
Model guided fuzzing of
distributed systems

Ege Berkay, Burcu Özkan, Rupak Majumdar, Srinidhi Nagendra

1

Me

2

Me
• I’m a PostDoc at MPI-SWS

2

Me
• I’m a PostDoc at MPI-SWS

• I completed PhD last December  
“Automated Testing of Distributed Protocol
Implementations”

• Unit tests for Distributed Systems

• Reinforcement learning guided exploration

2

Me
• I’m a PostDoc at MPI-SWS

• I completed PhD last December  
“Automated Testing of Distributed Protocol
Implementations”

• Unit tests for Distributed Systems

• Reinforcement learning guided exploration

• I discovered TLA+ in 2018 and have been an
enthusiast since.

2

Me
• I’m a PostDoc at MPI-SWS

• I completed PhD last December  
“Automated Testing of Distributed Protocol
Implementations”

• Unit tests for Distributed Systems

• Reinforcement learning guided exploration

• I discovered TLA+ in 2018 and have been an
enthusiast since.

• I am on the job market looking for my next
adventure!

2

Traditional software testing

3

Traditional software testing

Program

3

Traditional software testing

Input space

Program

3

Traditional software testing

Input space

Program

Random Input

01010010

Input gen

3

Traditional software testing

Input space

Program

Random Input

01010010

Input gen

3

Traditional software testing

Input space

Program

Random Input

0101001001010010

Input gen

3

Traditional software testing

Input space

Program

Random Input

0101001001010010

Input gen

3

Guided software testing

4

Guided software testing

Input gen

Program

Random Input

4

Guided software testing

Input gen

Program

Random Input

Line coverage

4

Guided software testing

Input gen

Program

Random Input

Branch coverage

4

Guided software testing

Input gen

Program

Random Input

Coverage feedback

Branch coverage

4

Guided software testing

Input gen

Program

Random Input

Coverage feedback

Branch coverage

4

Guided software testing

Input gen

Program

Random Input

Coverage feedback

Branch coverage
This is the basic  

fuzzer loop!

4

Distributed testing

5

Distributed testing

Many programs

5

Distributed testing

Many programs

5

Distributed testing

Input gen

Input?

Many programs

5

Distributed testing

Input gen

Coverage?

Input?

Many programs

5

Distributed testing

Input gen

Coverage?

Input?

TLA+ Model?

Many programs

5

Why do we care?

6

Why do we care?

6

Why do we care?

• Complex protocols and
Implementations are buggy.

6

Why do we care?

• Complex protocols and
Implementations are buggy.

• Leads to downtimes

6

Why do we care?

• Complex protocols and
Implementations are buggy.

• Leads to downtimes

• E.g. Raft 6 hour outage
(liveness), Cassandra
inconsistent reorderings
(safety)

6

Existing work

7

Existing work
Implementation testing

7

Existing work
Implementation testing

• Jepsen - Randomized
testing tool

7

Existing work
Implementation testing

PCT, PCTCP

• Randomised testing with

probabilistic guarantees
• Jepsen - Randomized

testing tool

7

Existing work
Implementation testing

PCT, PCTCP

• Randomised testing with

probabilistic guarantees
• Jepsen - Randomized

testing tool

• Testing framework.

• QL - learning based

techniques

7

Existing work
Implementation testing

PCT, PCTCP

• Randomised testing with

probabilistic guarantees
• Jepsen - Randomized

testing tool

• Testing framework.

• QL - learning based

techniques

Mocket

• model based testing

• Generate tests from TLA+ model

7

Existing work
Implementation testing

PCT, PCTCP

• Randomised testing with

probabilistic guarantees
• Jepsen - Randomized

testing tool

• Testing framework.

• QL - learning based

techniques

Mocket

• model based testing

• Generate tests from TLA+ model

7

Example protocol - Raft

8

Example protocol - Raft

• Distributed message passing

8

Example protocol - Raft

• Distributed message passing

• Solves consensus R1

R1

R1

8

Example protocol - Raft

• Distributed message passing

• Solves consensus

• With crashes

R1

R1

R1

8

Example protocol - Raft

• Distributed message passing

• Solves consensus

• With crashes

• Two phases:

R1

R1

R1

8

Example protocol - Raft

• Distributed message passing

• Solves consensus

• With crashes

• Two phases:

• Leader election phase

R1

R1

R1

8

Example protocol - Raft

• Distributed message passing

• Solves consensus

• With crashes

• Two phases:

• Leader election phase

• Leader replication phase

R1

R1

R1

8

Raft TLA

9

Raft TLA
P1

P2

P3

9

Raft TLA
P1

P2

P3

9

Raft TLA

ReqVote

P1

P2

P3

9

Raft TLA

ReqVote

Vote

Leader election

P1

P2

P3

9

Raft TLA

ReqVote

Vote

Leader election

P1

P2

P3

9

Raft TLA

ReqVote

Vote

Leader election

AppendEntries

Leader replication

P1

P2

P3

9

Raft TLA

ReqVote

Vote

Leader election

AppendEntries

Leader replication

P1

P2

P3

9

Raft TLA

ReqVote

Vote

Leader election

AppendEntries

Leader replication

P1

P2

P3

State

Actions

Transition
relation

9

Raft TLA

ReqVote

Vote

Leader election

AppendEntries

Leader replication

P1

P2

P3

State

Actions

Transition
relation

ReqVote
s1 s2

ReqVote
s3

AppendEntries
…

9

Model based testing

10

Model based testing

Why not just enumerate all executions from the model?

10

Model based testing

Why not just enumerate all executions from the model?

1. Too many executions - state explosion

10

Model based testing

Why not just enumerate all executions from the model?

1. Too many executions - state explosion

2. Too much instrumentation effort - per message
annotations in the code

10

Model based testing

Why not just enumerate all executions from the model?

1. Too many executions - state explosion

2. Too much instrumentation effort - per message
annotations in the code

3. Model ignores implementation optimisations. E.g.
Snapshots

10

Our approach - ModelFuzz

11

ModelFuzz

12

ModelFuzz

• Randomly sample implementation test
cases

Controlled Scheduler
Model Checker

Coverage Guided Fuzzer

Test
cases

 test 𝑡

𝑚𝑜𝑑𝑒𝑙
𝑎𝑐𝑡𝑖𝑜𝑛𝑠

𝑇’

execute(t)

T’ = mutate(t)

run()𝑎𝑐𝑡𝑖𝑜𝑛𝑠
𝑚𝑜𝑑𝑒𝑙
𝑠𝑡𝑎𝑡𝑒𝑠

12

ModelFuzz

• Randomly sample implementation test
cases

• Simulate them on the model
Controlled Scheduler

Model Checker

Coverage Guided Fuzzer

Test
cases

 test 𝑡

𝑚𝑜𝑑𝑒𝑙
𝑎𝑐𝑡𝑖𝑜𝑛𝑠

𝑇’

execute(t)

T’ = mutate(t)

run()𝑎𝑐𝑡𝑖𝑜𝑛𝑠
𝑚𝑜𝑑𝑒𝑙
𝑠𝑡𝑎𝑡𝑒𝑠

12

ModelFuzz

• Randomly sample implementation test
cases

• Simulate them on the model

• Use the coverage information to mutate
“interesting” test cases

Controlled Scheduler
Model Checker

Coverage Guided Fuzzer

Test
cases

 test 𝑡

𝑚𝑜𝑑𝑒𝑙
𝑎𝑐𝑡𝑖𝑜𝑛𝑠

𝑇’

execute(t)

T’ = mutate(t)

run()𝑎𝑐𝑡𝑖𝑜𝑛𝑠
𝑚𝑜𝑑𝑒𝑙
𝑠𝑡𝑎𝑡𝑒𝑠

12

Fuzzer test cases

13

Fuzzer test cases

Controlled Scheduler

Test
cases

 test 𝑡

13

Fuzzer test cases

• Sequence of scheduling choices

• interleaved with failures Controlled Scheduler

Test
cases

 test 𝑡

13

Fuzzer test cases

• Sequence of scheduling choices

• interleaved with failures

• Deliver(p1,5) . Deliver(p2, 3) . Crash(p1) . Start(p1) . …

Controlled Scheduler

Test
cases

 test 𝑡

13

Fuzzer test cases

• Sequence of scheduling choices

• interleaved with failures

• Deliver(p1,5) . Deliver(p2, 3) . Crash(p1) . Start(p1) . …

• Why not messages? Not all inputs are valid

• Non leader cannot send AppendEntries

Controlled Scheduler

Test
cases

 test 𝑡

13

Semantics

p1

p2

p3

14

Semantics

p1

p2

p3

14

Semantics

p1

p2

p3

Deliver(p1,5) .

14

Semantics

p1

p2

p3

Deliver(p1,5) . Deliver(p2, 3) .

