TLA+ Conference 2024

Practical insights from Datadog’s
use of TLA+ and simulations

Arun Parthiban & Sesh Nalla

&

DATADOG

e Senior Engineer at Datadog for 3 years.

o Task-platform- queues, schedulers, execution runtime
o Started on a 3 person team and bootstrapped newer systems
o System grew, multiple teams; work across all teams now.

e Previously, Staff Engineer at Samsung

o Actor based system |OT cloud, hundreds of millions of devices
connect globally

¥ patADOG

Sesh Nalla

e Senior Director at Datadog for 5 years

o Leads high performance transaction systems
e Prior experience applying formal methods

o Air traffic control systems

o Brokerage Trading systems

e Couldn’t attend due to other work commitments

¥ patADOG

Evolution of queues at Datadog

e Redis based solution for 10+ years - Delancie
o Single node throughput
o Management overhead; sharding, upgrades etc.
o Multi-tenant
e Additional requirements
o Durability for new use cases
o Millions of queues
o Multi-cloud

¥ pATADOG

Solution - Courier message queue

e Inspired by Apple’s CloudKit queuing system(QuiCK)
o “tens of billions of queues”
o "QuiCK scales linearly with additional consumer resources, effectively avoids
contention, provides fairness across”
e Similar to Delancie
o Two layers of queueing
o Leasing
e Built on FoundationDB
o APIs
o SendMessage
o ReceiveMessage
o DeleteMessage

¥ pATADOG

https://www.foundationdb.org/files/QuiCK.pdf
https://www.foundationdb.org/

Solving for multi-tenancy

Courier Domain

o —— e ———

SendMessages(...)

R R R RN =

L

%

ReceiveMessages(..) .~

e —

1 AMAMI

— AR R AR R I = ARSIy

B R R SN

[V —— 4 —_— e — -

¥ pataboa

Can this system guarantee?

>
— -o0—
— ——
—_—O-
No lost messages One active lease per message

¥ pATADOG

TLA+ Model: 3 processes

Senders

o
Se_r\dMSg
_ J

T

Done

-
-

~

Homdle

\—

r &SPOV\SQ

/A

_

¥ pATADOG

TLA+ Model: 3 processes

Brokers

¥ pATADOG

TLA+ Model: 3 processes

DeleteMsg

¥ pATADOG

8

9
10
11
12
13
14
15
16
17
18
19
20
21

TLA+ Model: Variables

VARIABLES

* FoundationDB clusters

clusters,

* tracks stats around messages sent,
stats,

received, deleted, etc.

*k variables for coordinating between sender, broker and receiver

SendMsgOK,
SendMsgError,
ReceiveMsgOK,
ReceiveMsgError,
ReceiveMsgResult,
DeleteMsqOK,
DeleteMsgError,

¥ pAatADOG 11

¥ patAaDoG 1

~—]

FoundationDB

! Se_miMe_SSage stenan‘t, que_ue}
SerdMessageResponse {msgIDE

B ..

FoundationDB

SendMessaﬁe f‘tenom‘t ‘ que_ue} I

~J .
| Store mESSage in queue

—

Seno(MessageResponse fmsgID} N

ReceiveMQSSQgeReques't
ftenant - queue?‘

\

Fe_tchMe_55age

ReceiveMessageResponse
fMQSSage,, re_cejp‘t}

¥ patADOG ¢

U B 5 |

FoundationDB

Se'\dMe,SSosge tenant, queued |

= : Store message in queu

()

I £ |

Se_no(MQSSoxgeRe_spov\se fmSgIb}'

ftenant - que_ue)

Fe:tchMe_snge_

Rece?VeMe_ss«f,e_Re_sponse_

|
|
|
|
|
:
: ReceiveMessageRe_que_st
|
|
|
|
|
|
: Emessage, receipt?

