
An Introduction to TLA+

Stephan Merz

https://members.loria.fr/Stephan.Merz/

Inria Nancy – Grand Est & LORIA
Nancy, France

TLA+ Community Meeting @ ETAPS
Paris, April 2023

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 1 / 20

https://members.loria.fr/Stephan.Merz/
http://www.inria.fr/
http://www.loria.fr/

Leslie Lamport http://www.lamport.org/

PhD 1972 (Brandeis University), Mathematics

Mitre Corporation, 1962–65

Marlboro College, 1965–69

Massachusets Computer Associates, 1970–77

SRI International, 1977–85

Digital Equipment Corporation/Compaq, 1985–2001

Microsoft Research, since 2001

Pioneer of distributed algorithms Turing Award 2013

Natl. Acad. of Engineering, Natl. Acad. of Sciences, American Acad. of Arts and Sciences

PODC Influential Paper, ACM SIGOPS Hall of Fame (3x), J.C. Laprie Award (2x),
LICS Award, John v. Neumann medal, E.W. Dijkstra Prize, NEC C&C Prize . . .

honorary doctorates: Rennes, Kiel, Lausanne, Lugano, Nancy, Brandeis

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 2 / 20

http://www.lamport.org/

TLA+ specification language

describe and verify distributed and concurrent systems

based on mathematical set theory plus temporal logic TLA

TLA+ Video Course

book: Addison-Wesley, 2003 (free download for personal use)

IDEs: TLA+ Toolbox, Visual Studio Code Extension

Some other publications
Y. Yu, P. Manolios, L. Lamport: Model checking TLA+ Specifications. CHARME 1999, LNCS 1703.
D. Cousineau et al.: TLA+ Proofs. Formal Methods (FM 2012), LNCS 7436.
I. Konnov et al.: TLA+ Model Checking Made Symbolic. OOPSLA 2019.
S. Merz: The Specification Language TLA+. Logics of Specification Languages, Springer 2008.

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 3 / 20

http://lamport.azurewebsites.net/video/videos.html
http://research.microsoft.com/en-us/um/people/lamport/tla/toolbox.html

Objective of this presentation

Explain basic concepts of TLA+

TLA+ as a specification language

Tool support for verification: model checking, proof, refinement

Running example: distributed termination detection

Please interrupt for questions

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 4 / 20

Outline

1 Distributed Termination Detection

2 Checking Properties of the Specification

3 Safra’s Algorithm for Termination Detection

4 Conclusion

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 5 / 20

Distributed Termination Detection

0

3

2

1 ;

0

3

2

1 ;

0

3

2

1 · · · ;

0

3

2

1

Nodes perform some computation
▶ a node can be active (double circle) or inactive (simple circle)
▶ “master node” 0 wishes to detect when all nodes are inactive

Relevant transitions
▶ active node finishes its computation and terminates
▶ master node detects termination

▶ active node sends a message to some node in the network
▶ node receives a message, waking up if inactive

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 6 / 20

Distributed Termination Detection

0

3

2

1 ;

0

3

2

1 ;

0

3

2

1 · · · ;

0

3

2

1

Nodes perform some computation
▶ a node can be active (double circle) or inactive (simple circle)
▶ “master node” 0 wishes to detect when all nodes are inactive

Relevant transitions
▶ active node finishes its computation and terminates
▶ master node detects termination

▶ active node sends a message to some node in the network
▶ node receives a message, waking up if inactive

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 6 / 20

Distributed Termination Detection

0

3

2

1 ;

0

3

2

1 ;

0

3

2

1 · · · ;

0

3

2

1

Nodes perform some computation
▶ a node can be active (double circle) or inactive (simple circle)
▶ “master node” 0 wishes to detect when all nodes are inactive

Relevant transitions
▶ active node finishes its computation and terminates
▶ master node detects termination
▶ active node sends a message to some node in the network
▶ node receives a message, waking up if inactive

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 6 / 20

Abstract Transition System for Describing the Problem

State representation

▶ activation status per node

▶ number of pending messages

▶ termination detected?

