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TLA+ Trace Validation: In a Nutshell

1. Each node locally logs relevant events
2. Merge node-local logs into single, global Log
3. Generate set of behaviors T  defined by “trace spec” Trace that 

conform to Log
4. Check if 𝑇 ∩ 𝑆 ≠ ∅, where S is the set of behaviors defined by 

high-level spec Spec

T S SpecTrace



Prior Work

• Using formal specifications to monitor and guide simulation: Verifying the 
cache coherence engine of the Alpha 21364 microprocessor (2002, 
Tasiran et al.)
• Concurrent system + custom tailored to simulator

• Verifying Software Traces Against a Formal Specification with TLA+ and 
TLC (2018, Ron Pressler)
• Outlined technique toy example

• eXtreme Modeling in Practice (2020, Jessie Davis et al.)
• Bridging the Verifiability Gap: Why We Need More From Our Specs and 

How We Can Get It (2020, Jordan Halterman)

https://www.microsoft.com/en-us/research/publication/using-formal-specifications-to-monitor-and-guide-simulation-verifying-the-cache-coherence-engine-of-the-alpha-21364-microprocessor/
https://www.microsoft.com/en-us/research/publication/using-formal-specifications-to-monitor-and-guide-simulation-verifying-the-cache-coherence-engine-of-the-alpha-21364-microprocessor/
https://pron.github.io/files/Trace.pdf
https://pron.github.io/files/Trace.pdf
http://www.vldb.org/pvldb/vol13/p1346-davis.pdf
https://youtu.be/itcj9j2yWQo
https://youtu.be/itcj9j2yWQo


Spec driven development
System Spec Implementor Findings

Produce/Consumer 
MPMC Queue

Kuppe Kuppe Single-Mutex bug (deliberate)

Distributed Termination 
detection (EWD998)

Kuppe Kuppe Token rounds initiated after global 
termination

Two-Phase Commit 
protocol

Lamport Inria List instead of set to count resource 
managers (timeouts cause same RM to be 
counted multiple times)

Consistency of a Key-
Value Store

Demirbas Inria Snapshot Isolation issue due to 
implementation not creating a proper 
snapshot at TX start

Distributed Consensus 
(Raft)

Ongaro Inria Integer division bug (missing ceiling) causing 
candidate to incorrectly reach quorum

https://github.com/lemmy/BlockingQueue/blob/main/BlockingQueue.tla
https://github.com/lemmy/BlockingQueue/tree/main/impl
https://github.com/tlaplus/Examples/blob/master/specifications/ewd998/
https://github.com/tlaplus/Examples/tree/master/specifications/ewd998/impl
https://github.com/tlaplus/Examples/blob/master/specifications/transaction_commit/TwoPhase.tla
https://github.com/lbinria/KeyValueStore
https://github.com/tlaplus/Examples/tree/master/specifications/KeyValueStore
https://github.com/lbinria/TwoPhase
https://github.com/ongardie/raft.tla/
https://github.com/lbinria/Raft


etcd-raft with Azure
Goal and execution: Add novel Raft feature (2 nodes + witness)

• Trace validation vanilla etcd-raft #111

• Raft with witness support #133

• Inefficiency: next index shall be larger than match index #149

https://github.com/etcd-io/raft/issues/111
https://github.com/etcd-io/raft/pull/192
https://github.com/etcd-io/raft/pull/149


CCF with Azure Research
Raft-Inspired CFT consensus
• Dynamic reconfiguration
• Cryptographic guarantees
• Foundation of Azure offerings

TLA+ spec written after the fact

Validating traces of  ~15 impl tests revealed several spec bugs:

• Empty & Batching of entries in AppendEntries msgs #5150 
#5154

• …

• Real-world bootstrapping #5828, node membership #5902, 
and node retirement #5919

• …
• Propose request vote message to speed up some 

reconfigurations #5697
• Support modeling different network guarantees #5634

https://github.com/microsoft/CCF/tree/main/tests/raft_scenarios
https://github.com/microsoft/CCF/issues/5057
https://github.com/microsoft/CCF/pull/5150
https://github.com/microsoft/CCF/pull/5154
https://github.com/microsoft/CCF/pull/5828
https://github.com/microsoft/CCF/pull/5902
https://github.com/microsoft/CCF/pull/5919
https://github.com/microsoft/CCF/pull/5697
https://github.com/microsoft/CCF/pull/5634


CCF with Azure Research (contd.)

“[R]euse of match_idx can lead to 
unsafely advancing commit index 
#5325”

• Related to processing of 
NACKs, i.e., non-happy path

• Found and diagnosed by FM 
expert

“Safety violation due to reuse of 
the Term field in Append Entries 
messages #5927”
• Related to processing of 

(stale) ACKs and NACKs, i.e., 
happy and non-happy path

• Found and diagnosed by 
system experts

https://github.com/microsoft/CCF/issues/5325
https://github.com/microsoft/CCF/issues/5927


Why bugs despite passing/green tests?

