
Validating System
Executions with the TLA+

Tools
TLA+ Conf 2024

Amaury Chamayou 2, Benjamin Loillier 4, Eddy Ashton 2, Eric Dai 1, Heidi Howard 2, Horatiu
Cirstea 4, Jian Zhou 1, Joshua Zhang 1, Markus A. Kuppe 3, Stephan Merz 4, Vincent Li 1

1 Microsoft Azure, 2 Microsoft Azure Research, 3 Microsoft Research, 4 University of Lorraine, CNRS, Inria, LORIA,
Nancy, France

TLA+ Trace Validation: In a Nutshell

1. Each node locally logs relevant events
2. Merge node-local logs into single, global Log
3. Generate set of behaviors T defined by “trace spec” Trace that

conform to Log
4. Check if 𝑇 ∩ 𝑆 ≠ ∅, where S is the set of behaviors defined by

high-level spec Spec

T S SpecTrace

Prior Work

• Using formal specifications to monitor and guide simulation: Verifying the
cache coherence engine of the Alpha 21364 microprocessor (2002,
Tasiran et al.)
• Concurrent system + custom tailored to simulator

• Verifying Software Traces Against a Formal Specification with TLA+ and
TLC (2018, Ron Pressler)
• Outlined technique toy example

• eXtreme Modeling in Practice (2020, Jessie Davis et al.)
• Bridging the Verifiability Gap: Why We Need More From Our Specs and

How We Can Get It (2020, Jordan Halterman)

https://www.microsoft.com/en-us/research/publication/using-formal-specifications-to-monitor-and-guide-simulation-verifying-the-cache-coherence-engine-of-the-alpha-21364-microprocessor/
https://www.microsoft.com/en-us/research/publication/using-formal-specifications-to-monitor-and-guide-simulation-verifying-the-cache-coherence-engine-of-the-alpha-21364-microprocessor/
https://pron.github.io/files/Trace.pdf
https://pron.github.io/files/Trace.pdf
http://www.vldb.org/pvldb/vol13/p1346-davis.pdf
https://youtu.be/itcj9j2yWQo
https://youtu.be/itcj9j2yWQo

Spec driven development
System Spec Implementor Findings

Produce/Consumer
MPMC Queue

Kuppe Kuppe Single-Mutex bug (deliberate)

Distributed Termination
detection (EWD998)

Kuppe Kuppe Token rounds initiated after global
termination

Two-Phase Commit
protocol

Lamport Inria List instead of set to count resource
managers (timeouts cause same RM to be
counted multiple times)

Consistency of a Key-
Value Store

Demirbas Inria Snapshot Isolation issue due to
implementation not creating a proper
snapshot at TX start

Distributed Consensus
(Raft)

Ongaro Inria Integer division bug (missing ceiling) causing
candidate to incorrectly reach quorum

https://github.com/lemmy/BlockingQueue/blob/main/BlockingQueue.tla
https://github.com/lemmy/BlockingQueue/tree/main/impl
https://github.com/tlaplus/Examples/blob/master/specifications/ewd998/
https://github.com/tlaplus/Examples/tree/master/specifications/ewd998/impl
https://github.com/tlaplus/Examples/blob/master/specifications/transaction_commit/TwoPhase.tla
https://github.com/lbinria/KeyValueStore
https://github.com/tlaplus/Examples/tree/master/specifications/KeyValueStore
https://github.com/lbinria/TwoPhase
https://github.com/ongardie/raft.tla/
https://github.com/lbinria/Raft

etcd-raft with Azure
Goal and execution: Add novel Raft feature (2 nodes + witness)

• Trace validation vanilla etcd-raft #111

• Raft with witness support #133

• Inefficiency: next index shall be larger than match index #149

https://github.com/etcd-io/raft/issues/111
https://github.com/etcd-io/raft/pull/192
https://github.com/etcd-io/raft/pull/149

CCF with Azure Research
Raft-Inspired CFT consensus
• Dynamic reconfiguration
• Cryptographic guarantees
• Foundation of Azure offerings

TLA+ spec written after the fact

Validating traces of ~15 impl tests revealed several spec bugs:

• Empty & Batching of entries in AppendEntries msgs #5150
#5154

• …

• Real-world bootstrapping #5828, node membership #5902,
and node retirement #5919

• …
• Propose request vote message to speed up some

reconfigurations #5697
• Support modeling different network guarantees #5634

https://github.com/microsoft/CCF/tree/main/tests/raft_scenarios
https://github.com/microsoft/CCF/issues/5057
https://github.com/microsoft/CCF/pull/5150
https://github.com/microsoft/CCF/pull/5154
https://github.com/microsoft/CCF/pull/5828
https://github.com/microsoft/CCF/pull/5902
https://github.com/microsoft/CCF/pull/5919
https://github.com/microsoft/CCF/pull/5697
https://github.com/microsoft/CCF/pull/5634

CCF with Azure Research (contd.)

“[R]euse of match_idx can lead to
unsafely advancing commit index
#5325”

• Related to processing of
NACKs, i.e., non-happy path

• Found and diagnosed by FM
expert

“Safety violation due to reuse of
the Term field in Append Entries
messages #5927”
• Related to processing of

(stale) ACKs and NACKs, i.e.,
happy and non-happy path

• Found and diagnosed by
system experts

https://github.com/microsoft/CCF/issues/5325
https://github.com/microsoft/CCF/issues/5927

Why bugs despite passing/green tests?