TypeOK ∆
=

∧ active ∈ [Nodes → BOOLEAN]

∧ pending ∈ [Nodes → Nat]
∧ termDetect ∈ BOOLEAN

terminated ∆
= ∀n ∈ Nodes : ¬active[n] ∧ pending[n] = 0

Transitions

▶ termination of a node

▶ sending and receiving of messages

▶ termination detection

RcvMsg(i) ∆
=

∧ pending[i] > 0
∧ active′ = [active EXCEPT ![i] = TRUE]

∧ pending′ = [pending EXCEPT ![i] = @ − 1]
∧ UNCHANGED termDetect

Overall specification Spec ∆
= Init ∧2[Next]vars ∧ WFvars(DetectTermination)

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 7 / 20

Abstract Transition System for Describing the Problem

State representation

▶ activation status per node

▶ number of pending messages

▶ termination detected?

TypeOK ∆
=

∧ active ∈ [Nodes → BOOLEAN]

∧ pending ∈ [Nodes → Nat]
∧ termDetect ∈ BOOLEAN

terminated ∆
= ∀n ∈ Nodes : ¬active[n] ∧ pending[n] = 0

Transitions

▶ termination of a node

▶ sending and receiving of messages

▶ termination detection

RcvMsg(i) ∆
=

∧ pending[i] > 0
∧ active′ = [active EXCEPT ![i] = TRUE]

∧ pending′ = [pending EXCEPT ![i] = @ − 1]
∧ UNCHANGED termDetect

Overall specification Spec ∆
= Init ∧2[Next]vars ∧ WFvars(DetectTermination)

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 7 / 20

Abstract Transition System for Describing the Problem

State representation

▶ activation status per node

▶ number of pending messages

▶ termination detected?

TypeOK ∆
=

∧ active ∈ [Nodes → BOOLEAN]

∧ pending ∈ [Nodes → Nat]
∧ termDetect ∈ BOOLEAN

terminated ∆
= ∀n ∈ Nodes : ¬active[n] ∧ pending[n] = 0

Transitions

▶ termination of a node

▶ sending and receiving of messages

▶ termination detection

RcvMsg(i) ∆
=

∧ pending[i] > 0
∧ active′ = [active EXCEPT ![i] = TRUE]

∧ pending′ = [pending EXCEPT ![i] = @ − 1]
∧ UNCHANGED termDetect

Overall specification Spec ∆
= Init ∧2[Next]vars ∧ WFvars(DetectTermination)

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 7 / 20

Outline

1 Distributed Termination Detection

2 Checking Properties of the Specification

3 Safra’s Algorithm for Termination Detection

4 Conclusion

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 8 / 20

Expressing Correctness Properties

1 Safety properties: “nothing bad ever happens”

▶ type correctness Spec ⇒ 2TypeOK

TypeOK is true throughout any execution of Spec

▶ safety of detection Spec ⇒ 2(termDetected ⇒ terminated)

formally again expressed as an invariant

▶ quiescence of the system Spec ⇒ 2(terminated ⇒ 2terminated)

2 Liveness properties: “something good happens eventually”

▶ eventual detection of termination Spec ⇒ 2(terminated ⇒ 3termDetected)

note: the system isn’t guaranteed to terminate

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 9 / 20

Expressing Correctness Properties

1 Safety properties: “nothing bad ever happens”

▶ type correctness Spec ⇒ 2TypeOK

TypeOK is true throughout any execution of Spec

▶ safety of detection Spec ⇒ 2(termDetected ⇒ terminated)

formally again expressed as an invariant

▶ quiescence of the system Spec ⇒ 2(terminated ⇒ 2terminated)

2 Liveness properties: “something good happens eventually”

▶ eventual detection of termination Spec ⇒ 2(terminated ⇒ 3termDetected)

note: the system isn’t guaranteed to terminate

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 9 / 20

Expressing Correctness Properties

1 Safety properties: “nothing bad ever happens”

▶ type correctness Spec ⇒ 2TypeOK

TypeOK is true throughout any execution of Spec

▶ safety of detection Spec ⇒ 2(termDetected ⇒ terminated)

formally again expressed as an invariant

▶ quiescence of the system Spec ⇒ 2(terminated ⇒ 2terminated)

