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How safe electronic systems are designed

● Decide what matters (safety requirements)

● Decide how much it matters (Assign a Safety Integrity Level - SIL)

● Analyze the parts of the system that matter (Fault Tree Analysis)

● Not good enough? Add redundancy. 
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Example: Industrial Press

● Safety requirement: Turn off press with emergency stop button 

● SIL: 4

● Fault tree: the actuator is only SIL 3

● Redundancies: use two, design a SIL 4 failover mechanism



Functional Safety

● IEC 61508

● Power plants, chemical plants, cars, trains, heavy machinery, etc.
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In software, shared clock failures are 
lumpy and unpredictable 



The story of a system 
made from lots of 

computers, sensors, 
actuators, and clocks
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A client project for ██████████ 

● Can’t say anything specific

● Relies fundamentally on a common timebase

● Appeared to be vulnerable to drift



My Goal: Demonstrate the problem
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A naïve model
VARIABLES node_clock, system
Nodes == { "A", "B", "C" }

Init ==
  /\ node_clock = [ n \in Nodes |-> 0 ]
  /\ system = ...

Next ==
  \/ \E node \in DOMAIN node_clock:
     /\ node_clock' = [node_clock EXCEPT ![node] = @ + 1]
     /\ UNCHANGED << system >>
  \/ /\ SystemStep(system)
     /\ UNCHANGED << node_clock >>
  \/ SyncClocks(node_clock, system)

SystemStep(s) == ...
SyncClocks(cs,s) == ...
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This approach is not great.

● Massive state explosion

● Customer doesn’t care about the sync protocol



Model the drift, not the sync
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Drift Modeling (1)
CONSTANTS SIMULATED_CYCLES, BOUNDED_DRIFT
VARIABLES global_clock, node_clock, system

Nodes == { "A", "B", "C" }

Init ==
  /\ global_clock = 0
  /\ node_clock = [ n \in Nodes |-> 0 ]

Next ==
\/ ClockStep /\ UNCHANGED system
\/ SystemStep /\ UNCHANGED global_clock /\ UNCHANGED node_clock

SystemStep == ...
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Drift Modeling (2)
ClockStep ==
  \* Tick the global clock
  \/ /\ global_clock' = global_clock + 1
     /\ UNCHANGED << node_clock >>
     /\ ClockDriftInBounds(global_clock', node_clock)

  \* Tick a node clock
  \/ \E node \in DOMAIN node_clock:
     /\ node_clock' = [node_clock EXCEPT ![node] = @ + 1]
     /\ UNCHANGED << global_clock >>
     /\ ClockDriftInBounds(global_clock, node_clock')



Drift Modeling (3)
ClockDriftInBounds(g, n) ==
  /\ g <= SIMULATED_CYCLES
  /\ \A node \in DOMAIN n :
     /\ n[node] <= SIMULATED_CYCLES
     /\ Abs(c[node] - g) <= BOUNDED_DRIFT
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This works better
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● Narrower state space

● Directly addresses relevant failure domain



The system was more vulnerable to drift 
than previously thought



Delivering a Model

● Literate PDF

● Makefile / .cfg file

● Config Instructions



● Difficult setup

● Easier development

● Easier delivery

TLA+ is tricky to use this way



Give models to your customers



Extending the technique

● Asymmetric Drift

● Action on Tick

● Cyclical Clock
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Closing Thoughts

● Fake a real clock

● Bound the drift

● Give models to your customers

● I owe Hillel Wayne a great debt
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