
Compiling Distributed System Models
into Implementations with PGo

Finn Hackett, Ivan Beschastnikh
Renato Costa, Matthew Do

1

Modular PlusCal

PlusCal

Execution

TLA+

GoLang

Model
Checking

PGo

PCal
Translator

PGo

PGo

TLC

Go

Motivation

➔ Distributed systems are widely
deployed

➔ Despite this fact, writing correct
distributed systems is hard
◆ Asynchronous network
◆ Crashes
◆ Network delays, partial failures...

➔ Systems deployed in production
often have bugs

2

Motivation

➔ Distributed systems are widely
deployed

➔ Despite this fact, writing correct
distributed systems is hard
◆ Asynchronous network
◆ Crashes
◆ Network delays, partial failures...

➔ Systems deployed in production
often have bugs

3

Bugs in Distributed Systems

Service Outage

Data loss

Degraded Performance

4

[1] Mark Cavage. 2013. There's Just No Getting around It: You're Building a Distributed System. Queue 11, 4, Pages 30 (April 2013)
[2] Fletcher Babb. Amazon’s AWS DynamoDB Experiences Outage, Affecting Netflix, Reddit, Medium, and More. en-US. Sept. 2015
[3] Shannon Vavra. Amazon outage cost S&P 500 companies $150M. axios.com, Mar 3, 2017

Protocol Descriptions Are Not Enough

➔ Distributed protocols typically have edge cases
◆ Many of which may lack a precise definition of expected behavior

➔ Difficult to correspond final implementation with high-level
protocol description, making protocol changes harder

➔ Production implementations resort to ad-hoc error
handling [PODC’07, OSDI’14, SoCC’16, SOSP’19]

5

One key problem for distributed systems

6

Related Work

➔ Using proof assistants to prove system properties
◆ Verdi [PLDI’15], IronFleet [SOSP’15]
◆ Require a lot of developer effort and expertise

➔ Model checking implementations
◆ FlyMC [EuroSys’19], CMC [OSDI’02], MaceMC [NSDI’07], MODIST

[NSDI’09]
◆ State-space explosion: many states irrelevant to high-level properties

➔ Systematic testing, tracing, and debugging
◆ P# [FAST’16], D3S [NSDI’08], Friday [NSDI’07], Dapper [TR’10]
◆ Incomplete; requires runtime detection or extensive test harness

7

Model Checking

➔ Verifies a model with respect to a correctness
specification

➔ Specification can define safety and liveness requirements
➔ Produces a counterexample when a property is violated

Model

Specification

Model
Checker

✔
+

trace
8

Model Checking a Bank Transfer

9

Initial state: both
accounts have positive
balance

Transfer Amount
between accounts

Property: transfer
should preserve positive
balances

Visualizing an Error Trace

10

Error: our model does not check if Alice has sufficient funds!

Overview of PGo and Modular PlusCal

11

PGo compiler toolchain

➔ PGo is a compiler from models in PlusCal/Modular PlusCal
to implementations in Go

➔ Capable of generating concurrent and distributed systems
from PlusCal specifications

12

Modular PlusCal

PlusCal

Execution

TLA+

GoLang

Model Checking

PGo

PCal
Translator

PGo

PGo

TLC

Go

PGo workflow

13

PGo trade-offs

➔ Advantages
◆ Compatible with existing PlusCal/TLA+/TLC eco-system
◆ Mechanize the implementation = less dev work
◆ Maintain one definitive version of the system

➔ Limitations
◆ No free lunch: concrete details have to be provided somehow

● Environment is abstract: developer must edit generated source
● Bugs can be introduced in this process

◆ Software evolution: unclear how to reapply the changes to model?

14

In today’s talk

➔ Focus on explaining ModularPlusCal (MPCal)
➔ Examples and demo
➔ Omit PGo compiler details:

15

How would you naively implement PlusCal code?

16

variables network = <<>>;
...
readMessage: * blocking read from the network
 await Len(network[self]) > 0;
 msg := Head(network[self]);
 network := [network EXCEPT ![self] = Tail(network[self])];

readMessage: // blocking read from the network
env.Lock(“network”)
network := env.Get(“network”)
if !(Len(network.Get(self)) > 0) {
 env.Unlock(“network”)
 goto readMessage
}
msg = Head(network.Get(self))
env.Set(“network”, network.Update(self, Tail(network.Get(self))))
env.Unlock(“network”)

We model a
network read, but
this implementation
does not do that

Almost all this code
is for the model
checker

This algorithm is not
abstract enough

Not a
blocking
network
read

PlusCal

Go

Use macros?

