com/informalsystems/quint

n o [74
(]
Quint

Quint is a modern specification language that is a particularly

- O pe n SO u rce good fit for distributed systems and blockchain protocols. It

combines the robust theoretical basis of the Temporal Logic of
Actions (TLA) with state-of-the-art static analysis and

. . development tooling. B
- Contributions are welcome prent footns $SESLRBY

This is how typical Quint code looks: _9‘_ s ﬁ’

- Fixing irregularities in Quint

Used by 1

ofme - @informalsystems / quint

Contributors 9

// “validateBalance® should only be called upon gent
pure def validateBalance(ctx: BankCtx, addr: Addr):

. Languages
ctx.accounts.contains(addr), gtag
val coins = getAllBalances(ctx, addr) l
coins.keys().forall(denom => coins.get(denom) > @ ® TypeScript 93.7%
¥ ANTLR 1.7% JavaScript 1.0%
® Python 1.0% Shell 0.9%

If you would like to see the same code in TLA*, here is how it @ Vim Script 0.4% Other 1.3%

As one engineer said

TLA+: OK, it works for consensus

But it will not work for my problem

Quint: OK, it works for consensus and smart contracts

But it will not work for my problem

