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TLA+ specification language

describe and verify distributed and concurrent systems

based on mathematical set theory plus temporal logic TLA

TLA+ Video Course

book: Addison-Wesley, 2003 (free download for personal use)

IDEs: TLA+ Toolbox, Visual Studio Code Extension

Some other publications
Y. Yu, P. Manolios, L. Lamport: Model checking TLA+ Specifications. CHARME 1999, LNCS 1703.
D. Cousineau et al.: TLA+ Proofs. Formal Methods (FM 2012), LNCS 7436.
I. Konnov et al.: TLA+ Model Checking Made Symbolic. OOPSLA 2019.
S. Merz: The Specification Language TLA+. Logics of Specification Languages, Springer 2008.
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Objective of this presentation

Explain basic concepts of TLA+

TLA+ as a specification language

Tool support for verification: model checking, proof, refinement

Running example: distributed termination detection

Please interrupt for questions
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Outline

1 Distributed Termination Detection

2 Checking Properties of the Specification

3 Safra’s Algorithm for Termination Detection

4 Conclusion
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Distributed Termination Detection
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Nodes perform some computation
▶ a node can be active (double circle) or inactive (simple circle)
▶ “master node” 0 wishes to detect when all nodes are inactive

Relevant transitions
▶ active node finishes its computation and terminates
▶ master node detects termination

▶ active node sends a message to some node in the network
▶ node receives a message, waking up if inactive
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Abstract Transition System for Describing the Problem

State representation

▶ activation status per node

▶ number of pending messages

▶ termination detected?

TypeOK ∆
=

∧ active ∈ [Nodes → BOOLEAN]

∧ pending ∈ [Nodes → Nat]
∧ termDetect ∈ BOOLEAN

terminated ∆
= ∀n ∈ Nodes : ¬active[n] ∧ pending[n] = 0

Transitions

▶ termination of a node

▶ sending and receiving of messages

▶ termination detection

RcvMsg(i) ∆
=

∧ pending[i] > 0
∧ active′ = [active EXCEPT ![i] = TRUE]

∧ pending′ = [pending EXCEPT ![i] = @ − 1]
∧ UNCHANGED termDetect

Overall specification Spec ∆
= Init ∧2[Next]vars ∧ WFvars(DetectTermination)
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Outline

1 Distributed Termination Detection

2 Checking Properties of the Specification

3 Safra’s Algorithm for Termination Detection

4 Conclusion
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Expressing Correctness Properties

1 Safety properties: “nothing bad ever happens”

▶ type correctness Spec ⇒ 2TypeOK

TypeOK is true throughout any execution of Spec

▶ safety of detection Spec ⇒ 2(termDetected ⇒ terminated)

formally again expressed as an invariant

▶ quiescence of the system Spec ⇒ 2(terminated ⇒ 2terminated)

2 Liveness properties: “something good happens eventually”

▶ eventual detection of termination Spec ⇒ 2(terminated ⇒ 3termDetected)

note: the system isn’t guaranteed to terminate
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Explicit-State Model Checking Using TLC

Create a model: finite instance of TLA+ specification defined as a configuration

▶ instantiate constant parameters, bound potentially infinite variable values

fix constants N = 4
add state constraint ∀n ∈ Nodes : pending[n] ≤ 3

▶ indicate formulas representing system specification and properties to be verified

▶ TLC reports 4,097 distinct states (262,145 for N = 6)

Exploit the automation of TLC for gaining confidence in the specification

▶ check putative (non-)properties and make changes to specification

▶ e.g., allow inactive node to send messages
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Using TLAPS to Prove Safety Properties

TLAPS: proof assistant for verifying TLA+ specifications
▶ proof effort is independent of the size of the instance
▶ relies on user interaction to guide verification
▶ uses automatic back-ends for discharging proof obligations

TLAPS proof of type correctness

THEOREM TypeCorrect ∆
= Spec ⇒ 2TypeOK

⟨1⟩1. Init ⇒ TypeOK
⟨1⟩2. TypeOK ∧ [Next]vars ⇒ TypeOK′

⟨1⟩3. QED BY⟨1⟩1, ⟨1⟩2, PTL DEF Spec

▶ hierarchical proof language represents proof tree
▶ assertion follows from steps ⟨1⟩1 and ⟨1⟩2 by temporal logic
▶ prove non-temporal steps by expanding definitions and/or hierarchical subproofs
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Proof of Main Safety Property