14

Semantics

p1

p2

p3

Deliver(p1,5) . Deliver(p2, 3) . Crash(p1) .

14

Semantics

p1

p2

p3

Deliver(p1,5) . Deliver(p2, 3) . Crash(p1) . Start(p1) .

14

Semantics

p1

p2

p3

Deliver(p1,5) . Deliver(p2, 3) . Crash(p1) . Start(p1) . …

14

Semantics

p1

p2

p3

Deliver(p1,5) . Deliver(p2, 3) . Crash(p1) . Start(p1) . …

• Randomly generate
these inputs

14

Semantics

p1

p2

p3

Deliver(p1,5) . Deliver(p2, 3) . Crash(p1) . Start(p1) . …

• Randomly generate
these inputs

• Light instrumentation

• Messages

• Process start/stop

14

Semantics

p1

p2

p3

Deliver(p1,5) . Deliver(p2, 3) . Crash(p1) . Start(p1) . …

• Randomly generate
these inputs

• Light instrumentation

• Messages

• Process start/stop

• Easy to define
mutations

14

Semantics

p1

p2

p3

15

Semantics

p1

p2

p3

15

Semantics

p1

p2

p3

Deliver(p1,5) .

SendRV(p1,p2) . SendRV(p1,p3).

15

Semantics

p1

p2

p3

Deliver(p1,5) . Deliver(p2, 3) .

SendRV(p1,p2) . SendRV(p1,p3). ReceiveRV(p2,p1) . SendRVResp(p2,p1) .

15

Semantics

p1

p2

p3

Deliver(p1,5) . Deliver(p2, 3) . Crash(p1) .

SendRV(p1,p2) . SendRV(p1,p3). ReceiveRV(p2,p1) . SendRVResp(p2,p1) . StopProcess(p1) .

15

Semantics

p1

p2

p3

Deliver(p1,5) . Deliver(p2, 3) . Crash(p1) . Start(p1) .

SendRV(p1,p2) . SendRV(p1,p3). ReceiveRV(p2,p1) . SendRVResp(p2,p1) . StopProcess(p1) . StartProcess(p1) .

15

Semantics

p1

p2

p3

Deliver(p1,5) . Deliver(p2, 3) . Crash(p1) . Start(p1) . …

SendRV(p1,p2) . SendRV(p1,p3). ReceiveRV(p2,p1) . SendRVResp(p2,p1) . StopProcess(p1) . StartProcess(p1) .

… . BecomeLeader(p1,1) …
15

Semantics

p1

p2

p3

Deliver(p1,5) . Deliver(p2, 3) . Crash(p1) . Start(p1) . …

SendRV(p1,p2) . SendRV(p1,p3). ReceiveRV(p2,p1) . SendRVResp(p2,p1) . StopProcess(p1) . StartProcess(p1) .

… . BecomeLeader(p1,1) …

Execution Events

15

Semantics

p1

p2

p3

Deliver(p1,5) . Deliver(p2, 3) . Crash(p1) . Start(p1) . …

SendRV(p1,p2) . SendRV(p1,p3). ReceiveRV(p2,p1) . SendRVResp(p2,p1) . StopProcess(p1) . StartProcess(p1) .

