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TLA+ Trace Validation: In a Nutshell

1. Each node locally logs relevant events
2. Merge node-local logs into single, global Log

3. Generate set of behaviors T defined by “trace spec” Trace that
conformto Log

4. CheckifT NS # @, where Sis the set of behaviors defined by
high-level spec Spec

Trace T S Spec



Prior Work

* Using formal specifications to monitor and guide simulation: Verifying the
cache coherence engine of the Alpha 21364 microprocessor (2002,
Tasiran et al.)

* Concurrent system + custom tailored to simulator

* Verifying Software Traces Against a Formal Specification with TLA+ and
TLC (2018, Ron Pressler)

* Outlined technique toy example

 eXtreme Modeling in Practice (2020, Jessie Davis et al.)

* Bridging the Verifiability Gap: Why We Need More From Our Specs and
How We Can Get It (2020, Jordan Halterman)



https://www.microsoft.com/en-us/research/publication/using-formal-specifications-to-monitor-and-guide-simulation-verifying-the-cache-coherence-engine-of-the-alpha-21364-microprocessor/
https://www.microsoft.com/en-us/research/publication/using-formal-specifications-to-monitor-and-guide-simulation-verifying-the-cache-coherence-engine-of-the-alpha-21364-microprocessor/
https://pron.github.io/files/Trace.pdf
https://pron.github.io/files/Trace.pdf
http://www.vldb.org/pvldb/vol13/p1346-davis.pdf
https://youtu.be/itcj9j2yWQo
https://youtu.be/itcj9j2yWQo

Spec driven development

System Spec Implementor Findings

Produce/Consumer Kuppe Kuppe Single-Mutex bug (deliberate)

MPMC Queue

Distributed Termination Kuppe Kuppe Token rounds initiated after global

detection (EWD998) termination

Two-Phase Commit Lamport Inria List instead of set to count resource

protocol managers (timeouts cause same RM to be
counted multiple times)

Consistency of a Key- Demirbas Inria Snapshot Isolationissue due to

Value Store implementation not creating a proper
snapshot at TX start

Distributed Consensus Ongaro Inria Integer division bug (missing ceiling) causing

(Raft)

candidate to incorrectly reach quorum



https://github.com/lemmy/BlockingQueue/blob/main/BlockingQueue.tla
https://github.com/lemmy/BlockingQueue/tree/main/impl
https://github.com/tlaplus/Examples/blob/master/specifications/ewd998/
https://github.com/tlaplus/Examples/tree/master/specifications/ewd998/impl
https://github.com/tlaplus/Examples/blob/master/specifications/transaction_commit/TwoPhase.tla
https://github.com/lbinria/KeyValueStore
https://github.com/tlaplus/Examples/tree/master/specifications/KeyValueStore
https://github.com/lbinria/TwoPhase
https://github.com/ongardie/raft.tla/
https://github.com/lbinria/Raft

etcd-raft with Azure

Goal and execution: Add novel Raft feature (2 nodes + withess)

 Tracevalidationvanilla etcd-raft#111

» Raft with withess support #133
* |nefficiency: next indexshall be larger than match index #149

serathius commented on Jan 25 Member

+1 to witness support. My main concern would be creation of a test plan
to ensure correctness. | think the TLC model checker will be crucial
here.

@

!-; :’ Xiang90 commented on Nov 27, 2023 Contributor

| chatted with both Lamport/Yuan in 2015 to discuss this issue
(https://www.microsoft.com/en-us/research/publication/specifying-and-verifying-
systems-with-tla/)

Here is the "conclusion" from them:

There were multiple efforts in the past to compile TLA+ spec to actual code, but as
far as | can tell none of them were very successful. One promising approach is to
write a mapping (i.e., refinement function) that maps implementation states in for
example C++ to specification state. This would allow you to check the specification
as a property of the implementation. It also allows you to use the specification to
drive the testing of the implementation.
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https://github.com/etcd-io/raft/issues/111
https://github.com/etcd-io/raft/pull/192
https://github.com/etcd-io/raft/pull/149

