Validating System
Executions with the TLA+
Tools

TLA+ Conf 2024

Amaury Chamayou?, Benjamin Loillier4, Eddy Ashton?, Eric Dai', Heidi Howard 2, Horatiu
Cirstea?, Jian Zhou ', Joshua Zhang ', Markus A. Kuppe 3, StephanMerz4, Vincent Li

1 Microsoft Azure, 2 Microsoft Azure Research, 2 Microsoft Research, 4 University of Lorraine, CNRS, Inria, LORIA,
Nancy, France

TLA+ Trace Validation: In a Nutshell

1. Each node locally logs relevant events
2. Merge node-local logs into single, global Log

3. Generate set of behaviors T defined by “trace spec” Trace that
conformto Log

4. CheckifT NS # @, where Sis the set of behaviors defined by
high-level spec Spec

Trace T S Spec

Prior Work

* Using formal specifications to monitor and guide simulation: Verifying the
cache coherence engine of the Alpha 21364 microprocessor (2002,
Tasiran et al.)

* Concurrent system + custom tailored to simulator

* Verifying Software Traces Against a Formal Specification with TLA+ and
TLC (2018, Ron Pressler)

* Outlined technique toy example

 eXtreme Modeling in Practice (2020, Jessie Davis et al.)

* Bridging the Verifiability Gap: Why We Need More From Our Specs and
How We Can Get It (2020, Jordan Halterman)

https://www.microsoft.com/en-us/research/publication/using-formal-specifications-to-monitor-and-guide-simulation-verifying-the-cache-coherence-engine-of-the-alpha-21364-microprocessor/
https://www.microsoft.com/en-us/research/publication/using-formal-specifications-to-monitor-and-guide-simulation-verifying-the-cache-coherence-engine-of-the-alpha-21364-microprocessor/
https://pron.github.io/files/Trace.pdf
https://pron.github.io/files/Trace.pdf
http://www.vldb.org/pvldb/vol13/p1346-davis.pdf
https://youtu.be/itcj9j2yWQo
https://youtu.be/itcj9j2yWQo

Spec driven development

System Spec Implementor Findings

Produce/Consumer Kuppe Kuppe Single-Mutex bug (deliberate)

MPMC Queue

Distributed Termination Kuppe Kuppe Token rounds initiated after global

detection (EWD998) termination

Two-Phase Commit Lamport Inria List instead of set to count resource

protocol managers (timeouts cause same RM to be
counted multiple times)

Consistency of a Key- Demirbas Inria Snapshot Isolationissue due to

Value Store implementation not creating a proper
snapshot at TX start

Distributed Consensus Ongaro Inria Integer division bug (missing ceiling) causing

(Raft)

candidate to incorrectly reach quorum

https://github.com/lemmy/BlockingQueue/blob/main/BlockingQueue.tla
https://github.com/lemmy/BlockingQueue/tree/main/impl
https://github.com/tlaplus/Examples/blob/master/specifications/ewd998/
https://github.com/tlaplus/Examples/tree/master/specifications/ewd998/impl
https://github.com/tlaplus/Examples/blob/master/specifications/transaction_commit/TwoPhase.tla
https://github.com/lbinria/KeyValueStore
https://github.com/tlaplus/Examples/tree/master/specifications/KeyValueStore
https://github.com/lbinria/TwoPhase
https://github.com/ongardie/raft.tla/
https://github.com/lbinria/Raft

etcd-raft with Azure

Goal and execution: Add novel Raft feature (2 nodes + withess)

 Tracevalidationvanilla etcd-raft#111

» Raft with withess support #133
* |nefficiency: next indexshall be larger than match index #149

serathius commented on Jan 25 Member

+1 to witness support. My main concern would be creation of a test plan
to ensure correctness. | think the TLC model checker will be crucial
here.

@

!-; :’ Xiang90 commented on Nov 27, 2023 Contributor

| chatted with both Lamport/Yuan in 2015 to discuss this issue
(https://www.microsoft.com/en-us/research/publication/specifying-and-verifying-
systems-with-tla/)

Here is the "conclusion" from them:

There were multiple efforts in the past to compile TLA+ spec to actual code, but as
far as | can tell none of them were very successful. One promising approach is to
write a mapping (i.e., refinement function) that maps implementation states in for
example C++ to specification state. This would allow you to check the specification
as a property of the implementation. It also allows you to use the specification to
drive the testing of the implementation.