… . BecomeLeader(p1,1) …

Execution Events

Controlled Scheduler

 𝑒𝑣𝑒𝑛𝑡𝑠
execute(t) test 𝑡

15

Simulating traces on the Model

16

Simulating traces on the Model
• Goal: To obtain a state sequence

trace from the action sequence

Model Checker
𝑚𝑜𝑑𝑒𝑙
𝑎𝑐𝑡𝑖𝑜𝑛𝑠

run()𝑎𝑐𝑡𝑖𝑜𝑛𝑠
𝑚𝑜𝑑𝑒𝑙
𝑠𝑡𝑎𝑡𝑒𝑠

Abstract Model
M

16

Simulating traces on the Model
• Goal: To obtain a state sequence

trace from the action sequence

• Some challenges
Model Checker

𝑚𝑜𝑑𝑒𝑙
𝑎𝑐𝑡𝑖𝑜𝑛𝑠

run()𝑎𝑐𝑡𝑖𝑜𝑛𝑠
𝑚𝑜𝑑𝑒𝑙
𝑠𝑡𝑎𝑡𝑒𝑠

Abstract Model
M

16

Simulating traces on the Model
• Goal: To obtain a state sequence

trace from the action sequence

• Some challenges

• Should be fast
Model Checker

𝑚𝑜𝑑𝑒𝑙
𝑎𝑐𝑡𝑖𝑜𝑛𝑠

run()𝑎𝑐𝑡𝑖𝑜𝑛𝑠
𝑚𝑜𝑑𝑒𝑙
𝑠𝑡𝑎𝑡𝑒𝑠

Abstract Model
M

16

Simulating traces on the Model
• Goal: To obtain a state sequence

trace from the action sequence

• Some challenges

• Should be fast

• Model checker should be able to
enumerate actions

Model Checker
𝑚𝑜𝑑𝑒𝑙
𝑎𝑐𝑡𝑖𝑜𝑛𝑠

run()𝑎𝑐𝑡𝑖𝑜𝑛𝑠
𝑚𝑜𝑑𝑒𝑙
𝑠𝑡𝑎𝑡𝑒𝑠

Abstract Model
M

16

Simulating traces on the Model
• Goal: To obtain a state sequence

trace from the action sequence

• Some challenges

• Should be fast

• Model checker should be able to
enumerate actions

• Ensure only relevant actions are
executed

Model Checker
𝑚𝑜𝑑𝑒𝑙
𝑎𝑐𝑡𝑖𝑜𝑛𝑠

run()𝑎𝑐𝑡𝑖𝑜𝑛𝑠
𝑚𝑜𝑑𝑒𝑙
𝑠𝑡𝑎𝑡𝑒𝑠

Abstract Model
M

16

Enumerating actions

17

Enumerating actions

Actions

Timeout(1)

Timeout(2)

BecomeLeader(1)

BecomeLeader(2)

…

…

Receive

17

Enumerating actions

Actions

Timeout(1)

Timeout(2)

BecomeLeader(1)

BecomeLeader(2)

…

…

Receive

s

Receive(m)

17

Enumerating actions

Actions

Timeout(1)

Timeout(2)

BecomeLeader(1)

BecomeLeader(2)

…

…

Receive

s

Receive(m)

s1 s2 s3 …

17

Enumerating actions

Actions

Timeout(1)

Timeout(2)

BecomeLeader(1)

BecomeLeader(2)

…

…

Receive

s

Receive(m)

s1 s2 s3 …

RequestVote(p1,p2)

17

Enumerating actions

Actions

Timeout(1)

Timeout(2)

BecomeLeader(1)

BecomeLeader(2)

…

…

Receive

s

Receive(m)

s1 s2 s3 …

Receive(m)

RequestVote(p1,p2)

17

Enumerating actions

Actions

Timeout(1)

Timeout(2)

BecomeLeader(1)

BecomeLeader(2)

…

…

Receive

s

Receive(m)

s1 s2 s3 …

Receive(m)

s4 s5 S6 …

RequestVote(p1,p2)

17

Enumerating actions

Actions

Timeout(1)

Timeout(2)

BecomeLeader(1)

BecomeLeader(2)

…

…

Receive

s

Receive(m)

s1 s2 s3 …

Receive(m)

s4 s5 S6 …

RequestVote(p1,p2)

AppendEntries(p1,p3)

17

Enumerating actions

Actions

Timeout(1)

Timeout(2)

BecomeLeader(1)

BecomeLeader(2)

…

…

Receive

s

Receive(m)

s1 s2 s3 …

Receive(m)

s4 s5 S6 …

RequestVote(p1,p2)

AppendEntries(p1,p3)

Too Expensive!!!

17

Enumerating actions

18

Enumerating actions

Actions

Timeout(1)
Timeout(2)

BecomeLeader(1)
BecomeLeader(2)

…

…
HandleRequestVote(p1,p2,..)
HandleRequestVote(p2,p3,..)
…
HandleAppendEntries(p1,p2,..)
... 18

Enumerating actions

Actions

Timeout(1)
Timeout(2)

BecomeLeader(1)
BecomeLeader(2)

…

…
HandleRequestVote(p1,p2,..)
HandleRequestVote(p2,p3,..)
…
HandleAppendEntries(p1,p2,..)
...

• Map and store all actions

18

Enumerating actions

Actions

Timeout(1)
Timeout(2)

BecomeLeader(1)
BecomeLeader(2)

…

…
HandleRequestVote(p1,p2,..)
HandleRequestVote(p2,p3,..)
…
HandleAppendEntries(p1,p2,..)
...

