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TLAPS in Context

TLAPS essentially does two things:

e translate between TLA and the languages that the backend
provers understand;

@ help the user break up a theorem P into obligations O; ... Oy,
while maintaining the fact that O; A...AO, = P.
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Talking to ATPs about TLA Specs

certificates
I'm telling you GMTLIBZ
Spec = [[Safety o
“abcd”
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Talking to ATPs about TLA Specs

I'm telling you
Spec == [|Safety

D

TLAPS

Jael K., Tom R. and Tomer L.

Proof Language %
OBVIOUS

BY .. DEF ..

ASSUME ... PROVE ...

CASE

PICK

WITNESS
SUFFICES
USE
HIDE
QED
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Hence the way the interface looks:

® Applications Places &

(-] TLA+ Toolbox
File Edit Window TLCModel Checker TLAProof Manager Help

(& Ewps4o.tla 22

TLA Module

\/ Po:: \A i \in Nodes : tpos < i = ~ nactivel
\/ PLi: \E j \in © .. tpos : ncolorlj] = "blacl
2\ P2i: teolor = “black®

Typedk is an inductive invariant
LEwA Cinv c = [1Typeok

118 <1>. USE DEF Nodes, Color

9- <1, Tnit =

20 BY NAssumption DEF Init, TypeOk

71~ €152, TypedK /\ [Next]_vars = Typedk

<2>. SUFFICES ASSUME TypeOK, Next \/ UNCHANGED vars

Typeok

0BVIOUS
<21, CASE InitiateProbe
BY <2-1, NAssumption DEF InitiateProbe, TypeOk
2. ASSUME NEW 1 \in Nodes \ (6}, PassToken(3)
PROVE Ty

S 22, Masumption oee passToken. Tipeok
3. ASSUME N n Nodes, Sendtsg(i)

PROVE
51 <223, NAcoumption DEF Sendisg, Typeok
<2>4. ASSIME NEW 1 \in Nodes, Deactivatel(i)

PROVE

o1 <224 DEF Deactivate, Typedk
5. CASE UNCHANGED vars
BY <2>5 DEF vars, Typeok

2oL QED BY <251, <2, <253, <24, <25 DEF Next

ED
BY <I>1, <152, PTL DEF Spec

tness *)

* Dijkstra’s invariant implies corre
Lo Inv = Temminationdetection
BY NAssumpt

F Inv, Terminationbetection, terninationDetected, odes

" I the above one-Line proot is too ccure; here i 3 eore detailed
hierarchical proof of the san

Lewh Tov inplics Ternination o m = (amlnauunnue:uan

150 <DL SUFFICES KSSURE tpos = 0, tcslor = Wi

orl6] = hite", - nactivelo],

n
PROVE \A i \in Nodes : ~ nactiveli]
BY <1>1 DEF TerninationDetection, terminationdetected

conversation
user <— TLAPS

Jael K., Tom R. and Tomer L.
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5 Interesting Obligations for EWD840.tla &

v Obligation s -status : smt3 (Executable "cve3" not found in this PATH:

Goto Obligation

ASSUNE NEW CONSTANT N,
VARTABLE nactive,
NEW VARIABLE ncolor,
NEW VARIABLE tpos,
N VARTLE tcolor,
in (0}
prove (7 \mactive \in'fo . W - 1 > sooLemv)
\ ncolor \in [0 ..N - 1-> {"white", "black’}]
A Tpos- =
N teolor

“black’)

(/\ nactive \in [0 .. N - 1 -> BOOLEAN]
n 10N - 1-> ("white"
1

“black’}]
N\ tpos \in 0 .. N -

N teolor \in {“white", "black'})
iled bl in this PATH:

v Obligation

Goto Obligation

\* TLAPH does not yet handle temporal logic.
Proof of obligation 1 cannot be checked

Backend. Isabelle: Box

ASSUNE NEW CONSTANT N,

NEW VARIABLE nactive,
NEW VARIABLE ncolor,

> BOOLEAN]
A meolor \in 10 W1 (it “black'H

\ ¢ 1
N thotor i Fwhit
et \/' WD vars',

N thotor - “black® \/ nestorle] = “black
n \neg nactivelo]

(neotor EXCEPT 110] = “hite"] |
)

o Spec Status : Iiparsed

snipplets of conversations
TLAPS <= backend provers
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TLAPS Proofs

There are two kinds of TLAPS proofs:

one-liners hierarchical
(11 X
® OBVIOUS 2)1Y
OBVIOUS
® BY...[DEF...] :
(2)g QED
BY...DEF...
Each one-line proof generates <1>¢] QED
one obligation. BY...DEF...

(Or there abouts... )

4
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Obligations

An obligation is a claim of the form I' - P,
which is translated and handed on to the backend provers.
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Obligations

An obligation is a claim of the form ASSUME I' PROVE P,
which is translated and handed on to the backend provers.