17

variables network = <<>>;
...
readMessage:
 NetworkRead(msg, self);

Network semantics
become a one-linerAll processes will share the

same view of and access to
the environment

Semantics still rely
on global variables

The macro body could
be replaced by a
real-world
implementation

readMessage:
msg := ReadNetwork(self) Assumes one

canonical network Go

PlusCal

Invent a new kind of macro: archetype

18

archetype AServer(ref network, ...)
...
readMessage:
 msg := network[self];

Complex network
semantics can become a
variable read or write

Processes are
parameterised by an
abstraction over the
environment

Any number of model checker and
implementation behaviors can be defined
elsewhere, since the environment is abstract

readMessage:
msg := network.Read(self)

MPCal

Modular PlusCal: System vs Environment

➔ Goal: isolate system definition from abstractions of its
execution environment

➔ Semantics of new primitives:
◆ Archetypes can only interact with arguments passed to them
◆ Archetype arguments encapsulate their environment and are called

resources
◆ Each resource can be mapped to an abstraction for model checking when

archetypes are instantiated

19

The Modular PlusCal Language
◆ Archetypes: define API to be used to interact with the concrete system
◆ Mapping Macros: allow definition of abstractions
◆ Instances: Configures abstract environment for model checking

20

mapping macro TCPChannel{
 read {
 await Len($variable) > 0;
 with (msg = Head($variable)) {
 $variable := Tail($variable);
 yield msg;
 };
 }
 write {
 await Len($variable) < BUFFER_SIZE;
 yield Append($variable, $value);
 }
} MPCal

archetype AServer(ref network, ...)
...
readMessage:
 msg := network[self];

MPCal

variables network = <<>>;

process (Server = 0) ==
 instance AServer(ref network, ...)
 mapping network[_] via TCPChannel

MPCal

MPCal

Web server example

21

AServer

[
 client_id -> * return address
 path -> * resource requested
]

to: client_id

"data..."

filesystem

network

variables network = <<>>;

process (Server = 0)
variable msg;
{
 readMessage:
 await Len(network[self]) > 0;
 msg := Head(network[self]);
 network := [network EXCEPT ![self] = Tail(network[self])];

 sendPage:
 await Len(network[msg.client_id]) < BUFFER_SIZE;
 network := [network EXCEPT ![msg.client_id] = Append(network[msg.client_id], WEB_PAGE)];
 goto readMessage;
} PlusCal

Abstract Server with Buffered Network (PlusCal)

22

Abstract environment:
network as sequences

Abstractly represents
reading a message from
the network

Model checking
concern: only send
messages if the buffer
has space

Model website data as a
constant called
WEB_PAGE

archetype AServer(ref network, file_system)
variable msg;
{
 readMessage:
 msg := network[self];

 sendPage:
 network[msg.client_id] := file_system[msg.path];
 goto readMessage;
}

Abstract Server with Buffered Network (MPCal)

23

Archetype has access
to: a network, a
filesystem

Interacting with the
network becomes
straightforward

Reading from the
filesystem becomes clear,
unlike just passing around
a WEB_PAGE placeholder

MPCal

mapping macro TCPChannel{
 read {
 await Len($variable) > 0;
 with (msg = Head($variable)) {
 $variable := Tail($variable);
 yield msg;
 };
 }
 write {
 await Len($variable) < BUFFER_SIZE;
 yield Append($variable, $value);
 }
}

Environment Abstractions: Buffered Network

24

MPCal

Abstract blocking
network read
semantics

Abstract buffered
network write
semantics

What happens
when a variable is
read, transform the
underlying value
$variable and
yield the result.

What happens
when a variable is
written, apply the
new $value to
the underlying
$variable and
yield the new
underlying value.

mapping macro WebPages {
 read {
 yield WEB_PAGE;
 }
 write {
 assert(FALSE);
 yield $value;
 }
}

Environment Abstractions: Filesystem Read

25

MPCal

Reading modeled
lossily by returning a
constant

Writing not modeled,
so represented by
failure

variables network = <<>>;

process (Server = 0) == instance AServer(ref network, filesystem)
 mapping network[_] via TCPChannel
 mapping filesystem[_] via WebPages;

Putting it All Together: Instances

26

MPCal

Same model checking
abstractions

Function-mapping
syntax

mapping pipe via ... ;

Mappings without the [_] also exist:

Server is an instance
of AServer, with all the
mapping macros and
parameters expanded

Reviewing Source Languages

27

PlusCal Modular PlusCal

Abstract environment; require
manual edits in the generated
implementation that can
introduce bugs