DeleteMessageRequest
ttenant, queue, re,cejp‘t} Delete from queue

|
|
|
:
|
|
|
|
|
|
|I
|
|
: (FDB)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

SPIUIUNRI GE

¥ bataDoG 14

FoundationDB

SendMeSSage f‘tenom‘t, queue}

|
: | Store message in queue
: SendMessageResponse sm$3rb} : >:'
1 X |
I
: ReceiveMessageRequest : !
: f‘tenom‘t, queued [:
l : FetchMessage :
|
I . : Ty
| ReceiveMessageResponse | |
o {me,SSQ:-je, re,cejp’t} ! :
| 7 |
|
' De_le'teMQSSQ3e_Re_que_s‘t | :
: f‘te_no\n‘t, queue, re_cejp‘t} : Delete from queue |
i , (FDB) iy
|] —
| | l
| Yes : |
: |
' |
|
: {OK}' L-CO\SC : |
: Active | :
X /I —————————————— =l
> errort [} ¥
: No , ' FDB healthcheck ¥
| | : > l
| \ I
|
|
|
|
|

o= o = R

¥ patADoOG 15

Model checker output

Status

Checking courier.tla / courier.cfg

Start: 09:06:39 (Jun 24), end: 09:19:19 (Jun 24)

States

00:00:00
00:00:03
00:01:03
00:02:03
00:03:03
00:04:03
00:05:03
00:06:03
00:07:03
00:08:03
00:08:15
00:12:40

1

96 922
3223 486
6 407 340
9571323
12 657 695
15731028
18 862 206
22 037 264
25326 672
26 050 625
26 050 625

1
27 059
721 854
1395636
2058 066
2 705 566
3349733
4 006 909
4673 155
5369339
5515710
55

515710

Fingerprint collision probability: 6.1E-6

1

9940
111 760
158 805
181 653
189 411
190 782
171 043
126 845
47 319
0

0

Coverage

courier
courier
courier
courier
courier
courier
courier
courier
courier
courier
courier
courier

5515715

411 054
1797 248
4 795 355
2 059 007
1481678
2 088 440
3819990
1732 660
2 334 500

14612

1

1
41970
278 809
993 539
748 794
46 402
30 263
964 643
257 642
702 780
450 867
0

¥ pATADOG

Value of TLA+ model

OO Q)
‘N
OO0 @)
G '
Helped precision in parts of the Shared understanding & Language
implementation for team members

¥ pATADOG

Arun Parthiban 10:19 AM
@mattbriancon | think this is a bug, not sure intentional or not: https:/github.com/DataDog/dd-
source/blob/main/domains/task_platform/apps/courier/cmd/broker/server.go#L81

server.go

wl.Add(txn, sentAt.Add(msg.GetDelay().AsDuration()), msgld,
[byte{})

() DataDog/dd-source | Added by GitHub

Q 5 replies Last reply 11 days ago

+84 -130 HEEN +103 -166 HEEN

E=g# Arun Parthiban 7:12 AM
2w | think we can get rid of the snapshot reads in wl.randombefore

64 replies Last reply 11 days ago

Arun Parthiban 10 days ago
@mattbriancon | want to make sure we both have the same understanding on

_—
N2

ss.Remove. | think there's a bug

® Arun Parthiban 11 days ago

N

| think I'm convinced it will conflict, but | may have found some edge case with
RandomBefore https:/github.com/DataDog/dd-source/pull/38349/files

Arun Parthiban 3 days ago
% | think there's a bug here: https:/github.com/DataDog/dd-
source/blob/main/domains/task_platform/apps/courier/cmd/broker/message.go#L62

message.go
txn.Clear(ss)

() DataDog/dd-source ' Added by GitHub

) Arun Parthiban 18 days ago

isn't this a concurrency bug in courier?

https:/github.com/DataDog/dd-
source/blob/main/domains/task_platform/apps/courier/internal/router/connection.go#L5
9-L64

‘=¥ Arun Parthiban 4:32 Pm
2 actually, NVM its a bug. #1 doesn't do anything useful (edited)

1reply 17 days ago

= Arun Parthiban 8 days ago

= Arun Parthiban 8 days ago
J® https:/github.com/DataDog/dd-source/pull/38936

#38936 Fix bug in TTL logic
Labels
team:Task Platform

O DataDog/dd-source | Jun 23rd | Added by GitHub

¥2 DATADOG

18

Arun Parthiban 10:19 AM
@mattbriancon | think this is a bug, not sure intentional or not: https:/github.com/DataDog/dd-
source/blob/main/domains/task_platform/apps/courier/cmd/broker/server.go#L81

server.go

wl.Add(txn, sentAt.Add(msg.GetDelay().AsDuration()), msgld,
[byte{})

() DataDog/dd-source | Added by GitHub

Q 5 replies Last reply 11 days ago

+84 -130 HEEN +103 -166 HEEN

E=g# Arun Parthiban 7:12 AM
2w | think we can get rid of the snapshot reads in wl.randombefore