To prove an obligation, by default, TLAPS will ask:
Q CVC
@ Zenon
@ Isabelle
But one can change that...
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Obligations: Controlling I’

An obligation is a claim of the form ASSUME I' PROVE P,
which is translated and handed on to the backend provers.

The TLAPS game is mainly to construct obligations so that:

O they are true, i.e.:

@ T contains all relevant facts), and
@ all relevant definitions are unfolded;

@ they are not too big for the backend provers to handle.
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Obligations: Controlling I’

Once one has one’s logic right, the game is to control T'.

By default:
@ all constant-/variable-declarations, with domain-assumptions, are
inT;

@ no definitions are unfolded.
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Obligations: Controlling I

Once one has one’s logic right, the game is to control T'.

named & un-named steps USE & HIDE
The keywords USE resp. HIDE
(H1 X include in resp. remove from I
Tt steps, theorems or assumptions;
(1) Y
USE [DEF] resp. HIDE [DEF] fold
resp. unfold definitions in I'.
(1)3 Z
(* here Yisin I, but X is not *)
BY <1> 1 (*here Y and X arein T *) | Whether a USE- and HIDE-step is named
or un-named does not matter.
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Writing a simple Hierarchical Proof

quick recap: EWD 840
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Writing a simple Hierarchical Proof

The safety-proof has the following structure:

LEMMA Spec = OTerminationDetection

(* Dijkstra’s invariant implies correctness *)
(1)1 Inv = TerminationDetection

(* Dijkstra’s invariant is (trivially) established by the initial condition *)

(1)2 Init = Inv

(* Dijkstra’s invariant is inductive relative to the type invariant *)

(1)3 TypeOK A Inv A\ [Next|yars = Inv/

(1) QED
BY (1)1, (1)2, (1)3, TypeOKjy,,, PTL DEF Spec
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Writing a simple Hierarchical Proof

writing a simple hierarchical proof
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Some more Proof Constructs:

When proving a goal of the form:

To prove it we can write:

The effect is:
© step (1)6 needs a proof thata € S;
@ the goal from now on is P(a).

Jael K., Tom R. and Tomer L. TLAPS Tutorial

WITNESS

dxeS: P(x)

(1)6 WITNESS a € S

for some a already in T
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Some more Proof Constructs: PICK

When I contains a statement of the form:

dxeS: P(x)

To use it we can write:
(1)6 PICK a € S: P(a)

for some fresh a.

The effect is:
@ wehaveanewa € SinT;
@ using (1)6 will put P(a) into T
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Some more Proof Constructs: SUFFICES

SUFFICES is useful to avoid deeply nested hierarchical proofs:

(6)4 X (6)4 SUFFICES X
(7) proof IT proof %
(6)g QED (6)5 proof IT

6)4, proof X
R0 ede (6)g QED
BY (6)4, (6)5

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014

20 /52



o TLAPS Basics

e Tips and Best Practices for Using TLAPS

e Temporal Reasoning in TLAPS

«Or <Fr o« [ R > Q>



A simple theorem about sequences

o Concat left cancellation: Given three sequences A, B, C where
CoA = CoB, it follows that A = B.

» Simple, but not trivial. Multiplication, for example, does not have
left cancellation, because you can multiply by zero.
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@ Write the theorem in TLA
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A simple theorem about sequences

o Concat left cancellation: Given three sequences A, B, C where
CoA = CoB, it follows that A = B.

» Simple, but not trivial. Multiplication, for example, does not have
left cancellation, because you can multiply by zero.

@ Write the theorem in TLA
As a quantified formula:

VS:VA,B,C € Seq(S) :
CoA=CoB=A=B8
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A simple theorem about sequences

o Concat left cancellation: Given three sequences A, B, C where
CoA = CoB, it follows that A = B.

» Simple, but not trivial. Multiplication, for example, does not have
left cancellation, because you can multiply by zero.

@ Write the theorem in TLA

As a quantified formula: As an ASSUME-PROVE:
VS:VA,B,CeSeq(S) : ASSUME
CoA=CoB=A=B8B NEW S,

NEW A € Seq(S),
NEW B € Seq(S),
NEW C € Seq(S),
CoA=CoB
PROVEA =B
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Proof attempt 1 - is it obvious - fail

THEOREM ConcatLeftCancel =
ASSUME
NEW S,
NEW A € Seq(S),
NEW B € Seq(S),
NEW C € Seq(S),
CoA=CoB
PROVE
A=B
PROOF
(1) QED OBVIOUS  unable to prove it
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Proof attempt 2 - add some facts - still fail

