An Introduction to TLA™

Stephan Merz

https://members.loria.fr/Stephan.Merz/

Inria Nancy — Grand Est & LORIA
Nancy, France

7

TLA* Community Meeting @ ETAPS
Paris, April 2023

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023

1/20

https://members.loria.fr/Stephan.Merz/
http://www.inria.fr/
http://www.loria.fr/

Leslie Lamport http://www.lamport.org/
PhD 1972 (Brandeis University), Mathematics
@ Mitre Corporation, 1962-65
@ Marlboro College, 1965-69
@ Massachusets Computer Associates, 197077
@ SRI International, 1977-85

@ Digital Equipment Corporation/Compagq, 1985-2001
i ‘A§ [@ Microsoft Research, since 2001

Pioneer of distributed algorithms Turing Award 2013

@ Natl. Acad. of Engineering, Natl. Acad. of Sciences, American Acad. of Arts and Sciences

@ PODC Influential Paper, ACM SIGOPS Hall of Fame (3x), J.C. Laprie Award (2x),
LICS Award, John v. Neumann medal, E.-W. Dijkstra Prize, NEC C&C Prize ...

@ honorary doctorates: Rennes, Kiel, Lausanne, Lugano, Nancy, Brandeis

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023

2/20

http://www.lamport.org/

TLA™ specification language

specifying"’

@ describe and verify distributed and concurrent systems

i ‘\':‘I\V“’I‘l et @ based on mathematical set theory plus temporal logic TLA

@ TLA™ Video Course

@ book: Addison-Wesley, 2003 (free download for personal use)
@ IDEs: TLA* Toolbox, Visual Studio Code Extension

Leslie Lamport

Some other publications
@ Y. Yu, P. Manolios, L. Lamport: Model checking TLA* Specifications. CHARME 1999, LNCS 1703.
@ D. Cousineau et al.: TLA* Proofs. Formal Methods (FM 2012), LNCS 7436.
@ 1. Konnov et al.: TLA* Model Checking Made Symbolic. OOPSLA 2019.
@ S. Merz: The Specification Language TLA*. Logics of Specification Languages, Springer 2008.

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023 3/20

http://lamport.azurewebsites.net/video/videos.html
http://research.microsoft.com/en-us/um/people/lamport/tla/toolbox.html

Objective of this presentation

@ Explain basic concepts of TLA*

@ TLA™ as a specification language

@ Tool support for verification: model checking, proof, refinement
@ Running example: distributed termination detection

Please interrupt for questions

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023 4/20

Outline

@ Distributed Termination Detection
© Checking Properties of the Specification
© Safra’s Algorithm for Termination Detection

@ Conclusion

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023 5/20

Distributed Termination Detection

@ Nodes perform some computation

» anode can be active (double circle) or inactive (simple circle)
» “master node” 0 wishes to detect when all nodes are inactive

@ Relevant transitions

» active node finishes its computation and terminates
» master node detects termination

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023 6/20

Distributed Termination Detection

A
O O

O O ~ O oA -~
O O

@ Nodes perform some computation

A

O
.‘

O

O
O‘.
O
A
» anode can be active (double circle) or inactive (simple circle)
» “master node” 0 wishes to detect when all nodes are inactive

@ Relevant transitions

» active node finishes its computation and terminates
» master node detects termination

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023 6/20

Distributed Termination Detection
A

O O
O O ~ O oA -~
O O

@ Nodes perform some computation

A

O
"O

O

O
O
A

» anode can be active (double circle) or inactive (simple circle)
» “master node” 0 wishes to detect when all nodes are inactive

@ Relevant transitions

» active node finishes its computation and terminates

» master node detects termination

» active node sends a message to some node in the network
» node receives a message, waking up if inactive

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023

6/20

Abstract Transition System for Describing the Problem

@ State representation

o TypeOK =
» activation status per node A active € [Nodes — BOOLEAN]
» number of pending messages A pending € [Nodes — Nat]

N termDetect € BOOLEAN

s »
> termination detected? terminated = Vn € Nodes : —active[n] A pending|n] = 0

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023 7/20

Abstract Transition System for Describing the Problem

@ State representation

o TypeOK =
» activation status per node A active € [Nodes — BOOLEAN]
» number of pending messages A pending € [Nodes — Nat]

N termDetect € BOOLEAN

s »
> termination detected? terminated = Vn € Nodes : —active[n] A pending|n] = 0