• Map and store all actions

• Simulating is linear in
length and fast

18

Enumerating actions

Actions

Timeout(1)
Timeout(2)

BecomeLeader(1)
BecomeLeader(2)

…

…
HandleRequestVote(p1,p2,..)
HandleRequestVote(p2,p3,..)
…
HandleAppendEntries(p1,p2,..)
...

• Map and store all actions

• Simulating is linear in
length and fast

• Needs a lot of space

18

Mapping actions

Event Mapper

 𝑒𝑣𝑒𝑛𝑡𝑠

𝑚𝑜𝑑𝑒𝑙
𝑎𝑐𝑡𝑖𝑜𝑛𝑠map()𝑒𝑣𝑒𝑛𝑡𝑠

Controlled Scheduler

execute(t)

19

Mapping actions
• The action sequence needs an abstraction

Event Mapper

 𝑒𝑣𝑒𝑛𝑡𝑠

𝑚𝑜𝑑𝑒𝑙
𝑎𝑐𝑡𝑖𝑜𝑛𝑠map()𝑒𝑣𝑒𝑛𝑡𝑠

Controlled Scheduler

execute(t)

19

Mapping actions
• The action sequence needs an abstraction

• Only those actions that affect the state represented
in the model

Event Mapper

 𝑒𝑣𝑒𝑛𝑡𝑠

𝑚𝑜𝑑𝑒𝑙
𝑎𝑐𝑡𝑖𝑜𝑛𝑠map()𝑒𝑣𝑒𝑛𝑡𝑠

Controlled Scheduler

execute(t)

19

Mapping actions
• The action sequence needs an abstraction

• Only those actions that affect the state represented
in the model

• Eg. Heartbeat messages can be ignored
Event Mapper

 𝑒𝑣𝑒𝑛𝑡𝑠

𝑚𝑜𝑑𝑒𝑙
𝑎𝑐𝑡𝑖𝑜𝑛𝑠map()𝑒𝑣𝑒𝑛𝑡𝑠

Controlled Scheduler

execute(t)

19

Mapping actions
• The action sequence needs an abstraction

• Only those actions that affect the state represented
in the model

• Eg. Heartbeat messages can be ignored

• Specific to each implementation

Event Mapper

 𝑒𝑣𝑒𝑛𝑡𝑠

𝑚𝑜𝑑𝑒𝑙
𝑎𝑐𝑡𝑖𝑜𝑛𝑠map()𝑒𝑣𝑒𝑛𝑡𝑠

Controlled Scheduler

execute(t)

19

Mapping actions
• The action sequence needs an abstraction

• Only those actions that affect the state represented
in the model

• Eg. Heartbeat messages can be ignored

• Specific to each implementation

• Can be generalised to each protocol (modulo
different data structures)

Event Mapper

 𝑒𝑣𝑒𝑛𝑡𝑠

𝑚𝑜𝑑𝑒𝑙
𝑎𝑐𝑡𝑖𝑜𝑛𝑠map()𝑒𝑣𝑒𝑛𝑡𝑠

Controlled Scheduler

execute(t)

19

Overall picture

Controlled Scheduler
Model Checker

Coverage Guided Fuzzer

Event Mapper

Test
cases

 test 𝑡 𝑒𝑣𝑒𝑛𝑡𝑠

𝑚𝑜𝑑𝑒𝑙
𝑎𝑐𝑡𝑖𝑜𝑛𝑠

new
states?

yes
𝑇’

no

ignore

execute(t)

T’ = mutate(t)

run()𝑎𝑐𝑡𝑖𝑜𝑛𝑠

map()𝑒𝑣𝑒𝑛𝑡𝑠

𝑚𝑜𝑑𝑒𝑙
𝑠𝑡𝑎𝑡𝑒𝑠

Abstract Model M

System S

20

Mutation strategies

Test
cases 𝑇’

T’ = mutate(t)

21

Mutation strategies

• Swaps

Test
cases 𝑇’

T’ = mutate(t)

21

Mutation strategies

• Swaps

• Swap scheduling choices (A different process
becomes leader) Test

cases 𝑇’
T’ = mutate(t)

21

Mutation strategies

• Swaps

• Swap scheduling choices (A different process
becomes leader)

• Swap crashes (crashing leader instead of a
follower)

Test
cases 𝑇’

T’ = mutate(t)

21

Mutation strategies

• Swaps

• Swap scheduling choices (A different process
becomes leader)

• Swap crashes (crashing leader instead of a
follower)

• Swap number of messages delivered

Test
cases 𝑇’

T’ = mutate(t)

21

Does it work?