Releases 233

© v3.5.13

2 weeks ago

+ 232 releases

Packages

No packages published

Used by 9.6k
@ [gﬁ ﬁ +9,593

Contributors 839

00 083
3y 1€8®

+ 825 contributors

©
@

Languages

1
® Go 96.5% Shell 2.0%
® Jsonnet 1.1% Other 0.4%

https://github.com/etcd-io/raft/issues/111
https://github.com/etcd-io/raft/pull/192
https://github.com/etcd-io/raft/pull/149

CCF with Azure Research

IA-CCF: Individual A ility for Permissi Ledgers

Alex Shamis'?, Peter Pietzuch! 2, Burcu Canakei* 3, Miguel Castro', Cédric Fournet!,
Edward Ashton', Amaury Chamayou', Sylvan Clebsch', Antoine Delignat-Lavaud', Matthew Kerner*,
Julien Maffre!, Olga Vrousgou', Christoph M. Wintersteiger', Manuel Costa', and Mark Russinovich®

!"Mierosoft Research, 2Imperial College London, *Cornell University, *Microsoft Azure

Abstract

Permissioned
that do not t

on a set of replicas. I

ra:m lm“,rmu.\lll»llmulk, u\;l o i, which mly ' CCF: A Framework fo]' Building Confidential
y han 1/3 of the isbehave,

P uscaerecs beyond this thacche Menge Ad Verifiable Replicated Services

cu e that the ledger s comupt and fail to the

bers thatoper. i Mark Russinovich, Edward Ashton, Christine Avanessians, Miguel Castro, Amaury Chamayou, Sylvan Clebsch,
ABALOCT- 0 Munuct Cosa, Cédric Foumet, Matthew Kerner, Sid Krishna, Julien Maftr, Thomas Moscibroda. Karik Noyak'.
Olga Ohsimenko, Felix Schuster", Roy Schuster, Alex Shamis, Olga Vrousgou, Christaph M. Winterstciger
Microsoft Rescarch & Microsoft Azurc
April 2019

as or hold 1
e

ki) Mooy CCF s sl popries coubdnilty 15 3] ik shens proes o
y low performance (c.5., about 4 tra

ot s s abetin: CCY raraes ot bt e
in 2 comartium of governing members and in a nevwork of

per
second [17).
In this paper. we present CCF, 1 framework that addresses
Bigh hroughpu. b ey, sroug ety and strng co. (sl 4 provides b confdemily i Wgh
deniilty foe application data and code executing on the ledger. — performance for consestium-based blockehains. CCF rephi
Y s o e wih B cruh (001 Lo ki persion i 5 eowork of i
ey et e e e B o s proteced trusid exccution environments (TEES). This yilds
e Sorrupt or thelr keys are compromised, they can be blamed high throughpat, high svailability, and kow latency, while ot the
based om ther skgned evdence of malchous actviy recorded In same time prolecting the iniegrty and confidentiality of ap-
theledger. CCF supports transparen, pragraimmable governance pliation data and sode nunming an the ledger. Althaugh CCF

Confidential Consortium Framework: Secure Multiparty retected mereny egions s aliow trsvortey
e v srons ho compen. Some

Applications with Confidentiality, Integrity, and High Availability i i i e 0 011, 021

o not provide confidentiality guaranices.

. . ‘ + « members of a consorium may ot necesarl
Heidi Howard Fritz Alder Edward Ashton e " .
Azure Research, Microsoft imec-DistriNet, KU Leuven Azure Research, Microsoft
Belgium
Amaury Chamayou Sylvan Clebsch Manuel Costa
Azure Research, Microsoft Azure Research, Microsoft Azure Research, Microsoft
Antoine Delignat-Lavaud Cédric Fournet Andrew Jeffery®
Azure Research, Microsoft Azure Research, Microsoft University of Cambridge
Matthew Kerner Fatios Kounelis" Markus A. Kuppe
Microsoft Imperial College London Microsoft Research
UK
Julien Maffre Mark Russinovich Christoph M. Wintersteiger
Azure Research, Microsoft Microsoft Azure Research, Microsoft
ABSTRACT

Confidentiality, integrity protection, and high availability. abbrevi-
ated to CIA, are essential properties for trustworthy data systems.

nand for multiparty
etn CIA systems is
c present the Confiden-
al-purpose foundation

I\\ during execution is more cwnumgm., Morer
lone does not fully slve the problem of confide:
Instead, it reduces the problem of protecting arbitrary data into

Raft-Inspired CFT consensus

* Dynamic reconfiguration

* Cryptographic guarantees

* Foundation of Azure offerings

TLA+ spec written afterthe fact

Validating traces of ~15 impl tests revealed several spec bugs:

* Empty & Batching of entries in AppendEntries msgs #5150
#5154

* Real-world bootstrapping #5828, node membership #5902,
and node retirement #5919