Trace fails to 
validate

Amend TLA+ 
Spec with low-
level detail, or 

formally 
document 

divergence in 
Trace spec

Trace validates

Full-scale 
verification of 

Spec finds 
property 
violation

Translate 
counterexample 

to 
implementation 

test

Implementation 
violates test

Find fix 
satisfying safety 

& liveness 
properties 

Apply fix to 
implementation

Len(counterexam
ple) << Len( trace)



TV mini tutorial - EWD998
https://github.com/tlaplus/Examples/pull/75/



Spec (EWD998Chan.tla)

Next ==
   

\* Some computation with async messaging
\/ \E n \in Node : 

SendMsg(n) \/ RecvMsg(n) \/ Deactivate(n)
   

\* Termination detection with sync messaging
\/ InitiateToken \* node 0
\/ \E n \in Node \ {0} : PassToken(n)



EWD998:
Termination
Detection



Implementation: EWD998.java
void sendMsg(int sender, int receiver, Object msg) {

JsonObject pkt = new JsonObject();
pkt.add(SND, sender);
pkt.add(RCV, receiver);
pkt.add(MSG, msg);
pkt.add(VC, clock.tick());

[…]
socket.send(pkt);

JsonObject logline = new JsonObject();
logline.add(EVENT, ">");
logline.add(NODE, sender);
logline.add(PKT, pkt);
System.out.println(logline);



Trace (EWD998ChanTrace.tla)
EXTENDS EWD998Chan, Json, VectorClock

VARIABLE length

Log == CausalOrder(Deserialize("log.ndjson"), …)
line == Log[length]

IsSendMsg ==
/\ length \in DOMAIN Log /\ length’ = length + 1
/\ line.event = ">” /\ line.pkt.msg.type = "pl"
/\ <<SendMsg(line.pkt.snd)>>_vars
\* Receiver non-deterministic in SendMsg.
/\ IsPrefix(inbox[line.pkt.rcv], inbox’[line.pkt.rcv])



                        
            

        
            

 
                              

                                    
 

                              
                                    

                                         
                                    

           

            

Add explicit stuttering action: 



                        
            

        
            

Compose Deactivate and PassToken actions: 

 
                              

                                    
 

                              
                                    

                                          
                                    

                                         
                                    

           

            

 
                              

                                    
 

                              
                                    

                                                  
                                    

           

            



Verification: |T|>1 (non-determinism)
Cannot check: Reason:

Safety No state violates anything

Deadlock Spurious counterexamples

Liveness: <>[]length = Len(Log) Spurious counterexamples

EF length = Len(Log) Not expressible in TLA (LTL)

Can check:

Liveness: [](length <= Len(Log) => []TLCGet("queue") > 0 …) Kludge, but some candidate behavior ☺

Post condition: TLCGet("stats").diameter = Len(Log) True/False by default, but -dump 
dot,actionlabels,colorize,constrained,sn
apshots trace.dot



Logging: Best Practices
Log when:

• Messages are sent and received
• Node-local, observable state changes
• Include primed and unprimed values
• O(1) space variable values

etcd (11 log statements total) CCF (15 log stmts total)

Send & Rcv of AppendEntries, RequestVote, … Send & Rcv…

State changes to Leader, Follower, Candidate State changes…

Configuration changes (Add) Configuration changes…

Advance Commit Index Advance Commit Index 

Test infra drops messages (reduce non-determinism)

https://github.com/etcd-io/raft/pull/113/files
https://github.com/search?q=repo%3Amicrosoft/CCF%20RAFT_TRACE_JSON_OUT&type=code
https://github.com/microsoft/CCF/pull/6021


• Centralized Clock if you must

• Distributed Clock if you can
• Code changes or space might be 

prohibitive
• TLA+ CommunityModules: Vector 

Clock
• Code taken from ShiViz ☺

Bonus VC: Interactive time-space 
diagrams

Logging: Causality

https://github.com/tlaplus/CommunityModules/blob/master/modules/VectorClocks.tla
https://github.com/tlaplus/CommunityModules/blob/master/modules/VectorClocks.tla
https://bestchai.bitbucket.io/shiviz/
https://bestchai.bitbucket.io/shiviz/
https://bestchai.bitbucket.io/shiviz/


Conclusion
• TLA+ tools mature to narrow the spec to code gap

• TV found spec <> impl divergences in all 7 systems
• …identified non-trivial bugs in real-world systems
• …helps reverse-engineer impl into spec
• …helps specs and impls stay in sync

• Even if non-TLA+ engineers change impl

• TV requires TLA+ expertise
• Engineers involved in etcd and CCF effort know TLA+

• https://github.com/microsoft/CCF/pull/6119



[Next]_v

• Does TV generalize?!
• => How detailed does a spec have to (Raft spec is very detailed)?
• => Small-scope hypothesis vs at scale?

• TLC’s (new) DFS mitigates SSE iff 𝑇 ∩ 𝑆 ≠ ∅

• How to generate a diverse set of traces?
• Fuzzing, Chaos engineering, … guided by spec coverage

• Model-based testing (generate behaviors and have impl replay)
• How to trigger faults/failures?

https://github.com/tlaplus/tlaplus/commit/62625342a01b96c2839c575b49dce1b8489fae94


Questions?
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