2 Liveness properties: “something good happens eventually”

▶ eventual detection of termination Spec ⇒ 2(terminated ⇒ 3termDetected)

note: the system isn’t guaranteed to terminate

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 9 / 20

Expressing Correctness Properties

1 Safety properties: “nothing bad ever happens”

▶ type correctness Spec ⇒ 2TypeOK

TypeOK is true throughout any execution of Spec

▶ safety of detection Spec ⇒ 2(termDetected ⇒ terminated)

formally again expressed as an invariant

▶ quiescence of the system Spec ⇒ 2(terminated ⇒ 2terminated)

2 Liveness properties: “something good happens eventually”

▶ eventual detection of termination Spec ⇒ 2(terminated ⇒ 3termDetected)

note: the system isn’t guaranteed to terminate

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 9 / 20

Explicit-State Model Checking Using TLC

Create a model: finite instance of TLA+ specification defined as a configuration

▶ instantiate constant parameters, bound potentially infinite variable values

fix constants N = 4
add state constraint ∀n ∈ Nodes : pending[n] ≤ 3

▶ indicate formulas representing system specification and properties to be verified

▶ TLC reports 4,097 distinct states (262,145 for N = 6)

Exploit the automation of TLC for gaining confidence in the specification

▶ check putative (non-)properties and make changes to specification

▶ e.g., allow inactive node to send messages

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 10 / 20

Explicit-State Model Checking Using TLC

Create a model: finite instance of TLA+ specification defined as a configuration

▶ instantiate constant parameters, bound potentially infinite variable values

fix constants N = 4
add state constraint ∀n ∈ Nodes : pending[n] ≤ 3

▶ indicate formulas representing system specification and properties to be verified

▶ TLC reports 4,097 distinct states (262,145 for N = 6)

Exploit the automation of TLC for gaining confidence in the specification

▶ check putative (non-)properties and make changes to specification

▶ e.g., allow inactive node to send messages

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 10 / 20

Using TLAPS to Prove Safety Properties

TLAPS: proof assistant for verifying TLA+ specifications
▶ proof effort is independent of the size of the instance
▶ relies on user interaction to guide verification
▶ uses automatic back-ends for discharging proof obligations

TLAPS proof of type correctness

THEOREM TypeCorrect ∆
= Spec ⇒ 2TypeOK

⟨1⟩1. Init ⇒ TypeOK
⟨1⟩2. TypeOK ∧ [Next]vars ⇒ TypeOK′

⟨1⟩3. QED BY⟨1⟩1, ⟨1⟩2, PTL DEF Spec

▶ hierarchical proof language represents proof tree
▶ assertion follows from steps ⟨1⟩1 and ⟨1⟩2 by temporal logic
▶ prove non-temporal steps by expanding definitions and/or hierarchical subproofs

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 11 / 20

Using TLAPS to Prove Safety Properties

TLAPS: proof assistant for verifying TLA+ specifications
▶ proof effort is independent of the size of the instance
▶ relies on user interaction to guide verification
▶ uses automatic back-ends for discharging proof obligations

TLAPS proof of type correctness

THEOREM TypeCorrect ∆
= Spec ⇒ 2TypeOK

⟨1⟩1. Init ⇒ TypeOK
⟨1⟩2. TypeOK ∧ [Next]vars ⇒ TypeOK′

⟨1⟩3. QED BY⟨1⟩1, ⟨1⟩2, PTL DEF Spec

▶ hierarchical proof language represents proof tree
▶ assertion follows from steps ⟨1⟩1 and ⟨1⟩2 by temporal logic
▶ prove non-temporal steps by expanding definitions and/or hierarchical subproofs