* Proposerequestvote messageto speed up some
reconfigurations #5697

* Support modeling different network guarantees #5634

Releases 182

© 4.0.16

3 weeks ago

+ 181 releases

Contributors 55

+ 41 contributors

Languages

S E—————
® C++67.4% ® Python 23.8%
® TLA 3.0% ® TypeScript 2.6%
® CMake 1.9% Shell 0.7%
Other 0.6%

https://github.com/microsoft/CCF/tree/main/tests/raft_scenarios
https://github.com/microsoft/CCF/issues/5057
https://github.com/microsoft/CCF/pull/5150
https://github.com/microsoft/CCF/pull/5154
https://github.com/microsoft/CCF/pull/5828
https://github.com/microsoft/CCF/pull/5902
https://github.com/microsoft/CCF/pull/5919
https://github.com/microsoft/CCF/pull/5697
https://github.com/microsoft/CCF/pull/5634

CCF with Azure Research (contd.)

“Safety violation due to reuse of “[R]euse of match_idx can lead to
the Term field in Append Entries unsafely advancing commit index
messages #5927” #5325”

* Relatedto processing of * Relatedto processing of
(stale) ACKs and NACKs, i.e., NACKSs, i.e., non-happy path
happy and non-happy path Found and diagnosed by FM

* Found and diagnosed by expert

system experts

https://github.com/microsoft/CCF/issues/5325
https://github.com/microsoft/CCF/issues/5927

Why bugs despite passing/green tests?

Trace failsto
validate

Apply fixto
implementation

>
<@

Amend TLA+
Spec with low-
level detail, or

formally
document
divergence in
Trace spec

Trace validates

Find fix
satisfying safety
& liveness
properties

Implementation
violates test

Full-scale
verification of
Spec finds
property
violation

L

Translate
counterexample
to
implementation
test

(80e41)ua] >> (91dwexalalunod)uan]

TV mini tutorial - EWD998

https://github.com/tlaplus/Examples/pull/75/

Spec (EWD998Chan.tla)

Next ==

* Some computation with async messaging
\/ \E n \in Node :

SendMsg(n) \/ RecvMsg(n) \/ Deactivate(n)

* Termination detection with sync messaging
\/ InitiateToken * node O
\/ \E n\in Node \ {0} : PassToken(n)

Circle: Active, Black: Tainted
EWD998:

) i Line: Message, Arrow: Receiver
Termination Dashed: In-Flight, Solid: Arrival in next

Detection Level: 1 Terminated: F Detected: F

O
O

O
O

Implementation: EWD998.java

void sendMsg(int sender, int receiver, Object msg) {

JsonObject pkt = new JsonObject();
pkt.add(SND, sender);
pkt.add(RCV, receiver);
pkt.add(MSG, msg);

pkt.add(VC, clock.tick());

[...]
socket.send(pkt);

JsonObject logline = new JsonObject();
logline.add(EVENT, ">");
logline.add(NODE, sender);
logline.add(PKT, pkt);
System.out.printin(logline);

Trace (EWD998ChanTrace.tla)

EXTENDS EWD998Chan, Json, VectorClock
VARIABLE length

Log == CausalOrder(Deserialize("log.ndjson"), ...)
line == Log[length]

IsSendMsg ==

/\ length \in DOMAIN Log /\ length’ =length + 1
/\ line.event = ">” /\ line.pkt.msg.type = "pl"

/\ <<SendMsg(line.pkt.snd)>>_vars

* Receiver non-deterministic in SendMsg.

/\ IsPrefix(inbox[line.pkt.rcv], inbox’[line.pkt.rcv])

Send tok 2—1 . .~~~ . T 7>~ Recv tok 2—1

Add explicit stuttering action:

IsRecvToken
a=0:>T@@l:>T@@2:>J_\ IsPassToken> a=0:>T@@1:>T@@2:>J_\ (stuttering) > a=0>T@@wl>T@w?2>1
i: O :> nn @@ 1 :> nn @@ 2 :> HtOkH i: 0 :> " @@ 1 :> ”tok" @@ 2 :> HHJ i: O :> nn @@ 1 :> HtOkH @@ 2 :> "m

Send tok 2—1 _ =77 . .. > Recv tok 2—1
—{_ tok in transit) S

—_—— e ———

IsRecvToken

a=0>T@@1l>T@@w?2>T IsDeactivate a=0>T@@l>T@@w?2>1 IsPassToken a=0>T@@l>T@w?2>1 stuttering a=0>T@@l>T@w?2>1
i: 0 :> "nn @@ 1 :> "nn @@ 2 :> "tok" i= 0 :> nn @@ 1 :> nn @@ 2 :> l'tokll i= 0 :> "nn @@ 1 :> "tok” @@ 2 :> " i= 0 :> "nn @@ 1 :> "tok" @@ 2 :> "nn