THEOREM ConcatLeftCancel =
ASSUME
NEW S,
NEW A € Seq(S),
NEW B € Seq(S),
NEW C € Seq(S),
CoA=CoB
PROVE
A=B
PROOF
(1)1. Len(A) = Len(B) OBVIOUS CoA=CoB
(1)2. A € [1.. Len(A) = S] OBVIOUS A € Seq(S)
(1)3. B €[l.. Len(A) —» S] BY (1)1
(4. Yiel..Len(A): A[i] = (C o A)[i + Len(C)] OBVIOUS
(1)5.Yiel..Len(A): B[i] =(C o B)[i + Len(C)] BY (1)1
(1) QED BY (1)2, (1)3, (1)4, (1)5  unable to prove it
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Proof attempt 3 - another fact - success

THEOREM ConcatLeftCancel =
ASSUME
NEW S,
NEW A € Seq(5),
NEW B € Seq(S),
NEW C € Seq(S),
CoA=CoB
PROVE
A=B
PROOF
(I)1. Len(A) = Len(B) OBVIOUS CoA=CoB
(1)2. A €[1.. Len(A) — S] OBVIOUS A e Seq(S)
(D3.B €[1..Len(A) — S] BY (1)1
(4. Yiel..Len(A): A[i] = (C o A)[i + Len(C)] OBVIOUS
()5.Yie€l..Len(A): Bli]=(C o B)[i+ Len(C)] BY (1)1
(1Y6.Yiel..Len(A): Ali] = B[i] BY (1)4, (1)5
(1) QED BY (1)2, (1)3, (1)6
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Proof with better structure

THEOREM ConcatLeftCancel =
ASSUME
NEW S,
NEW A € Seq(95),
NEW B € Seq(S),
NEW C € Seq(S),
CoA=CoB
PROVE
A=B
PROOF
(1)1. Len(A) = Len(B) OBVIOUS CoA=CoB
(1)2. A € [1.. Len(A) —» S] OBVIOUS A € Seq(S)
(1D3. B €[1..Len(A) — S] BY (1)1
(1)4. ASSUME NEW ¢ € 1 .. Len(A) PROVE A[i] = B[1]
(2)1. A[i] = (C o A)[i + Len(C)] OBVIOUS defnof Co A
(2)2. B[i] = (C o B)[i + Len(C)] BY (1)1 defn of C o B
(2) QED BY (2)1, (2)2
(1) QED BY (1)2, (1)3, (1)4

Jael K., Tom R. and Tomer L. TLAPS Tutorial
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Lessons from proving ConcatLeftCancel
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Lessons from proving ConcatLeftCancel

@ The proof centers on showing A = B where A, B are functions
» For two functions to be equal, you must show

* they have the same domain
* they have the same value at each point in the domain

» It seems this is relatively difficult for TLAPS to conclude
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@ Before writing a subproof, check if TLAPS thinks a fact is obvious
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Lessons from proving ConcatLeftCancel

@ The proof centers on showing A = B where A, B are functions
» For two functions to be equal, you must show

* they have the same domain
* they have the same value at each point in the domain

» It seems this is relatively difficult for TLAPS to conclude
@ Before writing a subproof, check if TLAPS thinks a fact is obvious

@ When TLAPS fails, try to figure out what specific fact you could
provide that it is failing to consider
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Lessons from proving ConcatLeftCancel

@ The proof centers on showing A = B where A, B are functions
» For two functions to be equal, you must show

* they have the same domain
* they have the same value at each point in the domain

» It seems this is relatively difficult for TLAPS to conclude
@ Before writing a subproof, check if TLAPS thinks a fact is obvious

@ When TLAPS fails, try to figure out what specific fact you could
provide that it is failing to consider

@ When introducing a new symbol x, generally it is a good idea to
use a domain formulax € S
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Using the theorem ConcatLeftCancel

Often, what a theorem considers as constant parameters are messy
formulas at the point where we wish to apply the theorem. In this

example, we conjure up formulas that happen to be sequences, and
ask TLAPS to apply ConcatLeftCancel.

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014
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Use attempt 1 - is it obvious - fail

THEOREM UseConcatLeftCancel =
ASSUME
NEW S,
NEW u € Seq(S),
NEW v € Seq(S),
NEW w € Seq(S5),
NEW z € Seq(9),
NEW m € S,
NEW n € S,
uwo{m,nyovox =uo{m, nyowozux
PROVE
VoOr=wox
PROOF
(1) QED BY ConcatLeftCancel unable to prove it

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 29 /52



Use attempt 2 - add a closure fact - still fail

THEOREM UseConcatLeftCancel =
ASSUME
NEW S,
NEW u € Seq(S),
NEW v € Seq(S),
NEW w € Seq(S),
NEW z € Seq(S),
NEW m € S,
NEW n € S,
uo{m, nyovox=uo{(m,nyowouz
PROVE
VOL=wWox
PROOF
(I)1. wo{m, n) € Seq(S) OBVIOUS o closed
(1) QED BY (1)1, ConcatLeftCancel unable to prove it
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Use attempt 3 - add more closure facts - still fail

