dWS
~—

Fifteen Years of TLA+

Marc Brooker

VP/Distinguished Engineer
mbrooker@amazon.com

Agenda

 The Past
 The Present

 The Future

The Past

aws

N 2 © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

About Me

« 15+ years at AWS.

 Oncall for 15 years.

« Aurora, Lambda, EC2, EBS, APl Gateway, loT, Bedrock, and others.
- Mostly a practitioner.

aws

N 2) © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

/|

aWwWs 6

N 2) © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

With mathematics we can:

- Quantify output behavior

- Predict behavior of systems as design time
- Understand safety margins

- Understand system interactions

(within limits)

aws

N >) © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

This is awesomel

aws

N 2) © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

aws

N

Doppler (Hz)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

1

00
50
7
-50]
=100 20 80 2

40 60 80 0
Range (m)

Doppler (Hz)

20 40 60 100
Range (m)

(a) 0.1s integration time. (b) 1s integration time.

40 60 80 20 40 60 80
Range (m) Range (m)

(c) 10s integration time. (d) 100s integration time.

Figure A.2: Direct signal power spreading in range and Doppler versus
integration time for measured NetRad phase noise

10

-
-
] -
A -— - - g
o — 3 > e — _I
. ” v - i o e L it 4.
. e — ——
PR S P ——) { - -
= o - N g e— = e e S e — a2 — —
- . ~— . e
— - . A — N a
— p— — =
- . \

S LR

ey —
.
S—

__ s-

5

- PP
-.f.__...- o

"B

it's just vibes, man.

aws

N 2) © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

12

aws

\-/7

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

13

aws

N

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Alloy
‘Promela + SPIN
TLA+

CACM, 2015

aws

N > © 2024, Amazon Web Services, Inc. o

DO0I:10.1145/2699417

Engineers use TLA+ to prevent serious but
subtle bugs from reaching production.

BY CHRIS NEWCOMBE, TIM RATH, FAN ZHANG, BOGDAN MUNTEANU,

MARC BROOKER, AND MICHAEL DEARDEUFF

How Amazon
Web Services

Uses Formal
Methods

SINCE 2011, ENGINEERS at Amazon Web Services
(AWS) have used formal specification and model
checking to help solve difficult design problems in
critical systems. Here, we describe our motivation
and experience, what has worked well in our problem
domain, and what has not. When discussing personal

S3 is just one of many AWS ser-
vices that store and process data our
customers have entrusted to us. To
safeguard that data, the core of each
service relies on fault-tolerant dis-
tributed algorithms for replication,
consistency, concurrency control, au-
to-scaling, load balancing, and other
coordination tasks. There are many
such algorithms in the literature, but
combining them into a cohesive sys-
tem is a challenge, as the algorithms
must usually be modified to interact
properly in a real-world system. In
addition, we have found it necessary
to invent algorithms of our own. We
work hard to avoid unnecessary com-
plexity, but the essential complexity of
the task remains high.

Complexity increases the probabil-
ity of human error in design, code,
and operations. Errors in the core of
the system could cause loss or corrup-
tion of data, or violate other interface
contracts on which our customers de-
pend. So, before launching a service,
we need to reach extremely high con-
fidence that the core of the system is
correct. We have found the standard
verification techniques in industry are
necessary but not sufficient. We rou-
tinely use deep design reviews, code
reviews, static code analysis, stress
testing, and fault-injection testing but
still find that subtle bugs can hide in
complex concurrent fault-tolerant
systems. One reason they do is that

17

Applying TLA+ to some of Amazon's more complex systems.

DynamoDB

Internal
distributed
lock
manager

aws

Components

Fault-tolerant, low-level
network algorithm

Background redistribution of
data

Replication and
group-membership system

Volume management

Lock-free data structure

Fault-tolerant replication-and-
reconfiguration algorithm

N 2) © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Line Count
(Excluding Comments)

804 PlusCal

645 PlusCal

939 TLA+

102 PlusCal
223 PlusCal

Benefit

Found two bugs, then
others in proposed
optimizations

Found one bug, then
another in the first
proposed fix

Found three bugs requir-
ing traces of up to 35
steps

Found three bugs

Improved confidence
though failed to find a
liveness bug, as liveness
not checked

Found one bug and
verified an aggressive
optimization

18

Applying TLA+ to some of Amazon's more complex systems.