Abstractions are isolated: not
included in archetypes. Behavior
can be preserved if abstractions
have implementations with
matching semantics

Protocol updates are difficult;
developer needs to reapply
manual changes

Protocol updates can be applied
any time; generated code is
isolated from execution
environment

PGo Workflow

2. PGo compiles
model to PlusCal

3. User defines
correctness
properties

4. TLC validates
or produces
counterexample

1. User writes
system model in
MPCal

5. PGo compiles
model to Go 6. User choses

concrete
implementation
for abstractions

7. User writes
main function
(bootstrap)

8. System is
deployed in a
distributed
environment

28

PGo Workflow

29

Compiling Modular PlusCal to Go

30

Defining our Objective

➔ Goal: every execution of the resulting system can be
mapped to an accepted behavior of the spec
◆ Refinement

➔ Environment modeled abstractly in Modular PlusCal needs
an implementation in Go with matching semantics

➔ We need to understand how TLC explores behaviors
defined by a model

31

Coming Back to the Server Example

32

archetype AServer(ref network, file_system)
variable msg;
{
 readMessage:
 msg := network[self];

 sendPage:
 network[msg.client_id] :=
 file_system[msg.path];
 goto readMessage;
}

MPCal

archetype ALoadBalancer(ref network)
variables msg, next = 0;
{
 rcvMsg:
 msg := network[LoadBalancerId];
 assert(msg.message_type = GET_PAGE);

 sendServer:
 next := (next % NUM_SERVERS) + 1;
 mailboxes[next] := [
 message_id |-> next,
 client_id |-> msg.client_id,
 path |-> msg.path
];
 goto rcvMsg;
} MPCal

Behaviors in a Model

33

variables network = <<>>;

process (Server = 0) == instance AServer(ref network, filesystem)
 mapping network[_] via TCPChannel
 mapping filesystem[_] via WebPages;

process (LoadBalancer = 1) == instance ALoadBalancer(ref network)
 mapping network[_] via TCPChannel;

TLC explores all possible interleavings between two processes (instances)

MPCal

Interleavings between Processes

34

archetype ALoadBalancer(ref network)
variables msg, next = 0;
{
 rcvMsg:
 msg := network[LoadBalancerId];
 assert(msg.message_type = GET_PAGE);

 sendServer:
 next := (next % NUM_SERVERS) + 1;
 mailboxes[next] := [
 message_id |-> next,
 client_id |-> msg.client_id,
 path |-> msg.path
];
 goto rcvMsg;
} MPCal

archetype AServer(ref network,
 file_system)
variable msg;
{
 readMessage:
 msg := network[self];

 sendPage:
 network[msg.client_id] :=
 file_system[msg.path];
 goto readMessage;
}

MPCal

Labels define atomic steps in the model (or actions)

Possible behaviors

rcvMsg
sendServer
readMessage
sendPage

readMessage
sendPage
rcvMsg
sendServer

rcvMsg
readMessage
sendServer
sendPage

✔

Impossible behavior

sendServer
rcvMsg
readMessage
sendPage

Preserving Modular PlusCal Semantics in Go

➔ Trivial solution: runtime scheduler that chooses which step
to run next
◆ Prohibitively expensive, especially in a distributed system context

➔ Goal: achieve as much concurrency as possible across
archetypes without changing behavior:
◆ Exploit the fact that archetypes can only perform externally visible

operations by interacting with its resources (parameters)
◆ Achieve concurrency while preserving atomicity when it matters
◆ Devise an algorithm to safely execute the statements in a step

35

Reasoning about Concurrency (part 1)

36

archetype AServer(ref network,
 file_system)
variable msg;
{
 start:
 print “Waiting for message”;

 readMessage:
 msg := network[self];

 sendPage:
 network[msg.client_id] :=
 file_system[msg.path];
 goto readMessage;
} MPCal

➔ Steps that do not use any
resource are safe to be
executed concurrently
with other steps
◆ Their effects are “invisible”
◆ Equivalent to some

sequential execution
explored by TLC

Reasoning about Concurrency (part 2)