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 11 / 20

Proof of Main Safety Property

Safety of termination detection is inductive relative to TypeOK

Safe ∆
= termDetect ⇒ terminated

THEOREM Safety ∆
= Spec ⇒ 2Safe

⟨1⟩1. Init ⇒ Safe
⟨1⟩2. TypeOK ∧ Safe ∧ [Next]vars ⇒ Safe′

⟨1⟩3. QED BY ⟨1⟩1, ⟨1⟩2, ⟨1⟩3, TypeCorrect, PTL DEF Spec

▶ use previously established theorem of type correctness
▶ proofs of steps ⟨1⟩1 and ⟨1⟩2 are similar as before

Proof of quiescence is similar
▶ proofs of safety properties require minimal temporal logic
▶ automation of TLA+ set theory is main concern

Liveness proofs require establishing enabledness predicate
▶ supported in development version of TLAPS

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 12 / 20

Proof of Main Safety Property

Safety of termination detection is inductive relative to TypeOK

Safe ∆
= termDetect ⇒ terminated

THEOREM Safety ∆
= Spec ⇒ 2Safe

⟨1⟩1. Init ⇒ Safe
⟨1⟩2. TypeOK ∧ Safe ∧ [Next]vars ⇒ Safe′

⟨1⟩3. QED BY ⟨1⟩1, ⟨1⟩2, ⟨1⟩3, TypeCorrect, PTL DEF Spec

▶ use previously established theorem of type correctness
▶ proofs of steps ⟨1⟩1 and ⟨1⟩2 are similar as before

Proof of quiescence is similar
▶ proofs of safety properties require minimal temporal logic
▶ automation of TLA+ set theory is main concern

Liveness proofs require establishing enabledness predicate
▶ supported in development version of TLAPS

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 12 / 20

Proof of Main Safety Property

Safety of termination detection is inductive relative to TypeOK

Safe ∆
= termDetect ⇒ terminated

THEOREM Safety ∆
= Spec ⇒ 2Safe

⟨1⟩1. Init ⇒ Safe
⟨1⟩2. TypeOK ∧ Safe ∧ [Next]vars ⇒ Safe′

⟨1⟩3. QED BY ⟨1⟩1, ⟨1⟩2, ⟨1⟩3, TypeCorrect, PTL DEF Spec

▶ use previously established theorem of type correctness
▶ proofs of steps ⟨1⟩1 and ⟨1⟩2 are similar as before

Proof of quiescence is similar
▶ proofs of safety properties require minimal temporal logic
▶ automation of TLA+ set theory is main concern

Liveness proofs require establishing enabledness predicate
▶ supported in development version of TLAPS

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 12 / 20

TLAPS Architecture

TLA+ Proof System

Proof Manager

Back-end provers

TLA+ Toolbox
(IDE)

Pre-process module
Generate

proof obligations

Call external provers
to attempt proof

Certify proof
(optional)

Isabelle/TLA+ Zenon SMT PTL

Isabelle/TLA+: faithful encoding of TLA+ in Isabelle’s meta-logic

PTL: decision procedure for propositional temporal logic

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 13 / 20

Outline

1 Distributed Termination Detection

2 Checking Properties of the Specification

3 Safra’s Algorithm for Termination Detection

4 Conclusion

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 14 / 20

Overall Idea of Safra’s algorithm (EWD 998, 1986)

Token circulating on the ring

0

3

2

1 ;

0

3

2

1 ;

0

3

2

1 · · · ;

0

3

2

1

▶ nodes remember difference between numbers of messages sent and received
▶ token accumulates sum of differences
▶ receiving node becomes “stained”, passing token collects “stain”

Condition for detecting termination
▶ sum of counters at master node and token is zero
▶ master node is inactive and clean, and it holds a clean token

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 15 / 20

Overall Idea of Safra’s algorithm (EWD 998, 1986)

Token circulating on the ring

0

3

2

1 ;

0

3

2

1 ;

0

3

2

1 · · · ;

0

3

2

1

▶ nodes remember difference between numbers of messages sent and received
▶ token accumulates sum of differences
▶ receiving node becomes “stained”, passing token collects “stain”

Condition for detecting termination
▶ sum of counters at master node and token is zero
▶ master node is inactive and clean, and it holds a clean token