Line Count

Components (Excluding Comments) Benefit

DynamoDB

Internal
distributed
lock
manager

Fault-tolerant, low-level
network algorithm

Background redistribution of
data

Replication and
group-membership system

Volume management
Lock-free data structure

Fault-tolerant replication-and-
reconfiguration algorithm

804 PlusCal

645 PlusCal

102 PlusCal
223 PlusCal

318 TLA+

Found two bugs, then
others in proposed
optimizations

Found one bug, then
another in the first
proposed fix

Found three bugs requir-
ing traces of up to 35
steps

Found three bugs

Improved confidence
though failed to find a
liveness bug, as liveness
not checked

Found one bug and
verified an aggressive
optimization

“Found three bugs”

aws

N 2) © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

19

aws

N

DynamoDB

Internal
distributed
lock
manager

"...requiring traces of up to 35 steps”

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Components

Fault-tolerant, low-level
network algorithm

Background redistribution of
data

Replication and
group-membership system

Volume management
Lock-free data structure

Fault-tolerant replication-and-
reconfiguration algorithm

Applying TLA+ to some of Amazon's more complex systems.

Line Count
(Excluding Comments)

804 PlusCal

645 PlusCal

102 PlusCal
223 PlusCal

318 TLA+

Benefit

Found two bugs, then
others in proposed
optimizations

Found one bug, then
another in the first
proposed fix

Found three bugs requir-
ing traces of up to 35
steps

Found three bugs

Improved confidence
though failed to find a
liveness bug, as liveness
not checked

Found one bug and
verified an aggressive
optimization

20

aws

N

DynamoDB

Internal
distributed
lock
manager

“... verified an aggressive optimization”

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Components

Fault-tolerant, low-level
network algorithm

Background redistribution of
data

Replication and
group-membership system

Volume management
Lock-free data structure

Fault-tolerant replication-and-
reconfiguration algorithm

Applying TLA+ to some of Amazon's more complex systems.

Line Count
(Excluding Comments)

804 PlusCal

645 PlusCal

102 PlusCal
223 PlusCal

318 TLA+

Benefit

Found two bugs, then
others in proposed
optimizations

Found one bug, then
another in the first
proposed fix

Found three bugs requir-
ing traces of up to 35
steps

Found three bugs

Improved confidence
though failed to find a
liveness bug, as liveness
not checked

Found one bug and
verified an aggressive
optimization

21

Faster, safer, and
cheaper.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

"It would be well if engineering were less generally
thought of, and even defined, as the art of constructing.

In a certain important sense it is rather the art of not
constructing; or, to define it rudely but not inaptly, it is
the art of doing that well with one dollar, which any

bungler can do with two after a fashion.”

Arthur Wellington

> © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

TLA+:

An Engineering Tool

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The Present

aws

N 2 © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

TLA+ continues to be used:

- Database services (e.g. Aurora, DynamoDB)
- Compute services (e.g. Lambda)

- Storage services (e.g. EBS)

- and many other places

26

NSDI'20

Marc Brooker
Amazon Web Services

Abstract

Starting in 2013, we set out to build a new database to act as
the configuration store for a high-performance cloud block
storage system (Amazon EBS).This database needs to be not
only highly available, durable, and scalable but also strongly
consistent. We quickly realized that the constraints on avail-
ability imposed by the CAP theorem, and the realities of
operating distributed systems, meant that we didn’t want one
database. We wanted millions. Physalia is a transactional key-
value store, optimized for use in large-scale cloud control
planes, which takes advantage of knowledge of transaction
patterns and infrastructure design to offer both high availabil-
ity and strong consistency to millions of clients. Physalia uses
its knowledge of datacenter topology to place data where it is
most likely to be available. Instead of being highly available

1

Millions of Tiny Databases

Tao Chen
Amazon Web Services

Fan Ping
Amazon Web Services

to less than 1.5x as systems age. While a 9x higher failure
rate within the following week indicates some correlation, it
is still very rare for two disks to fail at the same time. This
is just as well, because systems like RAID [43] and primary-
backup failover perform well when failures are independent,
but poorly when failures occur in bursts.