37

➔ Steps that use the the
same resource
(environment) may not be
safe to run concurrently
◆ Let implementation dictate

safety of concurrent execution
◆ If exclusive access is needed

(such as in our log), locks can be
used

archetype ALoadBalancer(ref network)
variables msg, next = 0;
{
 rcvMsg:
 msg := network[LoadBalancerId];
 assert(msg.message_type = GET_PAGE);

 sendServer:
 next := (next % NUM_SERVERS) + 1;
 network[next] := [
 message_id |-> next,
 client_id |-> msg.client_id,
 path |-> msg.path
];
 goto rcvMsg;
} MPCal

archetype AServer(ref network,
 file_system)
variable msg;
{
 start:
 print “Waiting for message”;
 readMessage:
 msg := network[self];
 sendPage:
 network[msg.client_id] := file_system[msg.path];
 goto readMessage;
} MPCal

Executing an Atomic Step in Go

➔ We generate a Go function for each archetype
instantiated in the model
◆ Steps in an archetype may be executed concurrently with steps from

other archetypes

➔ Overview of the execution model of a single step:
◆ Acquire all resources used in the step
◆ Execute all statements in order
◆ Release all resources at the end

➔ Is this always safe?

38

Deadlocks!

➔ Steps s1 and s2 interact
with resources r1 and r2,
but in different orders

➔ Suppose also that they
both require exclusive
access

➔ Deadlock becomes
possible

39

s1:
 if (r1 > 0) {
 r2 := 0;
 } MPCal

s2:
 if (r2 > 0) {
 r1 := 0;
 } MPCal

s1 acquires r1 s2 acquires r2

s1 acquires r2 s2 acquires r1

Deadlock

Updating our Execution Model

➔ Resources are acquired in
consistent order
◆ Either <r1, r2> or <r2, r1>,

always
➔ Updated execution model:

◆ Acquire all resources used in the
step, in consistent order

◆ Execute all statements in order
◆ Release all resources at the end

40

s1:
 if (r1 > 0) {
 r2 := 0;
 } MPCal

s2:
 if (r2 > 0) {
 r1 := 0;
 } MPCal

Reasoning about the Execution Model

➔ We offer a reduction argument about the safety of the
execution model

➔ Take any two labels. There are three cases to consider:
◆ One of the labels does not use any resource: equivalent to sequential

execution
◆ Labels use disjoint sets of resources: equivalent to sequential execution

(steps interact with different parts of the environment)
◆ Labels use overlapping sets of resources: if resources require exclusive

access, they should implement that behavior when being acquired.

41

Resources Mapped as Functions

➔ Resources can be mapped as functions
➔ Entire function applications is seen as the resource
➔ Challenge: statically analysing MPCal model is no longer

sufficient to determine resources used in a step

42

process (Server = 0) == instance AServer(ref network,
 filesystem)
 mapping filesystem[_] via WebPages MPCal

sendPage:
 network[msg.client_id] :=
 file_system[msg.path];
 goto readMessage;MPCal

MPCal

Solution

➔ Resources mapped as functions are acquired in the
statement they are used

➔ Drawback: they cannot be acquired in consistent order
➔ Instead, we allow actions to be restarted during a potential

deadlock

43

Executing a Modular PlusCal step (action) in Go

44

Main loop: only exit
when the step is
complete

Resources not
mapped as functions
acquired in consistent
order as described

Execute the
statements defined in
the model Resource mapped as

function is used in a
statement

If it cannot be acquired
(potential deadlock),
restart from scratch

When all statements are
executed, make environment
changes externally visible

Linking Abstractions and Concrete Implementations

➔ PGo is not aware of the concrete representation of
abstract resources passed to archetypes

➔ Instead, we define a contract that valid implementations
must follow
◆ If implementation matches abstraction, code generated by PGo does not

need to be manually edited

45

Environment Implementations: Requirements

➔ What is needed from these implementations?
◆ A way to “acquire” them before use (enforcing exclusive access if

necessary)
◆ Interacting with the environment (reading, writing)
◆ Making environment changes visible at the end of the atomic step
◆ Aborting local interaction if step needs to be restarted

46

Archetype Resources API (in Go)

47

type ArchetypeResource interface {
 Acquire(ResourceAccess) error
 Read() (interface{}, error)
 Write(interface{}) error
 Release() error
 Abort() error
 Less(ArchetypeResource) error
} Go

Called before the
resource is read or
written

Only call that can make
externally visible
effects

Discards interactions
when actions need to
be restarted

Allow resources to be
comparable (enforcing
consistent order)

Handling Errors

➔ API functions implemented by resources may return errors
➔ Errors are used for two purposes during execution:

◆ To flag unrecoverable environment errors
◆ To request that an action be restarted (e.g., potential deadlock)

48

Environment Errors Restart Request

I/O error reading or writing to a
file or socket; network operation
timeout

Attempt to read a socket when no
message is available; attempting
to lock shared data that is already
locked

DEMO

Compiling and Running load_balancer.tla

49

Distributed Runtime

50

Execution Runtime

➔ Goal: reduce the burden on developers by providing
resources often used in distributed systems
◆ Scheduling setup
◆ Network communication
◆ Global state
◆ Others: file system, time, shared resources, etc...