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 15 / 20

Overall Idea of Safra’s algorithm (EWD 998, 1986)

Token circulating on the ring

0

3

2

1 ;

0

3

2

1 ;

0

3

2

1 · · · ;

0

3

2

1

▶ nodes remember difference between numbers of messages sent and received
▶ token accumulates sum of differences
▶ receiving node becomes “stained”, passing token collects “stain”

Condition for detecting termination
▶ sum of counters at master node and token is zero
▶ master node is inactive and clean, and it holds a clean token

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 15 / 20

Analyzing the Algorithm Using TLC

Similar correctness properties as for the abstract state machine
▶ type correctness, safety, quiescence, liveness

Explicit-state model checking with TLC

nodes small bounds modest bounds
states time # states time

3 0.23 M 0:00:09 1.5 M 0:00:21
4 18.7 M 0:03:54 248 M 0:33:53
5 1150 M 2:05:00 – –

bounds on counters:

▶ small: all counters ≤ 2

▶ modest: nodes ≤ 3, token ≤ 9

used 32 cores for 5 nodes

Does this give you enough confidence?
▶ model checking suffers from state space explosion
▶ one modification was incorrect for N = 4, but correct for N = 3
▶ TLC supports random exploration, finds seeded bugs in majority of runs

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 16 / 20

Analyzing the Algorithm Using TLC

Similar correctness properties as for the abstract state machine
▶ type correctness, safety, quiescence, liveness

Explicit-state model checking with TLC

nodes small bounds modest bounds
states time # states time

3 0.23 M 0:00:09 1.5 M 0:00:21
4 18.7 M 0:03:54 248 M 0:33:53
5 1150 M 2:05:00 – –

bounds on counters:

▶ small: all counters ≤ 2

▶ modest: nodes ≤ 3, token ≤ 9

used 32 cores for 5 nodes

Does this give you enough confidence?
▶ model checking suffers from state space explosion
▶ one modification was incorrect for N = 4, but correct for N = 3
▶ TLC supports random exploration, finds seeded bugs in majority of runs

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 16 / 20

An Inductive Invariant for Safra’s Algorithm

Inductive invariant adapted from Dijkstra

Sum(f , S) ∆
= FoldFunctionOnSet(+, 0, f , S)

Inv ∆
= ∧ Sum(pending, Node) = Sum(counter, Node)

∧ ∨ ∧ ∀i ∈ token.pos + 1 .. N − 1 : active[i] = FALSE

∧ token.q = Sum(counter, (token.pos + 1) .. (N − 1))
∨ Sum(counter, 0 .. token.pos) + token.q > 0
∨ ∃i ∈ 0 .. token.pos : color[i] = “orange”
∨ token.color = “orange”

Verification using TLAPS

▶ first prove type correctness invariant
▶ prove Spec ⇒ 2Inv, based on type correctness
▶ also prove that Inv implies main safety property
▶ proofs require auxiliary facts about Sum

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 17 / 20

An Inductive Invariant for Safra’s Algorithm

Inductive invariant adapted from Dijkstra

Sum(f , S) ∆
= FoldFunctionOnSet(+, 0, f , S)

Inv ∆
= ∧ Sum(pending, Node) = Sum(counter, Node)

∧ ∨ ∧ ∀i ∈ token.pos + 1 .. N − 1 : active[i] = FALSE

∧ token.q = Sum(counter, (token.pos + 1) .. (N − 1))
∨ Sum(counter, 0 .. token.pos) + token.q > 0
∨ ∃i ∈ 0 .. token.pos : color[i] = “orange”
∨ token.color = “orange”

Verification using TLAPS

▶ first prove type correctness invariant
▶ prove Spec ⇒ 2Inv, based on type correctness
▶ also prove that Inv implies main safety property
▶ proofs require auxiliary facts about Sum

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 17 / 20

Correctness by Refinement

Specifications and properties are TLA+ formulas

▶ THEOREM Spec ⇒ Prop every run of Spec satisfies property Prop

▶ THEOREM Impl ⇒ Spec every run of Impl corresponds to a run of Spec

▶ stuttering invariance of TLA+ formulas is important here:
allow for low-level steps in Impl that are invisible to Spec