CCF with Azure Research
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Raft-Inspired CFT consensus

* Dynamic reconfiguration

* Cryptographic guarantees

* Foundation of Azure offerings

TLA+ spec written afterthe fact

Validating traces of ~15 impl tests revealed several spec bugs:

* Empty & Batching of entries in AppendEntries msgs #5150
#5154

* Real-world bootstrapping #5828, node membership #5902,
and node retirement #5919

* Proposerequestvote messageto speed up some
reconfigurations #5697

* Support modeling different network guarantees #5634
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https://github.com/microsoft/CCF/tree/main/tests/raft_scenarios
https://github.com/microsoft/CCF/issues/5057
https://github.com/microsoft/CCF/pull/5150
https://github.com/microsoft/CCF/pull/5154
https://github.com/microsoft/CCF/pull/5828
https://github.com/microsoft/CCF/pull/5902
https://github.com/microsoft/CCF/pull/5919
https://github.com/microsoft/CCF/pull/5697
https://github.com/microsoft/CCF/pull/5634

CCF with Azure Research (contd.)

“Safety violation due to reuse of “[R]euse of match_idx can lead to
the Term field in Append Entries unsafely advancing commit index
messages #5927” #5325”

* Relatedto processing of * Relatedto processing of
(stale) ACKs and NACKs, i.e., NACKSs, i.e., non-happy path
happy and non-happy path  Found and diagnosed by FM

* Found and diagnosed by expert

system experts


https://github.com/microsoft/CCF/issues/5325
https://github.com/microsoft/CCF/issues/5927

Why bugs despite passing/green tests?

Trace failsto
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implementation

>
<@

Amend TLA+
Spec with low-
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TV mini tutorial - EWD998

https://github.com/tlaplus/Examples/pull/75/



Spec (EWD998Chan.tla)

Next ==

\* Some computation with async messaging
\/ \E n \in Node :

SendMsg(n) \/ RecvMsg(n) \/ Deactivate(n)

\* Termination detection with sync messaging
\/ InitiateToken \* node O
\/ \E n\in Node \ {0} : PassToken(n)



Circle: Active, Black: Tainted
EWD998:

) i Line: Message, Arrow: Receiver
Termination Dashed: In-Flight, Solid: Arrival in next

Detection Level: 1 Terminated: F Detected: F

O
O

O
O




Implementation: EWD998.java

void sendMsg(int sender, int receiver, Object msg) {

JsonObject pkt = new JsonObject();
pkt.add(SND, sender);
pkt.add(RCV, receiver);
pkt.add(MSG, msg);

pkt.add(VC, clock.tick());

[...]
socket.send(pkt);

JsonObject logline = new JsonObject();
logline.add(EVENT, ">");
logline.add(NODE, sender);
logline.add(PKT, pkt);
System.out.printin(logline);



Trace (EWD998ChanTrace.tla)

EXTENDS EWD998Chan, Json, VectorClock
VARIABLE length

Log == CausalOrder(Deserialize("log.ndjson"), ...)
line == Log[length]

IsSendMsg ==

/\ length \in DOMAIN Log /\ length’ =length + 1
/\ line.event = ">” /\ line.pkt.msg.type = "pl"

/\ <<SendMsg(line.pkt.snd)>>_vars

\* Receiver non-deterministic in SendMsg.

/\ IsPrefix(inbox[line.pkt.rcv], inbox’[line.pkt.rcv])



Send tok 2—1 . .~~~ . T 7>~ Recv tok 2—1

Add explicit stuttering action:

IsRecvToken
a=0:>T@@l:>T@@2:>J_\ IsPassToken> a=0:>T@@1:>T@@2:>J_\ (stuttering) > a=0>T@@wl>T@w?2>1
i: O :> nn @@ 1 :> nn @@ 2 :> HtOkH i: 0 :> " @@ 1 :> ”tok" @@ 2 :> HHJ i: O :> nn @@ 1 :> HtOkH @@ 2 :> "m




