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This is the basic  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• Complex protocols and 
Implementations are buggy. 

• Leads to downtimes

• E.g. Raft 6 hour outage 
(liveness), Cassandra 
inconsistent reorderings 
(safety)
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• Distributed message passing

• Solves consensus

• With crashes

• Two phases:

• Leader election phase

• Leader replication phase

R1

R1
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Model based testing

Why not just enumerate all executions from the model?

1. Too many executions - state explosion

2. Too much instrumentation effort - per message 
annotations in the code

3. Model ignores implementation optimisations. E.g. 
Snapshots
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Fuzzer test cases

• Sequence of scheduling choices 


• interleaved with failures 

• Deliver(p1,5) . Deliver(p2, 3) . Crash(p1) . Start(p1) . …

• Why not messages? Not all inputs are valid 

• Non leader cannot send AppendEntries

Controlled Scheduler

Test 
cases

    test 𝑡
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Execution Events

Controlled Scheduler

 𝑒𝑣𝑒𝑛𝑡𝑠
execute(t)    test 𝑡
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Simulating traces on the Model
• Goal: To obtain a state sequence 

trace from the action sequence

• Some challenges

• Should be fast

• Model checker should be able to 
enumerate actions

• Ensure only relevant actions are 
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s
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s1 s2 s3 …
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s4 s5 S6 …
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Too Expensive!!!
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…

…
HandleRequestVote(p1,p2,..)
HandleRequestVote(p2,p3,..)
…
HandleAppendEntries(p1,p2,..)
...

• Map and store all actions

• Simulating is linear in 
length and fast

• Needs a lot of space
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Mapping actions
• The action sequence needs an abstraction

• Only those actions that affect the state represented 
in the model

• Eg. Heartbeat messages can be ignored

• Specific to each implementation 

• Can be generalised to each protocol (modulo 
different data structures)
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Overall picture

Controlled Scheduler
Model Checker

Coverage Guided Fuzzer

Event Mapper

Test 
cases

    test 𝑡  𝑒𝑣𝑒𝑛𝑡𝑠
 
𝑚𝑜𝑑𝑒𝑙 
𝑎𝑐𝑡𝑖𝑜𝑛𝑠

new 
states?

yes
𝑇’

no

ignore

execute(t)

T’ = mutate(t)

run( )𝑎𝑐𝑡𝑖𝑜𝑛𝑠

map( )𝑒𝑣𝑒𝑛𝑡𝑠

 
𝑚𝑜𝑑𝑒𝑙 
𝑠𝑡𝑎𝑡𝑒𝑠

Abstract Model M

System S
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Mutation strategies

• Swaps

• Swap scheduling choices (A different process 
becomes leader)

• Swap crashes (crashing leader instead of a 
follower)

• Swap number of messages delivered

Test 
cases 𝑇’

T’ = mutate(t)
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Unbounded terms

ReqVote

Vote

Term 0

P1

P2

P3

ReqVote

Vote

Term 1 …

• Need a state abstraction

• Bound maximum term in the 
model

• Merge states that only differ in 
term numbers

• Implemented inside TLC
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Benchmarks

• Micro benchmark in Coyote

• Etcd Raft - popular key value store

• Golang, 1k LOC instrumentation

• Redis Raft - distributed in memory key value store

• C, 1.5k LOC instrumentation
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Coverage

Etcd
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Comparing guidance

• Line coverage - saturates too quickly and hard to use the coverage 
information to observe new states

• Trace coverage - too fine grained, per message interleaving does not lead 
to new states

• Model coverage also provides good line coverage.
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Bug finding

• 1 new bug in Etcd

• 2 known bugs and 12 new bugs in 
RedisRaft

• Bugs are found faster (statistically)

• Especially when rare
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Bird’s eye view
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Existing work
Model verification

• P, P# - actor runtime 
with model checking 
capabilities

• Dafny - modelling 
language with a 
verification runtime


IVy
• Ivy - proof based 

technique to 
verify protocols

• TLA - modelling language 
with a model checker
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Main problem

Model

Implementation
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Limitations

• Still a lot of effort - mapper, instrumentation, model

• Too sensitive to abstractions

• Can’t be too fine grained (too much information to 
generate tests)

• Can’t be too coarse grained (no information)
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Future work

• Evaluating different mutation strategies

• Use more intelligent means of sampling 

• Machine learning?

• Make mapping automatic

• Conformance checking (SEFM ’24 - Cirstea et al)
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Questions?
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