
A. Jesse Jiryu Davis
MongoDB Distributed Systems Research

Should I put a Mastodon handle here, or BlueSky or what?

Just send me a damn email: jesse@mongodb.com

Are We Serious About Using
TLA+ For Statistical Properties?

“Formal Methods Only Solve Half My Problems”

Marc Brooker, 2022:

TLA+ can check correctness (safety
and liveness), but not performance
characteristics.

“What I want is tools that do both:
tools that allow development of
formal models ... and then allow us
to ask those models questions about
design performance.”

Learn Queueing Theory?

a queue

Learn Queueing Theory?

Learn Queueing Theory?

ma
x a

rriv
al

rat
e??

?

Learn Queueing Theory?

Java Modelling Tools

max arrival rate?

Java Modelling Tools

arrival rate = 5.2

Java Modelling Tools

Learn Queueing Theory?

•Queueing theory has super-useful concepts: arrival rate,
service rate, utilization, ergodicity, Little’s Law, service
discipline, open vs. closed loop, and many more.

•Queueing theory math is heinous.

•Don’t try to learn the math.

•You can’t estimate system performance by solving equations.

• Just run simulations.

Have We Solved All
Marc’s Problems?

“Formal Methods Only Solve Half My Problems”

What I want is tools that do
both: tools that allow
development of formal
models ... and then allow us to
ask those models questions
about design performance.”

“

“Obtaining Statistical Properties via TLC Simulation”

Jack Vanlightly and Markus Kuppe
TLA+ Conference 2022

* Increment the updates counter by the number of incoming peer states.
TLCSet(updates_ctr_id, TLCGet(updates_ctr_id)
 + Cardinality(DOMAIN incoming_peer_states))

Updating a statistic

“cost function”

Jack Vanlightly’s TLA+ spec of a gossip protocol

Complaint 1: syntax

CSVWrite(
 "%1$s,%2$s,%3$s,%4$s,%5$s,%6$s,%7$s,%8$s,%9$s,%10$s,%11$s,%12$s,%13$s,"
 \o "%14$s,%15$s,%16$s,%17$s,%18$s,%19$s,%20$s,%21$s,%22$s,%23$s,%24$s,%25$s",
 <<behaviour_id,
 r, RoundMessageLoad(r), DirectProbeDeadMessageLoad(r), IndirectProbeDeadMessageLoad(r),
 TLCGet(updates_pr_ctr(r)), TLCGet(eff_updates_pr_ctr(r)), alive_count, suspect_count,
 dead_count, alive_states_count, suspect_states_count, dead_states_count,
 infective_states_count, infectivity, cfg_num_members, cfg_dead_members, cfg_new_members,
 SuspectTimeout, DisseminationLimit, cfg_max_updates, cfg_lose_nth, cfg_peer_group_size,
 cfg_initial_contacts, MaxRound>>,
 RoundStatsCSV)

Writing a CSV line
Jack Vanlightly’s TLA+ spec of a gossip protocol

Complaint 3: randomization is very limited

Implementing a probability distribution

* 'probabilistic' is a random chance of losing the message
* 'exhaustive' is for model checking where both options are explored
GetDeliveredCount() ==
 CASE MessageLossMode = "probabilistic" ->
 IF RandomElement(1..cfg_lose_nth) = cfg_lose_nth THEN {0} ELSE {1}
 [] MessageLossMode = "exhaustive" -> {0,1}

SendMessage(msg) ==
 \E delivered_count \in GetDeliveredCount() :
 * ... send the message if delivered_count is 1 ...

Complaint 2: randomization is incompat
ible

with model-checking*

Jack Vanlightly’s TLA+ spec of a gossip protocol

*correction: Markus says this is fixed

Complaint 3: randomization is very limited

* In your dreams
TLCSet(cost, TLCGet(cost) + 1)
TLCSet(cost, TLCGet(cost) + 2.5)
TLCSet(cost, TLCGet(cost) + Exponential(3))

Complaint 4:
no floats

no probability distributions besides “uniform”

Are We Serious About Statistical Properties?

State of the Art

1. Java Modelling Tools

2. PRISM

3. Runway

4. FizzBee

State of the Art #1 of 4:
Java Modelling Tools

• Comes with an extra L, straight from London, tariff-free.

• Made for statistical modeling and answering performance questions.

• Point-and-click interface — is this a pro or a con? 🤔

• Lots of probability distributions.

• Cost functions.

• Use real-world data sets as inputs!

State of the Art #2 of 4:
PRISM

 [my_action] x=0 -> 0.8:(x'=1) + 0.2:(x'=2);

Probabilistic Model Checker

probabilities or rates,
for discrete-time or

continuous-time models

PRISM
Cost Functions

rewards
 x=0 : 100;
 x>0 & x<10 : 2*x;
endrewards

Express good rewards like revenue, or bad costs like latency.

A “cost” is any measurement of performance. PRISM calls them “rewards”.