64 replies Last reply 11 days ago

Arun Parthiban 10 days ago
@mattbriancon | want to make sure we both have the same understanding on

_—
N2

ss.Remove. | think there's a bug

® Arun Parthiban 11 days ago

N

| think I'm convinced it will conflict, but | may have found some edge case with
RandomBefore https:/github.com/DataDog/dd-source/pull/38349/files

Arun Parthiban 3 days ago
% | think there's a bug here: https:/github.com/DataDog/dd-
source/blob/main/domains/task_platform/apps/courier/cmd/broker/message.go#L62

message.go
txn.Clear(ss)

() DataDog/dd-source ' Added by GitHub

) Arun Parthiban 18 days ago

isn't this a concurrency bug in courier?

https:/github.com/DataDog/dd-
source/blob/main/domains/task_platform/apps/courier/internal/router/connection.go#L5
9-L64

‘=¥ Arun Parthiban 4:32 Pm
2 actually, NVM its a bug. #1 doesn't do anything useful (edited)

1reply 17 days ago

= Arun Parthiban 8 days ago

= Arun Parthiban 8 days ago
J® https:/github.com/DataDog/dd-source/pull/38936

#38936 Fix bug in TTL logic
Labels
team:Task Platform

O DataDog/dd-source | Jun 23rd | Added by GitHub

¥2 DATADOG

19

Arun Parthiban 10:19 AM
@mattbriancon | think this is a bug, not sure intentional or not: https:/github.com/DataDog/dd-
source/blob/main/domains/task_platform/apps/courier/cmd/broker/server.go#L81

server.go

wl.Add(txn, sentAt.Add(msg.GetDelay().AsDuration()), msgld,
[byte{})

() DataDog/dd-source | Added by GitHub

Q 5 replies Last reply 11 days ago

+84 -130 HEEN +103 -166 HEEN

E=g# Arun Parthiban 7:12 AM
2w | think we can get rid of the snapshot reads in wl.randombefore

64 replies Last reply 11 days ago

Arun Parthiban 10 days ago
@mattbriancon | want to make sure we both have the same understanding on

_—
N2

ss.Remove. | think there's a bug

® Arun Parthiban 11 days ago

N

| think I'm convinced it will conflict, but | may have found some edge case with
RandomBefore https:/github.com/DataDog/dd-source/pull/38349/files

Arun Parthiban 3 days ago
% | think there's a bug here: https:/github.com/DataDog/dd-
source/blob/main/domains/task_platform/apps/courier/cmd/broker/message.go#L62

message.go
txn.Clear(ss)

() DataDog/dd-source ' Added by GitHub

) Arun Parthiban 18 days ago

isn't this a concurrency bug in courier?

https:/github.com/DataDog/dd-
source/blob/main/domains/task_platform/apps/courier/internal/router/connection.go#L5
9-L64

‘=¥ Arun Parthiban 4:32 Pm
2 actually, NVM its a bug. #1 doesn't do anything useful (edited)

1reply 17 days ago

= Arun Parthiban 8 days ago

= Arun Parthiban 8 days ago
J® https:/github.com/DataDog/dd-source/pull/38936

#38936 Fix bug in TTL logic
Labels
team:Task Platform

O DataDog/dd-source | Jun 23rd | Added by GitHub

¥2 DATADOG

20

How we started

e Pluscal to verify idempotency in Husky, Datadog’s wide-columnar storage
o Researched models from CosmosDB, CockroachDB
o Modeled post-production. Pluscal syntax made this easier
o Large state space
e Courier
o Started with Pluscal, too many states, slow to check
o Re-wrote in TLA+, more control over state transitions
e Used Pluscal for modeling production bug fixes in Chrono, Datadog’s cron scheduler

¥ pATADOG

https://www.datadoghq.com/blog/engineering/husky-deep-dive/
https://github.com/Azure/azure-cosmos-tla/tree/master
https://github.com/cockroachdb/cockroach/tree/master/docs/tla-plus

Marc's Blog

Formal Methods Only Solve Half My Problems

What latency can customers expect, on average and in outlier cases? What will it cost us to run this service? How
do those costs scale with different usage patterns, and dimensions of load (data size, throughput, transaction
rates, etc)? What type of hardware do we need for this service, and how much? How sensitive is the design to net-

work latency or packet loss? How do availability and durability scale with the number of replicas? How will the
system behave under overload?