Send tok 2—1 _ =77 . .. > Recv tok 2—1
—{_ tok in transit ) S

—_—— e ———

IsRecvToken

a=0>T@@1l>T@@w?2>T IsDeactivate a=0>T@@l>T@@w?2>1 IsPassToken a=0>T@@l>T@w?2>1 stuttering a=0>T@@l>T@w?2>1
i: 0 :> "nn @@ 1 :> "nn @@ 2 :> "tok" i= 0 :> nn @@ 1 :> nn @@ 2 :> l'tokll i= 0 :> "nn @@ 1 :> "tok” @@ 2 :> " i= 0 :> "nn @@ 1 :> "tok" @@ 2 :> "nn

Compose Deactivate and PassToken actions:

IsRecvToken

l a=0>T@@l>T@w2>T \ DeactivatecPassToken { a=0>T@@l1l>T@w?2> 1L \ (stuttering) >[ a=0>T@@wl>T@w?2>1 l

i= O :> " @@ 1 :> " @@ 2 :> "tOk" i: 0 :> " @@ 1 :> ”tok” @@ 2 :> HHJ i: 0 :> " @@ 1 :> HtOkH @@ 2 :> m




Verification: [T|>1 (non-determinism)

Cannot check: Reason:

Safety No state violates anything
Deadlock Spurious counterexamples
Liveness: <>[/length= Len(Log) Spurious counterexamples
EF length = Len(Log) Not expressible in TLA (LTL)
Can check:

Liveness: [/(length <= Len(Log) =>[]TLCGet("queue")>0...) Kludge, but some candidate behavior©

Post condition: TLCGet("stats").diameter= Len(Log) True/False by default, but -dump
dot,actionlabels,colorize,constrained,sn
apshots trace.dot



Logging: Best Practices

Log when:
* Messages are sent and received
* Node-local, observable state changes
* Include primed and unprimed values
* O(1) space variable values

etcd (11 log statements total) CCF (15 log stmts total)
Send & Rcv of AppendEntries, RequestVote, ... Send & Rcv...
State changes to Leader, Follower, Candidate State changes...
Configuration changes (Add) Configuration changes...
Advance Commit Index Advance Commit Index
Test infra drops messages (reduce non-determinism)



https://github.com/etcd-io/raft/pull/113/files
https://github.com/search?q=repo%3Amicrosoft/CCF%20RAFT_TRACE_JSON_OUT&type=code
https://github.com/microsoft/CCF/pull/6021

Logging: Causality

e Centralized Clock if you must

 Distributed Clock if you can
* Code changes or space might be
prohibitive
* TLA+ CommunityModules: Vector

Clock
e Code taken from ShiViz ©

Bonus VC: Interactive time-space

diagrams



https://github.com/tlaplus/CommunityModules/blob/master/modules/VectorClocks.tla
https://github.com/tlaplus/CommunityModules/blob/master/modules/VectorClocks.tla
https://bestchai.bitbucket.io/shiviz/
https://bestchai.bitbucket.io/shiviz/
https://bestchai.bitbucket.io/shiviz/

Conclusion

* TLA+ tools mature to narrow the spec to code gap

* TV found spec <> impl divergencesin all 7 systems
* ...Identified non-trivial bugs in real-world systems
* ...helpsreverse-engineerimplinto spec

* ...helps specs and impls stayin sync
* Even if non-TLA+ engineers change impl

* TVrequires TLA+ expertise

* Engineers involved in etcd and CCF effort know TLA+
* https://github.com/microsoft/CCF/pull/6119



[Next]_v

* Does TV generalize?!
* => How detailed does a spec have to (Raft spec is very detailed)?

 =>Small-scope hypothesis vs at scale?
« TLC’s (new) DFS mitigatesSSEiffT NS # @

* How to generate a diverse set of traces?
* Fuzzing, Chaos engineering, ... guided by spec coverage

* Model-based testing (generate behaviors and have impl replay)
 How to trigger faults/failures?


https://github.com/tlaplus/tlaplus/commit/62625342a01b96c2839c575b49dce1b8489fae94

Questions?
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