PRISM

P<0.1 [F<=100 num_errors > 5]

Property Expressions

"the probability that more than 5 errors occur within the
first 100 time units is less than 0.1"

P=? [!proc2_terminate U proc1_terminate]
"the probability that process 1 terminates before process 2 does"

PRISM

Safety: long-run probability something bad happens is 0.

Liveness: long-run probability something good happens is 1.

Performance: p95 latency is less than x.

Property Expressions

PRISM model of a gossip protocol

PRISM model of a gossip protocol

Some of Node 1’s code:

PRISM model of a gossip protocol

Some of Node 2’s code:

PRISM model of a gossip protocol

Start of the Art #3 of 4:
Runway

Diego Ongaro

Runway
Elevator Simulation

State of the Art #4 of 4:
FizzBee

Jayaprabhakar “JP” Kadarkarai

atomic action Lookup:
 cached = LookupCache()
 if cached == "hit":
 return cached
 found = LookupDB()
 return found

func LookupCache():
 oneof:
 `hit` return "hit"
 `miss` return “miss"

cache.fizz
configs:
 LookupCache.call:
 counters:
 latency_ms:
 numeric: 10
 LookupCache.hit:
 probability: 0.2
 LookupCache.miss:
 probability: 0.8

perf_model.yaml
cost function

probabilities

Metrics(mean={'latency_ms': 84.4})
 2: 0.20000000 state: {} / returns: {"Lookup":"\"hit\""}
 4: 0.72000000 state: {} / returns: {"Lookup":"\"found\""}
 5: 0.08000000 state: {} / returns: {"Lookup":"\"notfound\""}

configs:
 LookupCache.call:
 counters:
 latency_ms:
 distribution: lognorm(s=0.3, loc=2)
 LookupCache.hit:
 probability: 0.2
 LookupCache.miss:
 probability: 0.8

perf_model.yaml

Any probability
distro

supported by S
ciPy

or bring your ow
n histogram

“Formal Methods Only Solve Half My Problems”

Marc Brooker, 2022:

“What I want is tools that do both: tools that
allow development of formal models ... and
then allow us to ask those models questions
about design performance. Ideally, those tools
would allow real-world data on network
performance, packet loss, and user workloads
to be used, alongside parametric models.”

atomic action Lookup:
 cached = LookupCache()
 if cached == "hit":
 return cached
 found = LookupDB()
 return found

func LookupCache():
 oneof:
 `hit` return "hit"
 `miss` return “miss"

configs:
 LookupCache.call:
 counters:
 latency_ms:
 numeric: 10
 LookupCache.hit:
 probability: 0.2
 LookupCache.miss:
 probability: 0.8

cache.fizz perf_model.yaml

cost function
probabilities

Common probability distributions

for rates and cost functions

Use experimental data as a

probability distribution

Solver(s)

Annotate state transitions with probabilities

Cost / reward functions

Statistical property expressions

Charts

Model-checking is compatible

with performance modeling

Floating-point numbers

Separate config file for
performance modeling B

A
C

K
E

N
D

EXPRESSIVITY
U

X

Possible Syntax??

SendMessage(m) ==
 \E messageIsDropped \in {FALSE, TRUE}:
 ...

MySpec.tla

Possible Syntax??

SendMessage(m) ==
 \E messageIsDropped \in MessageLossProbability(FALSE, TRUE):
 ...

MySpec.tla

nondeterministically false / true or a label for a probability distribution

Possible Syntax??

SendMessage(m) ==
 \E messageIsDropped \in MessageLossProbability(FALSE, TRUE):
 ...

MySpec.tla

DISTRIBUTION
 MessageLossProbability = BooleanChoice(0.23)

MySpec.cfg

Possible Syntax??

MySpec.cfg

DISTRIBUTION
 MessageLossProbability = BooleanChoice(0.23)

COST
 SendMessage = Exponential(3.17)

SendMessage(m) ==
 \E messageIsDropped \in MessageLossProbability(FALSE, TRUE):
 ...

MySpec.tla

TLA+ with Probabilistic Solvers

• Just use -generate, generate thousands of behaviors, average the stats.

• Use -generate, run until stats stabilize within some precision, perhaps
prune branches of the state graph as they stabilize.

• Use PRISM's solvers (by translating the state graph to PRISM?).

• Write a solver or solvers from scratch: translate the state graph to a Markov
chain and find its steady-state probability distribution.

In order of ambitiousness....

TLA+ with Performance Modeling

One model could:

• Express the algorithm.

• Check correctness.

• Evaluate performance.

• Simulate “what-if” experiments using real-world inputs.

• Confidently explore optimizations.

Acks

• Andrew Helwer

• Jayaprabhakar Kadarkarai

• Murat Demirbas

• Will Schultz

Questions
1. What syntax should TLA+ use for annotating state transitions

with probabilities?

2. What syntax for cost functions?

3. How do we separate performance-modeling config from the
spec and model-checking config?

4. Should TLC do the probabilistic checking, or another tool?

5. Could the TLA+ Foundation get new funding for this work?

6. Is any of this a good idea or should TLA+ stick to
correctness?