@ Transitions
ReoMsg(i) =
A pending[i] > 0
» sending and receiving of messages A active’ = [active EXCEPT ![i] = TRUE]
A pending’ = [pending EXCEPT ![i] = @ — 1]
A UNCHANGED termDetect

» termination of a node

» termination detection

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023 7/20

Abstract Transition System for Describing the Problem

@ State representation

o TypeOK =
» activation status per node A active € [Nodes — BOOLEAN]
» number of pending messages A pending € [Nodes — Nat]

N termDetect € BOOLEAN

s »
> termination detected? terminated = Vn € Nodes : —active[n] A pending|n] = 0

@ Transitions
ReoMsg(i) =
A pending[i] > 0
» sending and receiving of messages A active’ = [active EXCEPT ![i] = TRUE]
A pending’ = [pending EXCEPT ![i] = @ — 1]
A UNCHANGED termDetect

» termination of a node

» termination detection

@ Overall specification Spec = Init A O[Next]pars A WFqays (DetectTermination)

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023 7/20

0 Distributed Termination Detection
e Checking Properties of the Specification

e Safra’s Algorithm for Termination Detection

e Conclusion

«O>r «Fr < ANV &4

it
v
a
it
v
it

Expressing Correctness Properties

@ Safety properties: “nothing bad ever happens”

» type correctness Spec = OTypeOK

TypeOK is true throughout any execution of Spec

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023 9/20

Expressing Correctness Properties

@ Safety properties: “nothing bad ever happens”

» type correctness Spec = OTypeOK

TypeOK is true throughout any execution of Spec

» safety of detection Spec = O(termDetected = terminated) J

formally again expressed as an invariant

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023 9/20

Expressing Correctness Properties

@ Safety properties: “nothing bad ever happens”
» type correctness Spec = OTypeOK

TypeOK is true throughout any execution of Spec

» safety of detection Spec = O(termDetected = terminated) J

formally again expressed as an invariant

» quiescence of the system Spec = O(terminated = Oterminated) J

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023 9/20

Expressing Correctness Properties

@ Safety properties: “nothing bad ever happens”
» type correctness Spec = OTypeOK

TypeOK is true throughout any execution of Spec

» safety of detection Spec = O(termDetected = terminated) J

formally again expressed as an invariant

» quiescence of the system Spec = O(terminated = Oterminated) J

@ Liveness properties: “something good happens eventually”

» eventual detection of termination Spec = O(terminated = OtermDetected) J

note: the system isn’t guaranteed to terminate

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023

9/20

Explicit-State Model Checking Using TLC

@ Create a model: finite instance of TLA™ specification defined as a configuration

» instantiate constant parameters, bound potentially infinite variable values

fix constants N=4
add state constraint Vn € Nodes : pending[n] < 3

» indicate formulas representing system specification and properties to be verified

» TLC reports 4,097 distinct states (262,145 for N = 6)

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023 10 /20

Explicit-State Model Checking Using TLC

@ Create a model: finite instance of TLA™ specification defined as a configuration

» instantiate constant parameters, bound potentially infinite variable values

fix constants N=4
add state constraint Vn € Nodes : pending[n] < 3

» indicate formulas representing system specification and properties to be verified

» TLC reports 4,097 distinct states (262,145 for N = 6)

@ Exploit the automation of TLC for gaining confidence in the specification

» check putative (non-)properties and make changes to specification

» e.g., allow inactive node to send messages

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023

10 /20

Using TLAPS to Prove Safety Properties

@ TLAPS: proof assistant for verifying TLA" specifications

» proof effort is independent of the size of the instance
» relies on user interaction to guide verification

» uses automatic back-ends for discharging proof obligations

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023 11 /20

Using TLAPS to Prove Safety Properties

@ TLAPS: proof assistant for verifying TLA" specifications
» proof effort is independent of the size of the instance
» relies on user interaction to guide verification

» uses automatic back-ends for discharging proof obligations

@ TLAPS proof of type correctness

THEOREM TypeCorrect = Spec = OTypeOK
(1)1. Init = TypeOK

(1)2. TypeOK A [Next]vars = TypeOK’
(1)3. QeD BY(1)1, (1)2, PTL DEF Spec

» hierarchical proof language represents proof tree
» assertion follows from steps (1)1 and (1)2 by temporal logic
» prove non-temporal steps by expanding definitions and/or hierarchical subproofs

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023 11 /20

Proof of Main Safety Property

@ Safety of termination detection is inductive relative to TypeOK

Safe = termDetect = terminated

THEOREM Safety = Spec = OSafe

(1)1. Init = Safe

(1)2. TypeOK A Safe A [Next|vars = Safe’