When we started building AWS in 2006, we measured the
availability of systems as a simple percentage of the time
that the system is available (such as 99.95%), and set Service
Level Agreements (SLAs) and internal goals around this per-
centage. In 2008, we introduced AWS EC2 Availability Zones:
named units of capacity with clear expectations and SLAs
around correlated failure, corresponding to the datacenters
that customers were already familiar with. Over the decade
since, our thinking on failure and availability has continued
to evolve, and we paid increasing attention to blast radius and

[We] used TLA+ in three ways:

- writing specifications of our protocols to check that we
understand them deeply

- model checking specifications against correctness and liveness
properties using the TLC model checker, and

- writing extensively commented TLA+ code to serve as the
documentation of our distributed protocols.

While all three of these uses added value, TLA+'s role as [an]
extremely precise format for protocol documentation was perhaps
the most useful.

Brooker et al, Millions of Tiny Databases, NSDI'20

aW§,©’ 28

AWS has a broad automated
reasoning practice.

OOPSLA'24

aws

N

© 2024, Amazon Web Servid

Cedar: A New Language for Expressive, Fast, Safe, and
Analyzable Authorization

JOSEPH W. CUTLER?®, University of Pennsylvania, USA
CRAIG DISSELKOEN, Amazon Web Services, USA
AARON ELINE, Amazon Web Services, USA

SHAOBO HE, Amazon Web Services, USA

KYLE HEADLEY"®, Unaffiliated, USA

MICHAEL HICKS, Amazon Web Services, USA

KESHA HIETALA, Amazon Web Services, USA
ELEFTHERIOS IOANNIDIS®, University of Pennsylvania, USA
JOHN KASTNER, Amazon Web Services, USA

ANWAR MAMAT", University of Maryland, USA
DARIN MCADAMS, Amazon Web Services, USA
MATT MCCUTCHEN?®, Unaffiliated, USA

NEHA RUNGTA, Amazon Web Services, USA

EMINA TORLAK, Amazon Web Services, USA
ANDREW M. WELLS, Amazon Web Services, USA

Cedar is a new authorization policy language designed to be ergonomic, fast, safe, and analyzable. Rather
than embed authorization logic in an application’s code, developers can write that logic as Cedar policies and
delegate access decisions to Cedar’s evaluation engine. Cedar’s simple and intuitive syntax supports common
authorization use-cases with readable policies, naturally leveraging concepts from role-based, attribute-based

30

OOPSLA'23

Message Chains for Distributed System Verification

FEDERICO MORA, University of California, Berkeley, USA
ANKUSH DESALI, Amazon Web Services, USA
ELIZABETH POLGREEN, University of Edinburgh, UK
SANJIT A. SESHIA, University of California, Berkeley, USA

Verification of asynchronous distributed programs is challenging due to the need to reason about numerous
control paths resulting from the myriad interleaving of messages and failures. In this paper, we propose an
automated bookkeeping method based on message chains. Message chains reveal structure in asynchronous
distributed system executions and can help programmers verify their systems at the message passing level of
abstraction. To evaluate our contributions empirically we build a verification prototype for the P programming
language that integrates message chains. We use it to verify 16 benchmarks from related work, one new
benchmark that exemplifies the kinds of systems our method focuses on, and two industrial benchmarks.
We find that message chains are able to simplify existing proofs and our prototype performs comparably
to existing work in terms of runtime. We extend our work with support for specification mining and find

a\w,s, © 2024, Amazon Web Se that message chains provide enough structure to allow existing learning and program synthesis tools to
automatically infer meaningful specifications using only execution examples.

CAV'22

A Billion SMT Queries a Day
(Invited Paper)

Neha Rungta'®™

Amazon Web Services, Seattle, USA
rungta@amazon.com

Abstract. Amazon Web Services (AWS) is a cloud computing services
provider that has made significant investments in applying formal meth-
ods to proving correctness of its internal systems and providing assurance
of correctness to their end-users. In this paper, we focus on how we built
abstractions and eliminated specifications to scale a verification engine
for AWS access policies, ZELKOVA, to be usable by all AWS users. We
present milestones from our journey from a thousand SMT invocations
daily to an unprecedented billion SMT calls in a span of five years. In
this paper, we talk about how the cloud is enabling application of formal
methods, key insights into what made this scale of a billion SMT queries
daily possible, and present some open scientific challenges for the formal
methods community.

aws

N 2) © 2024, Amazon Web Services, Inc. or its affi

SOSP'21

© 2024, Amazon Web Services, Inc. or its affi

Using Lightweight Formal Methods to Validate a
Key-Value Storage Node in Amazon S3