Trace fails to
validate

Amend TLA+
Spec with low-
level detail, or

formally
document

divergence in
Trace spec

Trace validates

Full-scale
verification of

Spec finds
property
violation

Translate
counterexample

to
implementation

test

Implementation
violates test

Find fix
satisfying safety

& liveness
properties

Apply fix to
implementation

Len(counterexam
ple) << Len(trace)

TV mini tutorial - EWD998
https://github.com/tlaplus/Examples/pull/75/

Spec (EWD998Chan.tla)

Next ==

* Some computation with async messaging
\/ \E n \in Node :

SendMsg(n) \/ RecvMsg(n) \/ Deactivate(n)

* Termination detection with sync messaging
\/ InitiateToken * node 0
\/ \E n \in Node \ {0} : PassToken(n)

EWD998:
Termination
Detection

Implementation: EWD998.java
void sendMsg(int sender, int receiver, Object msg) {

JsonObject pkt = new JsonObject();
pkt.add(SND, sender);
pkt.add(RCV, receiver);
pkt.add(MSG, msg);
pkt.add(VC, clock.tick());

[…]
socket.send(pkt);

JsonObject logline = new JsonObject();
logline.add(EVENT, ">");
logline.add(NODE, sender);
logline.add(PKT, pkt);
System.out.println(logline);

Trace (EWD998ChanTrace.tla)
EXTENDS EWD998Chan, Json, VectorClock

VARIABLE length

Log == CausalOrder(Deserialize("log.ndjson"), …)
line == Log[length]

IsSendMsg ==
/\ length \in DOMAIN Log /\ length’ = length + 1
/\ line.event = ">” /\ line.pkt.msg.type = "pl"
/\ <<SendMsg(line.pkt.snd)>>_vars
* Receiver non-deterministic in SendMsg.
/\ IsPrefix(inbox[line.pkt.rcv], inbox’[line.pkt.rcv])

Add explicit stuttering action:

Compose Deactivate and PassToken actions:

Verification: |T|>1 (non-determinism)
Cannot check: Reason:

Safety No state violates anything

Deadlock Spurious counterexamples

Liveness: <>[]length = Len(Log) Spurious counterexamples

EF length = Len(Log) Not expressible in TLA (LTL)

Can check:

Liveness: [](length <= Len(Log) => []TLCGet("queue") > 0 …) Kludge, but some candidate behavior ☺

Post condition: TLCGet("stats").diameter = Len(Log) True/False by default, but -dump
dot,actionlabels,colorize,constrained,sn
apshots trace.dot

Logging: Best Practices
Log when:

• Messages are sent and received
• Node-local, observable state changes
• Include primed and unprimed values
• O(1) space variable values

etcd (11 log statements total) CCF (15 log stmts total)

Send & Rcv of AppendEntries, RequestVote, … Send & Rcv…

State changes to Leader, Follower, Candidate State changes…

Configuration changes (Add) Configuration changes…

Advance Commit Index Advance Commit Index

Test infra drops messages (reduce non-determinism)

https://github.com/etcd-io/raft/pull/113/files
https://github.com/search?q=repo%3Amicrosoft/CCF%20RAFT_TRACE_JSON_OUT&type=code
https://github.com/microsoft/CCF/pull/6021

• Centralized Clock if you must

• Distributed Clock if you can
• Code changes or space might be

prohibitive
• TLA+ CommunityModules: Vector

Clock
• Code taken from ShiViz ☺

Bonus VC: Interactive time-space
diagrams

Logging: Causality

https://github.com/tlaplus/CommunityModules/blob/master/modules/VectorClocks.tla
https://github.com/tlaplus/CommunityModules/blob/master/modules/VectorClocks.tla
https://bestchai.bitbucket.io/shiviz/
https://bestchai.bitbucket.io/shiviz/
https://bestchai.bitbucket.io/shiviz/

Conclusion
• TLA+ tools mature to narrow the spec to code gap

• TV found spec <> impl divergences in all 7 systems
• …identified non-trivial bugs in real-world systems
• …helps reverse-engineer impl into spec
• …helps specs and impls stay in sync

• Even if non-TLA+ engineers change impl

• TV requires TLA+ expertise
• Engineers involved in etcd and CCF effort know TLA+

• https://github.com/microsoft/CCF/pull/6119

[Next]_v

• Does TV generalize?!
• => How detailed does a spec have to (Raft spec is very detailed)?
• => Small-scope hypothesis vs at scale?

• TLC’s (new) DFS mitigates SSE iff 𝑇 ∩ 𝑆 ≠ ∅

• How to generate a diverse set of traces?
• Fuzzing, Chaos engineering, … guided by spec coverage

• Model-based testing (generate behaviors and have impl replay)
• How to trigger faults/failures?

https://github.com/tlaplus/tlaplus/commit/62625342a01b96c2839c575b49dce1b8489fae94

Questions?

	Default Section
	Slide 1: Validating System Executions with the TLA+ Tools
	Slide 2: TLA+ Trace Validation: In a Nutshell

	Experience Report
	Slide 3: Prior Work
	Slide 4: Spec driven development
	Slide 5: etcd-raft with Azure
	Slide 6: CCF with Azure Research
	Slide 7: CCF with Azure Research (contd.)
	Slide 8: Why bugs despite passing/green tests?

	Tutorial
	Slide 9: TV mini tutorial - EWD998
	Slide 10: Spec (EWD998Chan.tla)
	Slide 11: EWD998: Termination Detection
	Slide 12: Implementation: EWD998.java
	Slide 13: Trace (EWD998ChanTrace.tla)
	Slide 14
	Slide 15
	Slide 16: Verification: |T|>1 (non-determinism)

	Implementation
	Slide 17: Logging: Best Practices
	Slide 18: Logging: Causality

	Conclusion
	Slide 19: Conclusion
	Slide 20: [Next]_v
	Slide 21: Questions?