Compose Deactivate and PassToken actions:

IsRecvToken

l a=0>T@@l>T@w2>T \ DeactivatecPassToken { a=0>T@@l1l>T@w?2> 1L \ (stuttering) >[a=0>T@@wl>T@w?2>1 l

i= O :> " @@ 1 :> " @@ 2 :> "tOk" i: 0 :> " @@ 1 :> ”tok” @@ 2 :> HHJ i: 0 :> " @@ 1 :> HtOkH @@ 2 :> m

Verification: [T|>1 (non-determinism)

Cannot check: Reason:

Safety No state violates anything
Deadlock Spurious counterexamples
Liveness: <>[/length= Len(Log) Spurious counterexamples
EF length = Len(Log) Not expressible in TLA (LTL)
Can check:

Liveness: [/(length <= Len(Log) =>[]TLCGet("queue")>0...) Kludge, but some candidate behavior©

Post condition: TLCGet("stats").diameter= Len(Log) True/False by default, but -dump
dot,actionlabels,colorize,constrained,sn
apshots trace.dot

Logging: Best Practices

Log when:
* Messages are sent and received
* Node-local, observable state changes
* Include primed and unprimed values
* O(1) space variable values

etcd (11 log statements total) CCF (15 log stmts total)
Send & Rcv of AppendEntries, RequestVote, ... Send & Rcv...
State changes to Leader, Follower, Candidate State changes...
Configuration changes (Add) Configuration changes...
Advance Commit Index Advance Commit Index
Test infra drops messages (reduce non-determinism)

https://github.com/etcd-io/raft/pull/113/files
https://github.com/search?q=repo%3Amicrosoft/CCF%20RAFT_TRACE_JSON_OUT&type=code
https://github.com/microsoft/CCF/pull/6021

Logging: Causality

e Centralized Clock if you must

 Distributed Clock if you can
* Code changes or space might be
prohibitive
* TLA+ CommunityModules: Vector

Clock
e Code taken from ShiViz ©

Bonus VC: Interactive time-space

diagrams

https://github.com/tlaplus/CommunityModules/blob/master/modules/VectorClocks.tla
https://github.com/tlaplus/CommunityModules/blob/master/modules/VectorClocks.tla
https://bestchai.bitbucket.io/shiviz/
https://bestchai.bitbucket.io/shiviz/
https://bestchai.bitbucket.io/shiviz/

Conclusion

* TLA+ tools mature to narrow the spec to code gap

* TV found spec <> impl divergencesin all 7 systems
* ...Identified non-trivial bugs in real-world systems
* ...helpsreverse-engineerimplinto spec

* ...helps specs and impls stayin sync
* Even if non-TLA+ engineers change impl

* TVrequires TLA+ expertise

* Engineers involved in etcd and CCF effort know TLA+
* https://github.com/microsoft/CCF/pull/6119

[Next]_v

* Does TV generalize?!
* => How detailed does a spec have to (Raft spec is very detailed)?

 =>Small-scope hypothesis vs at scale?
« TLC’s (new) DFS mitigatesSSEiffT NS # @

* How to generate a diverse set of traces?
* Fuzzing, Chaos engineering, ... guided by spec coverage

* Model-based testing (generate behaviors and have impl replay)
 How to trigger faults/failures?

https://github.com/tlaplus/tlaplus/commit/62625342a01b96c2839c575b49dce1b8489fae94

Questions?

	Default Section
	Slide 1: Validating System Executions with the TLA+ Tools
	Slide 2: TLA+ Trace Validation: In a Nutshell

	Experience Report
	Slide 3: Prior Work
	Slide 4: Spec driven development
	Slide 5: etcd-raft with Azure
	Slide 6: CCF with Azure Research
	Slide 7: CCF with Azure Research (contd.)
	Slide 8: Why bugs despite passing/green tests?

	Tutorial
	Slide 9: TV mini tutorial - EWD998
	Slide 10: Spec (EWD998Chan.tla)
	Slide 11: EWD998: Termination Detection
	Slide 12: Implementation: EWD998.java
	Slide 13: Trace (EWD998ChanTrace.tla)
	Slide 14
	Slide 15
	Slide 16: Verification: |T|>1 (non-determinism)

	Implementation
	Slide 17: Logging: Best Practices
	Slide 18: Logging: Causality

	Conclusion
	Slide 19: Conclusion
	Slide 20: [Next]_v
	Slide 21: Questions?