(1)3.QED BY (1)1, (1)2, (1)3, TypeCorrect, PTL DEF Spec

» use previously established theorem of type correctness
» proofs of steps (1)1 and (1)2 are similar as before

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023 12 /20

Proof of Main Safety Property

@ Safety of termination detection is inductive relative to TypeOK

Safe = termDetect = terminated

THEOREM Safety = Spec = OSafe

(1)1. Init = Safe

(1)2. TypeOK A Safe A [Next|vars = Safe’

(1)3.QED BY (1)1, (1)2, (1)3, TypeCorrect, PTL DEF Spec

» use previously established theorem of type correctness
» proofs of steps (1)1 and (1)2 are similar as before

@ Proof of quiescence is similar

» proofs of safety properties require minimal temporal logic
» automation of TLA* set theory is main concern

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023

12 /20

Proof of Main Safety Property

@ Safety of termination detection is inductive relative to TypeOK

Safe = termDetect = terminated

THEOREM Safety = Spec = OSafe

(1)1. Init = Safe

(1)2. TypeOK A Safe A [Next|vars = Safe’

(1)3.QED BY (1)1, (1)2, (1)3, TypeCorrect, PTL DEF Spec

» use previously established theorem of type correctness
» proofs of steps (1)1 and (1)2 are similar as before

@ Proof of quiescence is similar
» proofs of safety properties require minimal temporal logic
» automation of TLA* set theory is main concern

@ Liveness proofs require establishing enabledness predicate
» supported in development version of TLAPS

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023

12 /20

TLAPS Architecture

TLA* Proof System

Proof Manager

Pre-pr modul Generate
¢-process modute proof obligations
v

TLA" Toolbox Certify proof Call external provers
(IDE) (optional) to attempt proof

f%/\

Isabelle/TLA* Zenon

Back-end provers

@ Isabelle/TLA*: faithful encoding of TLA" in Isabelle’s meta-logic

@ PTL: decision procedure for propositional temporal logic

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023

13 /20

0 Distributed Termination Detection
e Checking Properties of the Specification

o Safra’s Algorithm for Termination Detection

e Conclusion

«O>r «Fr < ANV &4

it
v
a
it
v
it

Overall Idea of Safra’s algorithm (EWD 998, 1986)

@ Token circulating on the ring

~ O oA -~

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023 15 /20

Overall Idea of Safra’s algorithm (EWD 998, 1986)

@ Token circulating on the ring

A
O O

@) © ~ O oA ~
O O

» nodes remember difference between numbers of messages sent and received
» token accumulates sum of differences
» receiving node becomes “stained”, passing token collects “stain”

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023

15/20

Overall Idea of Safra’s algorithm (EWD 998, 1986)

@ Token circulating on the ring

» nodes remember difference between numbers of messages sent and received
» token accumulates sum of differences
» receiving node becomes “stained”, passing token collects “stain”

e Condition for detecting termination

» sum of counters at master node and token is zero
» master node is inactive and clean, and it holds a clean token

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023 15 /20

Analyzing the Algorithm Using TLC

@ Similar correctness properties as for the abstract state machine

» type correctness, safety, quiescence, liveness

e Explicit-state model checking with TLC

nodes small bounds modest bounds
#states | time || #states | time
3 0.23 M | 0:00:09 1.5M | 0:00:21
4 18.7M | 0:03:54 248 M | 0:33:53
5 1150 M | 2:05:00 - -

Stephan Merz (Inria Nancy)

An Introduction to TLA*

bounds on counters:
» small: all counters < 2
» modest: nodes < 3, token < 9

used 32 cores for 5 nodes

TLA* Community Meeting, April 2023

16 / 20

Analyzing the Algorithm Using TLC

@ Similar correctness properties as for the abstract state machine

» type correctness, safety, quiescence, liveness

e Explicit-state model checking with TLC

nodes small bounds modest bounds
#states | time || #states | time

3 0.23 M | 0:00:09 1.5M | 0:00:21

4 18.7M | 0:03:54 248 M | 0:33:53

5 1150 M | 2:05:00 - -

@ Does this give you enough confidence?