James Bornholt
Amazon Web Services
& The University of Texas at Austin

Brendan Cully
Amazon Web Services

Kyle Sauri
Amazon Web Services

Serdar Tasiran
Amazon Web Services

Abstract

This paper reports our experience applying lightweight for-
mal methods to validate the correctness of ShardStore, a new
key-value storage node implementation for the Amazon S3
cloud object storage service. By “lightweight formal methods”
we mean a pragmatic approach to verifying the correctness
of a production storage node that is under ongoing feature
development by a full-time engineering team. We do not aim
to achieve full formal verification, but instead emphasize
automation, usability, and the ability to continually ensure
correctness as both software and its specification evolve over
time. Our approach decomposes correctness into indepen-
dent properties, each checked by the most appropriate tool,
and develops executable reference models as specifications
to be checked against the implementation. Our work has
prevented 16 issues from reaching production, including sub-
tle crash consistency and concurrency problems, and has
been extended by non-formal-methods experts to check new
features and properties as ShardStore has evolved.

Rajeev Joshi
Amazon Web Services

Bernhard Kragl
Amazon Web Services

Drew Schleit
Amazon Web Services

Jacob Van Geffen
University of Washington

Vytautas Astrauskas
ETH Zurich

Seth Markle
Amazon Web Services

Grant Slatton
Amazon Web Services

Andrew Warfield
Amazon Web Services

Using Lightweight Formal Methods to Validate a Key-Value Storage
Node in Amazon S3. In ACM SIGOPS 28th Symposium on Operating
Systems Principles (SOSP °21), October 26-28, 2021, Virtual Event,
Germany. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3477132.3483540

1 Introduction

Amazon S3 is a cloud object storage service that offers cus-
tomers elastic storage with extremely high durability and
availability. At the core of S3 are storage node servers that
persist object data on hard disks. These storage nodes are
key-value stores that hold shards of object data, replicated
by the control plane across multiple nodes for durability. S3
is building a new key-value storage node called ShardStore
that is being gradually deployed within our current service.

Production storage systems such as ShardStore are notori-
ously difficult to get right [25]. To achieve high performance,
ShardStore combines a soft-updates crash consistency proto-
col [16], extensive concurrency, append-only IO and garbage

Keeping this personal...

aws

N 2) © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Abstract

Code Design

N 2) © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. (O n C ret e

Find bugs earlier,
move faster.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Optimize designs and
protocols without risk.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Crisply communicate exact
reasoning.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Exactly state system
properties.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Formal methods are just
good engineering practice.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The Future

aws

N 2 © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Prediction 1:

Systems will continue to
become more complex.

Prediction 2:

Systems will continue to
become more critical.

Prediction 3:

Cost, efficiency, sustainability,
and productivity will become
more important.

Certainty level: medium

Prediction 4:
Al will be a big deal

Certainty level: medium

The Future, More Concr

aws

N 2 © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Quantitative Understanding
of System Behavior

Beyond Safety and Liveness:

- Failure probabilities.

- Latency and throughput distributions.

- System performance under different workloads.
- Automatic optimization of system designs.

48

Faster Exploration of the
Design Space

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Example: 2f+17 vs f+1 replication designs

- 30 years of debate and data.

- Still no clear winner, because its failure model and workload
dependent.

e But how?

 Given workload properties, matching design to workload should
be trivial.

50

Example: OCC vs locking

- 45 years of debate and data!

- Still no clear winner, because its failure model and workload
dependent.

e But how?

 Given workload properties, matching design to workload should
be trivial.

Kung and Robinson, On Optimistic Methods for Concurrency Control, ACM TOCS, 1981
Kung and Papadimitriou, An Optimality Theory of Concurrency Control for Databases, ACM TOCS, 1979

N = © 2024, Amazon Web Services, Inc. . or its affiliates. All rights reserved. 51

Reaching Working Engineers

How?

- | don't know.
- Should tools be narrower and more specific?
- Is packaging and Ul holding us back?

- Are we speaking enough to decision makers about moving faster
and with less risk?

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

53

The Code vs Model Gap

aws

N 2) © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The Model Checking vs
Proof Gap

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

dWS

\/‘7

Thank you!

Marc Brooker

mbrooker@amazon.com
https://brooker.co.za/blog/

mailto:mbrooker@amazon.com
https://brooker.co.za/blog/