THEOREM UseConcatLeftCancel =
ASSUME
NEW S,
NEW u € Seq(S),
NEW v € Seq(9),
NEW w € Seq(S),
NEW z € Seq(95),
NEW m € S,
NEW n €S,
uo{m, nyovox=uo{(m,nyowozw
PROVE
voxr=woxr
PROOF
(I)1. uw o {m, n) € Seq(S) OBVIOUS o closed
(1)2. v oz € Seq(S) OBVIOUS o closed
(1)3. w oz € Seq(S) OBVIOUS o closed
(1) QED BY (1)1, (1)2, (1)3, ConcatLeftCancel unable to prove it
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Use attempt 4 - add an associativity fact -

Success

THEOREM UseConcatLeftCancel =
ASSUME
NEW S,
NEW u € Seq(S),
NEW v € Seq(S5),
NEW w € Seq(S),
NEW z € Seq(S),
NEW m € S,
NEW n € S,
uo{m, nyovox=uo{(m,nyowozr
PROVE
vor=wor
PROOF
(I)1. uw o {m, n) € Seq(S) OBVIOUS o closed
(1)2. v oz € Seq(S) OBVIOUS o closed
(1)3. woz € Seq(S) OBVIOUS o closed
(4. u o{m, nyo(vox)=uo{m, nyo(wozx) OBVIOUS
(1) QED BY (1)1, (1)2, (1)3, (1)4, ConcatLeftCancel
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Lessons from applying ConcatLeftCancel
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Lessons from applying ConcatLeftCancel

@ Common mathematical properties of closure and associativity can
be important
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Lessons from applying ConcatLeftCancel

@ Common mathematical properties of closure and associativity can
be important

» Humans are really good at utilizing these properties
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Lessons from applying ConcatLeftCancel

@ Common mathematical properties of closure and associativity can
be important
» Humans are really good at utilizing these properties
» Even though TLAPS considered the properties obvious, it was
unable to supply them automatically when trying to prove a
deduction that required them
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» Humans are really good at utilizing these properties
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Lessons from applying ConcatLeftCancel

@ Common mathematical properties of closure and associativity can
be important

» Humans are really good at utilizing these properties

» Even though TLAPS considered the properties obvious, it was
unable to supply them automatically when trying to prove a
deduction that required them

» In my experience, TLAPS has a really difficult time applying
associativity

@ When TLAPS fails, try to figure out what specific fact you could
provide that it is failing to consider
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Finite induction over naturals
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Finite induction over naturals

@ The ordinary form of induction is simple induction over the
naturals, in which a predicate P(i) is proved to hold for all i € Nat.
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Finite induction over naturals

@ The ordinary form of induction is simple induction over the
naturals, in which a predicate P(i) is proved to hold for all i € Nat.

@ TLAPS has a libary theorem NatInduction, in the library module
NaturalsInduction, that encapsulates the simple inductive
argument. For any P(_), given the base case

P(0)
and the inductive step
Vi€ Nat:P(i) = P(i+1)
NatInduction concludes

Vi € Nat : P(i)
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Finite induction over naturals - 2

@ Sometimes we do not want or need to prove that P(i) holds for all
i € Nat, but rather only for a finite range i € m..n. This often
occurs when proving things about sequences.
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Finite induction over naturals - 2

@ Sometimes we do not want or need to prove that P(i) holds for all
i € Nat, but rather only for a finite range i € m..n. This often
occurs when proving things about sequences.

@ In such cases, we could, of course, define a more general predicate
Q(i) =i € m.n= P(i)

use NatInduction to prove that Q(i) holds for all i € Nat and then
deduce what we want about P(_). But the proof would be
cluttered with the transitions of i into and out of m..n.
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Finite induction over naturals - 2

@ Sometimes we do not want or need to prove that P(i) holds for all
i € Nat, but rather only for a finite range i € m..n. This often
occurs when proving things about sequences.

@ In such cases, we could, of course, define a more general predicate
Q(i) =i € m.n= P(i)

use NatInduction to prove that Q(i) holds for all i € Nat and then
deduce what we want about P(_). But the proof would be
cluttered with the transitions of i into and out of m..n.