» model checking suffers from state space explosion

bounds on counters:
» small: all counters < 2
» modest: nodes < 3, token < 9

used 32 cores for 5 nodes

» one modification was incorrect for N = 4, but correct for N = 3

» TLC supports random exploration, finds seeded bugs in majority of runs

Stephan Merz (Inria Nancy)

An Introduction to TLA*

TLA* Community Meeting, April 2023

16 / 20

An Inductive Invariant for Safra’s Algorithm

@ Inductive invariant adapted from Dijkstra

Sum(f,S)
Inv

FoldFunctionOnSet(+,0,f, S)
A Sum(pending, Node) = Sum(counter, Node)
AV AVi € token.pos +1..N — 1 : active[i] = FALSE
A token.q = Sum(counter, (token.pos +1).. (N —1))
V Sum(counter,0 .. token.pos) + token.q > 0
V 3i € 0.. token.pos : color[i] = “orange”
V token.color = “orange”

4
A

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023

17 /20

An Inductive Invariant for Safra’s Algorithm

@ Inductive invariant adapted from Dijkstra

Sum(f,S)
Inv

FoldFunctionOnSet(+,0,f, S)
A Sum(pending, Node) = Sum(counter, Node)
AV AVi € token.pos +1..N — 1 : active[i] = FALSE
A token.q = Sum(counter, (token.pos +1).. (N —1))
V Sum(counter,0 .. token.pos) + token.q > 0
V 3i € 0.. token.pos : color[i] = “orange”
V token.color = “orange”

4
A

@ Verification using TLAPS
» first prove type correctness invariant
» prove Spec = OInv, based on type correctness
» also prove that Inv implies main safety property
» proofs require auxiliary facts about Sum

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023

17 /20

Correctness by Refinement

@ Specifications and properties are TLA* formulas

> THEOREM Spec = Prop | every run of Spec satisfies property Prop

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023 18 /20

Correctness by Refinement

@ Specifications and properties are TLA* formulas

> THEOREM Spec = Prop | every run of Spec satisfies property Prop

» THEOREM Impl = Spec | every run of Impl corresponds to a run of Spec

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023 18 /20

Correctness by Refinement

@ Specifications and properties are TLA* formulas

> THEOREM Spec = Prop | every run of Spec satisfies property Prop

> THEOREM Impl = Spec | every run of Impl corresponds to a run of Spec

» stuttering invariance of TLA* formulas is important here:
allow for low-level steps in Impl that are invisible to Spec

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023

18 /20

Correctness by Refinement

@ Specifications and properties are TLA* formulas

> THEOREM Spec = Prop | every run of Spec satisfies property Prop

> THEOREM Impl = Spec | every run of Impl corresponds to a run of Spec

» stuttering invariance of TLA* formulas is important here:
allow for low-level steps in Impl that are invisible to Spec

@ Use existing tools for verifying refinement

TD £ INSTANCE TerminationDetection THEOREM Spec = TD!Spec

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023

18 /20

Correctness by Refinement

@ Specifications and properties are TLA* formulas

> THEOREM Spec = Prop | every run of Spec satisfies property Prop

> THEOREM Impl = Spec | every run of Impl corresponds to a run of Spec

» stuttering invariance of TLA* formulas is important here:
allow for low-level steps in Impl that are invisible to Spec

@ Use existing tools for verifying refinement
TD £ INSTANCE TerminationDetection THEOREM Spec = TD!Spec

» TLC verifies refinement just like it checks correctness properties

» refinement proof checked by TLAPS, based on previous inductive invariant

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023

18 /20

e Distributed Termination Detection
Q Checking Properties of the Specification

e Safra’s Algorithm for Termination Detection

Q Conclusion

«O>r «Fr < ANV &4

it
v
a
it
v
it

Summing Up

e TLA™: mathematical language for specifying systems

» highly expressive and flexible language encourages abstract descriptions
» state machine specifications represent system behavior

» no distinction between systems and properties

» refinement (and composition) reflected in logic

@ Tool support

IDEs: TLA* Toolbox / VS Code Extension

TLC: push-button verification, support for random exploration
Apalache: bounded symbolic model checking (see separate tutorial)
» TLAPS: interactive proof platform, automatic proof back-ends

v

v

v

v

PlusCal: front-end for generating TLA* from “pseudo code” language

@ More information

http://lamport.azurewebsites.net/tla/tla.html Google discussion group

Stephan Merz (Inria Nancy) An Introduction to TLA* TLA* Community Meeting, April 2023 20 /20

http://lamport.azurewebsites.net/tla/tla.html
https://groups.google.com/g/tlaplus

	Distributed Termination Detection
	Checking Properties of the Specification
	Safra's Algorithm for Termination Detection
	Conclusion