Formal Methods Only Solve Half My Problems - Marc's Blog

¥ pATADOG

https://brooker.co.za/blog/2022/06/02/formal.html

2023-03-08 Incident: Infrastructure Connectivity Issue Lessons Iearned

Affecting Multiple Regions | Datadog

Graceful degradation

o System should degrade linearly
with compute loss

Failure modes of quorum based

systems

How will Courier fare?

¥ pATADOG

https://www.datadoghq.com/blog/2023-03-08-multiregion-infrastructure-connectivity-issue/
https://www.datadoghq.com/blog/2023-03-08-multiregion-infrastructure-connectivity-issue/

Simulations

Marc's Blog

Obtaining statistical properties
by simulating specs with TLC

Jack Vanlightly & Markus A. Kuppe

Simple Simulations for System Builders

¥ patADOG

Simulating Courier

e SimPy: discrete event simulation
library in Python

e Simulated senders, receivers,
brokers, and FDB

e Measured throughput and
availability against node loss

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

INSTANCES = {
"m6id.xlarge": {"cpu": 4, "monthly_cost": 64, "memory": 16},

NUM_CLUSTERS = 8
NODES_PER_CLUSTER = 3
NUM_COURIER_PODS = 20
INSTANCE_TYPE = "m6id.xlarge"

Numbers source: https://apple.github.io/foundationdb/performance.html
FDB_START_TRAN = {"min": 0.0003, "max": 0.001}
FDB_READ = {"min": 0.0001, "max": 0.001}
FDB_COMMIT = {"min": 0.0015, "max": 0.0025}
FDB_READ_LATENCY = {"min": FDB_READ["min"], "max": FDB_READ["max"]}
FDB_WRITE_LATENCY = {

"min": FDB_READ["min"] + FDB_COMMIT["min"],

"max": FDB_READ["max"] + FDB_COMMIT ["max"]

FDB_OPERATIONS = {
"enqueue": {"trans": 1, "reads": 1, "writes": 1},
"dequeue": {"trans": 4, "reads": 2, "writes": 5},
"complete": {"trans": 1, "reads": 1, "writes": 1},

FDB_CONCURRENT_OPS_PER_PROCESS = 15
NUM_TENANTS = 70
CLUSTERS_PER_TENANT = 4

https://simpy.readthedocs.io/en/latest/

Simulation scenarios

optimistic pessimistic

Az 1 Az 1
< >
Az 2 ::";Z//éé AZ 2
S zz
-
bt
Az 3), AZ 3

777

¥ pATADOG

Simulation results

Successful Requests by Node Failure Percentage (8 clusters 3 nodes m6id.xlarge per cluster)

Total successful requests

L% —e— \\ith optimistic node failure distribution
—e— \Nith pessimistic node failure distribution

12k
2]

o 10k
=3
5]
o
=

5 8k
[7s]
()
Q
=

n 6k
©
©
a

= 4k
=

2k

0 P

0 20 40 60 80 100

Failed Node Percentage

¥4 pATADOG

Simulation results

Successful Requests by Node Failure Percentage (8 clusters 3 nodes m6id.xlarge per cluster)

Total successful requests

L% —e— \\ith optimistic node failure distribution
. —e— \Nith pessimistic node failure distribution
Best case behavior

12k
2]

O 10k
=3
5]
o
=

5 8k
72}
5]
Q
=

n 6k
©
©
a

= 4k

= g
Single cluster
2k
0

0 20 40 60 80 100

Failed Node Percentage

¥4 pATADOG

Debugging throughput oscillations

Cluster Usage

Cluster usage

0.9

0.8

0.6

0.5

0.4

—_—

P

20

40 60

Failed Node Percentage

80

100

Clusters
—e— Cluster 1 pessimistic
—e— Cluster 2 pessimistic
~—a— Cluster 3 pessimistic
Cluster 4 pessimistic
—e— Cluster 5 pessimistic
—e— Cluster 6 pessimistic
Cluster 7 pessimistic
—e— Cluster 8 pessimistic

¥ pATADOG

Simulations - overprovisioned

Successful Requests by Node Failure Percentage (8 clusters 3 nodes m6id.xlarge per cluster)

Total successful requests
—e— \Nith optimistic node failure distribution
—e— \Nith pessimistic node failure distribution