@ A better approach is to define a prove and prove a theorem
FiniteNatInduction that explicitly deals with finite induction over
the naturals.
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Setting up the inductive argument

THEOREM FiniteNatInduction =

ASSUME
NEW P(), predicate
NEW m € Nat, start
NEW n € Nat, limit
P(m), base case

Yiem..(n—1):P()= P(i+1) finiteind hyp
PROVE Yi e m..n: P(i)
PROOF
(1) DEFINE Q(i) = i € m .. n = P(i)
(1) SUFFICES Y i € Nat : Q(i) OBVIOUS
base case
(1)1. Q(0) oBVIOUS
inductive step
(D2.Vie Nat: Qi) = Qi+ 1)
(1) HIDE DEF @ hide defn of induction predicate
(1) QeD BY (1)1, (1)2, NatInduction

Jael K., Tom R. and Tomer L. TLAPS Tutorial

Define the more general
predicate Q(-)

Use a SUFFICES to change the
goal to Vi € Nat : Q(i)

State the base case and
inductive step as facts

Hide the definition of the
inductive predicate Q(-)

Appeal to NatInduction
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Completing the subproof of the inductive step

THEOREM FiniteNatInduction =
ASSUME
NEW P(o), predicate
NEW m € Nat, start
NEW n € Nat, limit
P(m), base case
Yiem..(n—1):P@)= P(i+1) finiteind hyp
PROVE Yiem..n: P(i)

PROOF

(1) DEFINE Q(3) = i€ m..n = P(i)

(1) SUFFICES Y i € Nat : Q(i) OBVIOUS

base case

(I)1. Q(0) oBVIOUS

inductive step

(1)2.¥i € Nat: Q1) = Qi + 1)
(2)1. SUFFICES ASSUME NEW i € Nat, Q(7)

PROVE Q(i + 1) OBVIOUS

(2)2.CASEi+ 1€ (m+1)..n BY (2)1, (2)2
(2)3.CASE i+ 1 =m BY (2)3
(2Y4.CASEi+1¢ m ..n BY 2)4
(2) QED BY (2)2, (2)3, (2)4

(1) HIDE DEF @ hide defn of induction predicate

(1) QeD BY (1)1, (1)2, NatInduction

Jael K., Tom R. and Tomer L. TLAPS Tutorial

@ Use SUFFICES ASSUME

PROVE to disassemble the
universal quantifier and the

implication

@ Use CASE to perform a case

analysis

@ The cases must cover all

possibilities
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Simplified proof of FiniteNatInduction

THEOREM FiniteNatInduction =
ASSUME
NEW P(o), predicate
NEW m € Nat, start
NEW n € Nat, limit

P(m), base case @ It turns out that TLAPS thinks
Yiem..(n—1): P(i)= P(i+1) finiteind hyp that the inductive step is
PROVE Vi€ m..n: P@i) obvious. We neglected to
PROOF

(1) DEFINE Q() & i € m .. n = P(i) 'check this before plgnging
(1) SUFFICES Y i € Nat : Q(i) OBVIOUS into the case ana1y51s. Hence

base case the proof can be 51mpl1f1ed
(1)1. Q(0) OBVIOUS considerably.

inductive step

(1)2.V¥i € Nat : Qi) = Q(i + 1) OBVIOUS
(1) HIDE DEF @ hide defn of induction predicate
(1) QED BY (1)1, (1)2, NatInduction
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Lessons from proving FiniteNatInduction

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 39 /52



Lessons from proving FiniteNatInduction

o Hide the definition of the induction predicate before appealing to
the induction theorem

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 39 /52



Lessons from proving FiniteNatInduction

o Hide the definition of the induction predicate before appealing to
the induction theorem

» More generally, when applying a proof rule containing a NEW Q(-)
that must be instantiated with some operator Op, you should hide
the definition of Op

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 39 /52



Lessons from proving FiniteNatInduction

o Hide the definition of the induction predicate before appealing to
the induction theorem

» More generally, when applying a proof rule containing a NEW Q(-)
that must be instantiated with some operator Op, you should hide
the definition of Op

@ Use SUFFICES to change the goal

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 39 /52



Lessons from proving FiniteNatInduction

o Hide the definition of the induction predicate before appealing to
the induction theorem

» More generally, when applying a proof rule containing a NEW Q(-)
that must be instantiated with some operator Op, you should hide
the definition of Op

@ Use SUFFICES to change the goal

@ Use SUFFICES ASSUME PROVE to disassemble universal
quantifiers and implications

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 39 /52



Lessons from proving FiniteNatInduction

o Hide the definition of the induction predicate before appealing to
the induction theorem

» More generally, when applying a proof rule containing a NEW Q(-)
that must be instantiated with some operator Op, you should hide
the definition of Op

@ Use SUFFICES to change the goal

@ Use SUFFICES ASSUME PROVE to disassemble universal
quantifiers and implications

@ Use CASE statements to disassemble the current goal into cases

» TLAPS will have to be convinced that all cases are covered
» Often it can figure this out on its own, but sometimes you need to
present the fact explicitly