Use existing tools for verifying refinement

TD ∆
= INSTANCE TerminationDetection THEOREM Spec ⇒ TD!Spec

▶ TLC verifies refinement just like it checks correctness properties

▶ refinement proof checked by TLAPS, based on previous inductive invariant

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 18 / 20

Correctness by Refinement

Specifications and properties are TLA+ formulas

▶ THEOREM Spec ⇒ Prop every run of Spec satisfies property Prop

▶ THEOREM Impl ⇒ Spec every run of Impl corresponds to a run of Spec

▶ stuttering invariance of TLA+ formulas is important here:
allow for low-level steps in Impl that are invisible to Spec

Use existing tools for verifying refinement

TD ∆
= INSTANCE TerminationDetection THEOREM Spec ⇒ TD!Spec

▶ TLC verifies refinement just like it checks correctness properties

▶ refinement proof checked by TLAPS, based on previous inductive invariant

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 18 / 20

Correctness by Refinement

Specifications and properties are TLA+ formulas

▶ THEOREM Spec ⇒ Prop every run of Spec satisfies property Prop

▶ THEOREM Impl ⇒ Spec every run of Impl corresponds to a run of Spec

▶ stuttering invariance of TLA+ formulas is important here:
allow for low-level steps in Impl that are invisible to Spec

Use existing tools for verifying refinement

TD ∆
= INSTANCE TerminationDetection THEOREM Spec ⇒ TD!Spec

▶ TLC verifies refinement just like it checks correctness properties

▶ refinement proof checked by TLAPS, based on previous inductive invariant

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 18 / 20

Correctness by Refinement

Specifications and properties are TLA+ formulas

▶ THEOREM Spec ⇒ Prop every run of Spec satisfies property Prop

▶ THEOREM Impl ⇒ Spec every run of Impl corresponds to a run of Spec

▶ stuttering invariance of TLA+ formulas is important here:
allow for low-level steps in Impl that are invisible to Spec

Use existing tools for verifying refinement

TD ∆
= INSTANCE TerminationDetection THEOREM Spec ⇒ TD!Spec

▶ TLC verifies refinement just like it checks correctness properties

▶ refinement proof checked by TLAPS, based on previous inductive invariant

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 18 / 20

Correctness by Refinement

Specifications and properties are TLA+ formulas

▶ THEOREM Spec ⇒ Prop every run of Spec satisfies property Prop

▶ THEOREM Impl ⇒ Spec every run of Impl corresponds to a run of Spec

▶ stuttering invariance of TLA+ formulas is important here:
allow for low-level steps in Impl that are invisible to Spec

Use existing tools for verifying refinement

TD ∆
= INSTANCE TerminationDetection THEOREM Spec ⇒ TD!Spec

▶ TLC verifies refinement just like it checks correctness properties

▶ refinement proof checked by TLAPS, based on previous inductive invariant

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 18 / 20

Outline

1 Distributed Termination Detection

2 Checking Properties of the Specification

3 Safra’s Algorithm for Termination Detection

4 Conclusion

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 19 / 20

Summing Up

TLA+: mathematical language for specifying systems
▶ highly expressive and flexible language encourages abstract descriptions
▶ state machine specifications represent system behavior
▶ no distinction between systems and properties
▶ refinement (and composition) reflected in logic

Tool support
▶ IDEs: TLA+ Toolbox / VS Code Extension
▶ TLC: push-button verification, support for random exploration
▶ Apalache: bounded symbolic model checking (see separate tutorial)
▶ TLAPS: interactive proof platform, automatic proof back-ends
▶ PlusCal: front-end for generating TLA+ from “pseudo code” language

More information
http://lamport.azurewebsites.net/tla/tla.html Google discussion group

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 20 / 20

http://lamport.azurewebsites.net/tla/tla.html
https://groups.google.com/g/tlaplus

	Distributed Termination Detection
	Checking Properties of the Specification
	Safra's Algorithm for Termination Detection
	Conclusion