14k

10k

8k

6k

4k

Number of Successful Requests

2K

0 20 40 60 80 100

Failed Node Percentage

¥ pATADOG

Throughput

Chaos Testing - pessimistic

18k
16k 100
14k
80 ©
12k g
T
=
10k 60 ©
o
w
8k »
@
=
4k
20
2k
Ok [| T I 1 0
10:00 10:15 10:30 10:45 11:00 11:15

compute loss
percent

. Throughput

¥ patADOG

Value of simulations

Recreate complex Range of impact Targeted chaos testing
failure modes

¥ pATADOG

Design changes

. DATADOG 33

Design changes

Courier Domain

SerdMessages(...) l’ AN " — N
— | | | — | \\
7 LD ' I <, :
y B /. B /A .
(| Eeront 7/ 3
client | W : ! W,]
L ! l "/
o : I :
: R |
T e ™~
fot : ,,,, ! : 1
ReceiveMessages(...) I : I :
: b | [| I |4z 2
| : I '
I - : | :
o ! - 4
| I I !
I f I !
! : i M
i ey n : F)
I , I ; !
I , I : I
| ; ! L |4z 3
| |
¢ I i I
L ! | I
I | | 4
‘ /' ' 5 ' /'
The sequencer is a Backgr\ound FDB-clus‘ter'—1 Biduskarsd o FDB-clustert

process in courier~broker that
per‘}oo(?co\“k/ symes the FDB queue
waitlists to Redis.

¥ patADOG

34

¥ patADOG 3

fus]
(a]
=
o
i
@©
T
=
=
()
s

—>t
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Store message in queue

[SendM355age ftenant, queued
SendMeSSageResPonse fmSgID}

FoundationDB

O
o
<
=
5
=

| _
| |
I I
I I
9 |
I ow I
I3 |
S [
Y |
I |
IIIIIIIII o o o o aore e e B b S
) _ v _
3
) ! S !
S | 5 ~ |
v | nm N |
£ | 415 |
| V) |
n&»J | ee Kw |
G | QJU o |
v s ¥| ¢
v I w3 V) I
£ S LA [_
| b 3 |
Y I
C I -
0 | S v [
42 Q) 3 |
) | R o
SR | I o | |||||“ ||||||||||||||||||||||||||||||
AT \

[

| SendMessage ftenant, queuet

o
Q
=
o
=
@©
T
(=
=
(=}
L

SCV\D(MCSSQge {'te_nan‘t ' queue}' :
~

= Store message in queue

I
|
1
=

|
| SendMessageResponse §msgID¥
I

Read messages from
queue

/l

Push Messages to Redlis

—_—_—— - - - — —_——

|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

ReceiveMe55ageRequest
ftenant ; queue}

Fe‘tckMeSSage

()]
?
&%
2 Y
U
Mar
v 3
2%
V)
()]
5S¢
%((
Q)
14

¥ patAaDoG

FoundationDB

|
|
Read messages from :
queue :

|

|

Push Messages to Redis

ReceiveMessageRequest SNqm e - - e
ftenant, queuetd

FetchMessage

ReceiveMessageResPonse_
fMQSSage_, re_ce_ip‘t}

¥ pataboG s

| |

I I

| |

1 |

I I

I I

| I

< | |
I I

I

bele‘teMQSSageReques‘t : I
f‘tenant, queue, receip't} : Delete from queue :
| (FDB) |

1

: .

Yes | Delete from queue :

| (redis) [

fok Lo : !
Active I I

I I

| |

% errort No | I
I

: .

| I

| |

s

FoundationDB

I
I
Seno(MeSSage f‘te_r\om‘t, queuet :

T |

[: |

| l |

: | \I Store message in queue |

! | SendMessageResponse fmsgIDF —

'/ | | .

; I B 1 S L N S|
| |

: | E :Re_ad me,SSouge,s from | Sequencer | :
| I !

: | : : R ~| I :
| I |

: | : :Push Messages to Redis! ! :
| 1 1

: | L : ¥

: | ReceiveMessageRequest Se oot iz VIV i

| : {‘tenom’t, que_ue} | : :

: ! : FetchMessage I I

I I L ' I

| : ReceiveMessageResponse | : :

| : 3 message, re,cejp‘t} | : :

: | : | |

: | , I !

[I DeleteMQSSageRequest | l I

| : f‘tenan‘t, queue, r‘ecejp‘t} : Dele‘te from queue : :

: . \ (FDB) | |

| | : — !

| I : | |

| !