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 39 /52



Lessons from proving FiniteNatInduction

o Hide the definition of the induction predicate before appealing to
the induction theorem

» More generally, when applying a proof rule containing a NEW Q(-)
that must be instantiated with some operator Op, you should hide
the definition of Op

@ Use SUFFICES to change the goal

@ Use SUFFICES ASSUME PROVE to disassemble universal
quantifiers and implications

@ Use CASE statements to disassemble the current goal into cases

» TLAPS will have to be convinced that all cases are covered
» Often it can figure this out on its own, but sometimes you need to
present the fact explicitly

@ Always check to see if TLAPS can prove a fact (given the necessary
predicate facts) before plunging into a subproof
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o TLAPS Basics

9 Tips and Best Practices for Using TLAPS

° Temporal Reasoning in TLAPS
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Temporal proofs in TLAPS

@ A standard safety proof

———— » validation of a temporal formula

<1>1. Init => TypeOK 3 3
BY NAssumption DEF Init, TypeOK, Nodes, Color > mOStly aCtlon reasonlng
<1>2. TypeOK /\ [Next]_vars => TypeOK' 1 1 1
I~ » temporal reasoning for validating
<2>. SUFFICES ASSUME TypeOK, Next \/ UNCHANGED vars
PROVE TypeOK' QED Step

0BVIOUS
<2>1. CASE InitiateProbe
BY <2>1, NAssumption DEF InitiateProbe, TypeOK
<2>2. ASSUME NEW i \in Nodes \ {0}, PassToken(i)
PROVE TypeOK'
BY <2>2, NAssumption DEF PassToken, TypeOK
<2>3. ASSUME NEW i \in Nodes, SendMsg(i)
PROVE TypeOK'
BY <2>3, NAssumption DEF SendMsg, TypeOK
<2>4. ASSUME NEW i \in Nodes, Deactivate(i)
PROVE TypeOK'
BY <2>4 DEF Deactivate, TypeOK
<2>5. CASE UNCHANGED vars
BY <2>5 DEF vars, TypeOK
<2>. QED BY <2>1, <2>2, <2>3, <2>4, <2>5 DEF Next
<1>3. QED
BY <1>1, <1>2, PTL DEF Spec
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Temporal proofs in TLAPS

LEMMA TypeOK_inv == Spec => []TypeOK
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PROVE TypeOK'
0BVIOUS
<2>1. CASE InitiateProbe
BY <2>1, NAssumption DEF InitiateProbe, TypeOK
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PROVE TypeOK'
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<2>5. CASE UNCHANGED vars
BY <2>5 DEF vars, TypeOK
<2>. QED BY <2>1, <2>2, <2>3, <2>4, <2>5 DEF Next
<1>3. QED
BY <1>1, <1>2, PTL DEF Spec

Jael K., Tom R. and Tomer L.

@ A standard safety proof

» validation of a temporal formula
» mostly action reasoning
» temporal reasoning for validating
QED step
@ In this talk:
» Why
quantified temporal formulas can be proved using

first-order and propositional temporal backends
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@ A standard safety proof

» validation of a temporal formula

» mostly action reasoning

» temporal reasoning for validating
QED step

@ In this talk:

» Why
quantified temporal formulas can be proved using
first-order and propositional temporal backends

» How

to write the proofs correctly
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Temporal proofs in TLAPS

@ A standard safety proof

» validation of a temporal formula

LEMMA TypeOK_inv == Spec => [ITypeOK
<1>1. Init => TypeOK > : :
BY NAssumption DEF Init, TypeOK, Nodes, Color mOStly aCtlon reasonlng
<1>2. TypeOK /\ [Next]_vars => TypeOK' > 1 1 ]
I~ temporal reasoning for validating
<2>. SUFFICES ASSUME TypeOK, Next \/ UNCHANGED vars
PROVE TypeOK' QED Step
0BVIOUS .
<2>1. CASE InitiateProbe @ In this talk:
BY <2>1, NAssumption DEF InitiateProbe, TypeOK
<2>2. ASSUME NEW i \in Nodes \ {0}, PassToken(i) > Why
PROVE TypeOK'
BY <2>2, NAssumption DEF PassToken, TypeOK quantified temporal formulas can be proved using
<2>3. ASSUME NEW i \in Nodes, SendMsg(i)
PROVE  TypeOK' first-order and propositional temporal backends
BY <2>3, NAssumption DEF SendMsg, TypeOK
<2>4. ASSUME NEW i \in Nodes, Deactivate(i) » How
PROVE TypeOK'
BY <2>4 DEF Deactivate, TypeOK to write the proofs correctly
<2>5. CASE UNCHANGED vars .
BY <2>5 DEF vars, TypeOK » Which
<2>. QED BY <2>1, <2>2, <2>3, <2>4, <2>5 DEF Next .
<1>3. QED formulas can be proved using that
BY <1>1, <1>2, PTL DEF Spec

> * Note: TLA* is not complete for
quantified temporal logic.
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Temporal concepts in TLA*

.(*****#**

--algorithm Simple {
variables x = @; {
while (TRUE) {

X = X + 3;
1}
1
**#***##)
\* BEGIN TRANSLATION
VARIABLE x
vars == << X >>
Init == x = 0@
Next == x" = x + 3

Spec == Init /\ [][Next]_vars
\* END TRANSLATION
P=x5>=0

"THEOREM Spec => []P

Jael K., Tom R. and Tomer L.