22

Does it work?

• Still can’t beat random

22

Does it work?

• Still can’t beat random

• The problem:

• Unbounded terms

22

Unbounded terms

ReqVote

Vote

Term 0

P1

P2

P3

ReqVote

Vote

Term 1 …

23

Unbounded terms

ReqVote

Vote

Term 0

P1

P2

P3

ReqVote

Vote

Term 1 …

• Need a state abstraction

23

Unbounded terms

ReqVote

Vote

Term 0

P1

P2

P3

ReqVote

Vote

Term 1 …

• Need a state abstraction

• Bound maximum term in the
model

23

Unbounded terms

ReqVote

Vote

Term 0

P1

P2

P3

ReqVote

Vote

Term 1 …

• Need a state abstraction

• Bound maximum term in the
model

• Merge states that only differ in
term numbers

23

Unbounded terms

ReqVote

Vote

Term 0

P1

P2

P3

ReqVote

Vote

Term 1 …

• Need a state abstraction

• Bound maximum term in the
model

• Merge states that only differ in
term numbers

• Implemented inside TLC

23

Results

24

Benchmarks

25

Benchmarks

• Micro benchmark in Coyote

25

Benchmarks

• Micro benchmark in Coyote

• Etcd Raft - popular key value store

25

Benchmarks

• Micro benchmark in Coyote

• Etcd Raft - popular key value store

• Golang, 1k LOC instrumentation

25

Benchmarks

• Micro benchmark in Coyote

• Etcd Raft - popular key value store

• Golang, 1k LOC instrumentation

• Redis Raft - distributed in memory key value store

25

Benchmarks

• Micro benchmark in Coyote

• Etcd Raft - popular key value store

• Golang, 1k LOC instrumentation

• Redis Raft - distributed in memory key value store

• C, 1.5k LOC instrumentation

25

Coverage

Etcd
Redis

Micro benchmark

26

Comparing guidance

27

Comparing guidance

• Line coverage - saturates too quickly and hard to use the coverage
information to observe new states

27

Comparing guidance

• Line coverage - saturates too quickly and hard to use the coverage
information to observe new states

• Trace coverage - too fine grained, per message interleaving does not lead
to new states

27

Comparing guidance

• Line coverage - saturates too quickly and hard to use the coverage
information to observe new states

• Trace coverage - too fine grained, per message interleaving does not lead
to new states

• Model coverage also provides good line coverage.

27

Bug finding

28

Bug finding

• 1 new bug in Etcd

28

Bug finding

• 1 new bug in Etcd

• 2 known bugs and 12 new bugs in
RedisRaft

28

Bug finding

• 1 new bug in Etcd

• 2 known bugs and 12 new bugs in
RedisRaft

• Bugs are found faster (statistically)

28

Bug finding

• 1 new bug in Etcd

• 2 known bugs and 12 new bugs in
RedisRaft

• Bugs are found faster (statistically)

• Especially when rare

28

Bird’s eye view

29

Existing work

30

Existing work
Model verification

• P, P# - actor runtime
with model checking
capabilities

• Dafny - modelling
language with a
verification runtime

IVy
• Ivy - proof based

technique to
verify protocols

• TLA - modelling language
with a model checker

30

Main problem

Model

Implementation

31

Limitations

32

Limitations

• Still a lot of effort - mapper, instrumentation, model

32

Limitations

• Still a lot of effort - mapper, instrumentation, model

• Too sensitive to abstractions

32

Limitations

• Still a lot of effort - mapper, instrumentation, model

• Too sensitive to abstractions

• Can’t be too fine grained (too much information to
generate tests)

32

Limitations

• Still a lot of effort - mapper, instrumentation, model

• Too sensitive to abstractions

• Can’t be too fine grained (too much information to
generate tests)

• Can’t be too coarse grained (no information)

32

Future work

33

Future work

• Evaluating different mutation strategies

33

Future work

• Evaluating different mutation strategies

• Use more intelligent means of sampling

33

Future work

• Evaluating different mutation strategies

• Use more intelligent means of sampling

• Machine learning?

33

Future work

• Evaluating different mutation strategies

• Use more intelligent means of sampling

• Machine learning?

• Make mapping automatic

33

Future work

• Evaluating different mutation strategies

• Use more intelligent means of sampling

• Machine learning?

• Make mapping automatic

• Conformance checking (SEFM ’24 - Cirstea et al)

33

Questions?

34