: : Yes : Delete from queue | !

| < I Credis) ! <!

: : fok? Lense : | =

| ' Active | ! '

I ! N e e oo e oo e Jd I

| '< s } (! I\ !

! o ceren No || FDB healthcheck o :

I i I > | i :

| | E o D L | ¥ patADOG 3

. | |

Model Fails!

NoLostMsgs == <>[](Cardinality(Sender!Messages)
* Cardinality(Sender!ProcSet) = stats.deleted +
stats.deadLetterQueue)

¥ pATADOG

Model Fails!

FoundationDB

S CWJMQSSQS’Q $tenant, queued |

|
|
|
—~] I
|
|
|

: Store message in queue

SendMessageResponse fmSgID}

ReceiveMessageRequest
tenant, queuet

|
|

|

|

|

|

|

Fe_'tchMe.S$oxge_ I

|

ReceiveMessageResponse :
|

|

|

|

|

ReceiveMessageRequest :
$tenant - queued I

= FetchMessage :

Re,ce_‘-ve,Me.SSageRCSPOnse
{me_SSo«je_, re,cejp‘t}

1
|
|
|
|
|
|
|
|
|
f
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

A

|
|
]
|
1
|
!
|
|
|
x
|
|
|
|
|
' fMQSSage,, re,cejp‘t}'
|
|
|
|
|
|
|
|
!
i
|
|
|
1
|

¥ pAatADOG #

Model Fails!

172 ReceiveMsg(self) == /\ pcReceiver[self] = "ReceiveMsg"

173 /\ IF (Cardinality(senderMsgs) = @ /\ QueueEmpty(clusters, receiverRequests[self].tenant, receiverRequests[self].queue) /\ Len(msgs([self]) = 0)
174 \/ receiverRequests[self].attempts = 3 THEN

175 /\ pcReceiver' = [pcReceiver EXCEPT ![self] = "Done"]

¥ pATADOG

Design changes

e Intuitively, adding Redis on the Receive Messages path is an availability risk
e For our use-case this was something we could tolerate
e How do we ensure we did not introduce another failure mode?

¥ pATADOG

Combining techniques

Particularly valuable to combine modeling and simulations

Modeling helped us verifying correctness of our system

Simulations gave us estimates on how system behaves under load and failures
Gave us confidence when we had design changes

Enabled us to go from idea to production in 11 months

¥ pATADOG

Deterministic simulators

e Met with Antithesis in 2022

e Incredibly powerful deterministic simulation platform

e At that time we were looking for something more “low level” and
hosted on Datadog infrastructure

...0r to borrow from the world of auditing, our own inhouse DST serves as
“internal audit function” with @AntithesisHQ as “external audit function”.

We simulate “from the inside of the binary out” (extremely protocol aware,
e.g. checking page cache coherency with simulated disk).

Antithesis simulate “from the outside of the binary in” (the final compiled
Joran Dirk Greef, binary... so we're testing Zig and LLVM here!).

Tigerbeetle https://twitter.com/jorandirkgreef/sta

tus/1765963724559429661

¥ pATADOG

https://antithesis.com/
https://twitter.com/jorandirkgreef/status/1765963724559429661
https://twitter.com/jorandirkgreef/status/1765963724559429661

Deterministic simulators

e Go introduces non-determinism in many places
o Goroutine scheduling, maps, selects etc.
o Presented insights on testing distributed systems to Go language contributors
m They face similar issues testing go schedulers itself
e Tried using Hermit (Meta)
o Didn’t work with CGO; FDB client
o Limitations on supported OS
o May work for simple Go apps
e Can we make Golang itself deterministic?
o Remains an area of exploration

¥ pATADOG

https://github.com/golang/go/issues/54475
https://developers.facebook.com/blog/post/2022/11/22/hermit-deterministic-linux-testing/

Questions?

. Arun Parthiban
! arun.parthiban@datadoghg.com
linkedin.com/in/arunparthiban

Sesh Nalla
sesh.nalla@datadoghg.com
linkedin.com/in/seshendranalla

¥ patADOG

mailto:sesh.nalla@datadoghq.com
https://www.linkedin.com/in/seshendranalla
mailto:arun.parthiban@datadoghq.com
https://www.linkedin.com/in/arunparthiban

Thank you!