TLAPS Tutorial

Toulouse, June 2014
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Temporal concepts in TLA*

.(********

--algorithm Simple {
variables x = @; {
while (TRUE) {
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1}
1
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\* BEGIN TRANSLATION
VARIABLE x
vars == << X >>
Init == x = 0@
Next == x" = x + 3

Spec == Init /\ [][Next]_vars
\* END TRANSLATION
P=x3>=0

"THEOREM Spec => []P

@ Semantics
» Program Executions
» States
» Behaviors and suffixes

@ Syntax

Constant expressions
State expressions
Action expressions
Temporal expressions

vV vy vy

e Logic
» First-order [1]

[1] Coalescing: Syntactic Abstraction for Reasoning in First-Order Modal Logics
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Temporal concepts in TLA*

.(********

--algorithm Simple {
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vars == << X >>
Init == x = 0@
Next == x" = x + 3
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\* END TRANSLATION
P=x3>=0
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@ Semantics

» Program Executions
» States
» Behaviors and suffixes

@ Syntax

Constant expressions
State expressions
Action expressions
Temporal expressions

vV vy vy

e Logic

» First-order [1]
» Temporal
* PTL

[1] Coalescing: Syntactic Abstraction for Reasoning in First-Order Modal Logics
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Breaking temporal formulas into action formulas

@ Proving quantified temporal formulas from action formulas and
propositional temporal rules.
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Breaking temporal formulas into action formulas

@ Proving quantified temporal formulas from action formulas and
propositional temporal rules.
» find a temporal rule
» verify the rule
» understand failures
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How to find the rules

@ Safety properties - based on
variations of the inductive
invariant rule:

THEOREM Inductive_Invariant ==
ASSUME STATE I, STATE V,
ACTION N, STATE P,
I=>P,
P /\ [N]_V => P'
PROVE I /\ [JINI_V == [IP
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How to find the rules

@ Safety properties - based on LEWA TypeOK_inv = Spec = [JType0K

iati i ; <1>1. Init => TypeOK[|
variations of the inductive DL I TOK e o Type0k]
invariant rule: <1>3. QED

BY <1>1, <12, PTL DEF Spec

THEOREM Inductive_Invariant ==
ASSUME STATE I, STATE V,

THEOREM S = MutualExclusi
ACTION N, STATE P, (o] pec => [JMutualExclusion

<1>1. Init = Inv]

I=>P, <1>2. Inv /\ [Next]_vars => Inv'l]
P /N [N]V = P' <1>3. Inv => MutualExclusion|]
PROVE I A [J[NIV == [P <1>4. QED

BY <1»1, <1»2, <1>3, PTL DEF Spec

@ Other properties - other rules

THEOREM Spec => [JStructOK1
<1>. USE DEFS Ballot, TypeOK, StructOK1l
<1>1. Init => StructOK1]
<1>2. TypeOK /\ StructOK1 /\ [Next]_vars => StructOK1'[]
<1>q. QED
BY ONLY <1>1, <1>2, typing, PTL DEF Spec
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Are the rules sound?

LEMMA TypeOK_inv == Spec => []TypeOK
<1>1. Init => TypeOK |
<1>2. TypeOK /\ [Next]_vars => TypeOK']
<1>3. QED

BY <1>1, <1>2, PTL DEF Spec
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Are the rules sound?

LEMMA TypeOK_inv == Spec => []TypeOK
<1>1. Init => TypeOK ]
<1>2. TypeOK /\ [Next]_vars => TypeOK'|]
<1>3. QED

BY <1>1, <1>2, PTL DEF Spec

@ Rule is an instance of the PTL rule:

THEOREM Inductive_Invariant ==
ASSUME STATE I, STATE V,
ACTION N, STATE P,
I=Pp,
P /\ [N]_V = P'
PROVE I /\ [J[N]J_V => [JP

@ Success of PTL backend verifies this
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Understanding failures

LEMMA TypeOK_inv == ASSUME Spec PROVE []TypeOK
<1>1. Init => TypeOK]
<1>2. TypeOK /\ [Next]_vars => TypeOK']
<1>3. QED
BY <1>1, <1>2, PTL DEF Spec