Safety of termination detection is inductive relative to TypeOK

Safe ∆
= termDetect ⇒ terminated

THEOREM Safety ∆
= Spec ⇒ 2Safe

⟨1⟩1. Init ⇒ Safe
⟨1⟩2. TypeOK ∧ Safe ∧ [Next]vars ⇒ Safe′

⟨1⟩3. QED BY ⟨1⟩1, ⟨1⟩2, ⟨1⟩3, TypeCorrect, PTL DEF Spec

▶ use previously established theorem of type correctness
▶ proofs of steps ⟨1⟩1 and ⟨1⟩2 are similar as before

Proof of quiescence is similar
▶ proofs of safety properties require minimal temporal logic
▶ automation of TLA+ set theory is main concern

Liveness proofs require establishing enabledness predicate
▶ supported in development version of TLAPS
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TLAPS Architecture

TLA+ Proof System

Proof Manager

Back-end provers

TLA+ Toolbox
(IDE)

Pre-process module
Generate

proof obligations

Call external provers
to attempt proof

Certify proof
(optional)

Isabelle/TLA+ Zenon SMT PTL

Isabelle/TLA+: faithful encoding of TLA+ in Isabelle’s meta-logic

PTL: decision procedure for propositional temporal logic

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 13 / 20



Outline

1 Distributed Termination Detection

2 Checking Properties of the Specification

3 Safra’s Algorithm for Termination Detection

4 Conclusion

Stephan Merz (Inria Nancy) An Introduction to TLA+ TLA+ Community Meeting, April 2023 14 / 20



Overall Idea of Safra’s algorithm (EWD 998, 1986)

Token circulating on the ring

0

3

2

1 ;

0

3

2

1 ;

0

3

2

1 · · · ;

0

3

2

1

▶ nodes remember difference between numbers of messages sent and received
▶ token accumulates sum of differences
▶ receiving node becomes “stained”, passing token collects “stain”

Condition for detecting termination
▶ sum of counters at master node and token is zero
▶ master node is inactive and clean, and it holds a clean token
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Analyzing the Algorithm Using TLC

Similar correctness properties as for the abstract state machine
▶ type correctness, safety, quiescence, liveness

Explicit-state model checking with TLC

# nodes small bounds modest bounds
# states time # states time

3 0.23 M 0:00:09 1.5 M 0:00:21
4 18.7 M 0:03:54 248 M 0:33:53
5 1150 M 2:05:00 – –

bounds on counters:

▶ small: all counters ≤ 2

▶ modest: nodes ≤ 3, token ≤ 9

used 32 cores for 5 nodes

Does this give you enough confidence?
▶ model checking suffers from state space explosion
▶ one modification was incorrect for N = 4, but correct for N = 3
▶ TLC supports random exploration, finds seeded bugs in majority of runs
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An Inductive Invariant for Safra’s Algorithm

Inductive invariant adapted from Dijkstra

Sum(f , S) ∆
= FoldFunctionOnSet(+, 0, f , S)

Inv ∆
= ∧ Sum(pending, Node) = Sum(counter, Node)

∧ ∨ ∧ ∀i ∈ token.pos + 1 .. N − 1 : active[i] = FALSE

∧ token.q = Sum(counter, (token.pos + 1) .. (N − 1))
∨ Sum(counter, 0 .. token.pos) + token.q > 0
∨ ∃i ∈ 0 .. token.pos : color[i] = “orange”
∨ token.color = “orange”

Verification using TLAPS

▶ first prove type correctness invariant
▶ prove Spec ⇒ 2Inv, based on type correctness
▶ also prove that Inv implies main safety property
▶ proofs require auxiliary facts about Sum
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Correctness by Refinement

Specifications and properties are TLA+ formulas

▶ THEOREM Spec ⇒ Prop every run of Spec satisfies property Prop

▶ THEOREM Impl ⇒ Spec every run of Impl corresponds to a run of Spec

▶ stuttering invariance of TLA+ formulas is important here:
allow for low-level steps in Impl that are invisible to Spec

Use existing tools for verifying refinement

TD ∆
= INSTANCE TerminationDetection THEOREM Spec ⇒ TD!Spec

▶ TLC verifies refinement just like it checks correctness properties

▶ refinement proof checked by TLAPS, based on previous inductive invariant
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Summing Up

TLA+: mathematical language for specifying systems
▶ highly expressive and flexible language encourages abstract descriptions
▶ state machine specifications represent system behavior
▶ no distinction between systems and properties
▶ refinement (and composition) reflected in logic

Tool support
▶ IDEs: TLA+ Toolbox / VS Code Extension
▶ TLC: push-button verification, support for random exploration
▶ Apalache: bounded symbolic model checking (see separate tutorial)
▶ TLAPS: interactive proof platform, automatic proof back-ends
▶ PlusCal: front-end for generating TLA+ from “pseudo code” language

More information
http://lamport.azurewebsites.net/tla/tla.html Google discussion group
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