51

Synchronized Start

➔ Allows processes (that may run on different nodes when
deployed) to coordinate when they start execution
◆ TLA+ weak fairness

➔ Developer can use it to enforce a distributed barrier

52
Proposer

Acceptor

Learner ProposerLearner

Acceptor

Learner

Acceptor

Proposer

✔

Distributed Global State

➔ Provides the abstraction of shared state in a distributed
system

➔ Exposed as an archetype resource implementation
◆ Makes it easier to migrate PlusCal spec to Modular PlusCal

➔ Data is stored across all nodes in the system
◆ Objects are owned by only one at a time, but can move over time
◆ (Many exciting future work directions hide here :-)

53

Distributed Global State: Data Store

Node has value
for data it owns

No state kept if
not owned

Ownership may
be outdated

54

Evaluation

55

➔ PGo is 25K LOC (compiler) and 3K (runtime)
➔ Able to compile concurrent and distributed systems
➔ Supports different dist. state strategies

Evaluation

➔ Is the implementation sufficiently robust to support the
compilation of complex specifications?

➔ Do systems compiled by PGo have behavior that is
defined by the specification?

➔ What is the performance of systems compiled by PGo, and
how does it compare with similar, handwritten
implementations?

56

A partial set of specs that we wrote

➔ Load Balancer model:
◆ Defines interaction of a load balancer, multiple servers and multiple

clients. Implementations interact with the file system

➔ Replicated Key-Value Store:
◆ Serializable key-value consistency semantics
◆ Replicated state machines using Lamport logical locks to determine

ordering and stability*
◆ An assignment at UBC in Winter 2019

➔ Raft and Paxos models; no eval for these yet
* as described in Implementing Fault-Tolerant Services Using the State Machine Approach: a Tutorial

57

Specification Archetypes Mapping macros MPCal LOC

Load balancer 3 2 79

Replicated KV 5 6 291

Implementation PGo-gen Go LOC Manual Go LOC Total Go LOC

Load balancer 494 85 579

Replicated KV 3,395 234 3,629

MPCal and Go LOC

58

Specification Archetypes Mapping macros MPCal LOC

Load balancer 3 2 79

Replicated KV 5 6 291

MPCal and Go LOC

59

Implementation PGo-gen Go LOC Manual Go LOC Total Go LOC

Load balancer 494 85 579

Replicated KV 3,395 234 3,629

PGo

Semantic Equivalence

➔ Proof that resulting system is semantically equivalent to
original model is future work (certified compilation)

➔ Tested both systems
◆ Load balancer: different numbers of clients/servers; files of different sizes;

verified result was received by client as expected
◆ Replicated Key-Value Store: Different numbers of clients/replicas; keys and

values as random bytes of configurable length; clients issue request
sequentially or concurrently; at the end: all replicas are consistent.

◆ All tested student solutions had bugs when the same test suite was used!

60

Performance Comparison

➔ Comparison with handwritten versions of the load
balancer and replicated key-value store

➔ Experimental setup: all processes running on the same
node, focus on runtime overhead

61

Implementation PGo version (gen) Manual version

Load balancer 579 (494) 156

Replicated KV 3,629 (3,395) 406

5-8x LOC
increase

Load Balancer setup

62

Performance results: Load Balancer

Load balancer with one or multiple clients performing 10 (left) or
100 (right) requests per client.

63

Replicated Key-Value Store setup

64

Performance results: Replicated Key-Value Store

Time it takes for three clients to perform 100 operations, first
sequentially (left) and then concurrently (right).

65

Discussion

66

Discussion: Limitations and Future Work

➔ Compilation is not verified
◆ Trusted: TLC model checker, PGo compiler and runtime, Java compiler

and runtime, Go compiler and runtime, operating system.

➔ Fault tolerance needs further work
◆ Limited ways to deal with failures; lack of language support

➔ Performance can be improved
◆ Restarting actions can be expensive

➔ Fairness is not guaranteed
◆ Go favors performance over fairness; mismatch with original model

67

PGo take-aways

➔ Described how PGo leverages
separation between system and
abstractions to generate correct
distributed systems

➔ More work is necessary to make
it a viable option for the
development of
production-quality distributed
systems 68https://github.com/ubc-nss/pgo

https://github.com/ubc-nss/pgo