@ Consider this valid lemma
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Understanding failures

LEMMA TypeOK_inv == ASSUME Spec PROVE []TypeOK
<1>1. Init => TypeOK]
<1>2. TypeOK /\ [Next]_vars => TypeOK']
<1>3. QED
BY <1>1, <1>2, PTL DEF Spec

@ Consider this valid lemma
@ which seems to be an instance of the PTL rule:

THEOREM Inductive_Invariant ==
ASSUME STATE I, STATE V,
ACTION N, STATE P,
I/ O,
I=>P,
P /\ [N]_V = P'
PROVE []IP

@ But it is not, why?
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Necessitation

LEMMA TypeOK_inv == Spec => []TypeOK
<1>1. Init => TypeOK
<1>2. TypeOK /\ [Next]_vars => TypeOK'l]
<1>3. QED

BY <1»1, <1»2, PTL DEF Spec
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LEMMA TypeOK_inv == Spec => []TypeOK
<1>1. Init => TypeOK
<1>2. TypeOK /\ [Next]_vars => TypeOK'l]
<1>3. QED

BY <1»1, <1»2, PTL DEF Spec

<1>2. TypeOK /\ [Next]_vars => TypeOK']

<1>2. [1(TypeOK /\ [Next]_vars => TypeOK')

@ Since (1)2 holds in all
behaviours, it can be
boxed

@ This is called
necessitation
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Necessitation

LEMMA TypeOK_inv == Spec => []TypeOK
<1>1. Init => TypeOK

<1>2. TypeOK /\ [Next]_vars => TypeOK'l]
<1>2. TypeOK /\ [Next]_vars => TypeOK'] <1>3. QED

BY <1>1, <1>2, PTL DEF Spec

<1>2. [1(TypeOK /\ [Next]_vars => TypeOK')

@ Since (1)2 holds in all
behaviours, it can be
boxed

@ This is called
necessitation

@ The PTL rules normally
requires the application
of necessitation on the
action steps
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Necessitation

LEMMA TypeOK_inv == ASSUME Spec PROVE []TypeOK
<1>1. Init => TypeOK]
<1>2. TypeOK /\ [Next]_vars => TypeOK'[]
<1>3. QED
BY <1>1, <1>2, PTL DEF Spec

<1>2. TypeOK /\ [Next]_vars => TypeOK'!

@ Spec is assumed when
proving the proof steps

@ (1)2 doesn’t hold in all
behaviours

@ Necessitation is not
applied

@ Note: Thereis a
workaround
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Necessitation and assumptions

@ Consider the following clearly
invalid claim

VARIABLE x

THEOREM ASSUME x=@ PROVE [][x'=x+1]_x => [I(x \in {0,1})
<1>1. x=0 => x \in {0,1}

OBVIOUS
<1>2. x\in {0,1} /\ x'=x+1 => x' \in {0,1}
0BVIOUS

<1>3. QED BY <1>1,<1>2,PTL
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Necessitation and assumptions

@ Consider the following clearly
invalid claim

VARIABLE x

THEOREM ASSUME x=0 PROVE [1[x'=x+1]_x => [1(x \in {0,1})

<1>1. x=0 => x \in {0,1} . . .

oBVIOUS @ The rule is again an instance
<1>2. x\in {0,1} /\ x'=x+1 = x' \in {0,1} .

OBVIOUS \* using the assumption x=0 Of the preVIOUS PTL rule

<1>3. QED BY <1>1,<1>2,PTL

@ The two hypothesis are valid
but the rule is not sound

@ Why? Necessitation fails for
(1)2
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Necessitation and assumptions

VARIABLE x

THEOREM ASSUME x=0 PROVE [1[x'=x+1]_x => [1(x \in {0,1})
<1>1. x=0 => x \in {0,1}
OBVIOUS
<1>2. x\in {0,1} /\ x'=x+1 = x' \in {0,1}
OBVIOUS \* using the assumption x=0
<1>3. QED BY <1>1,<1>2,PTL

"Chligation 1 - status - 154 faled T
Stop Proving Goto Obligation
ASSUME NEW VARIABLE x,
x =0 (* non-[] *),
x =0 => x \in {0, 1} (* non-[] *),
x \in {0, 1} A\ x' = x + 1 => x' \in {0, 1} (* non-[]1 *)
PROVE [[x' = x + 1]_x => [I(x \in {0, 1})

Jael K., Tom R. and Tomer L.

TLAPS Tutorial

Consider the following clearly
invalid claim

The rule is again an instance
of the previous PTL rule

The two hypothesis are valid
but the rule is not sound

Why? Necessitation fails for
(1)2
Confusing? Necessitation

failures are reported in the
obligation window

Toulouse, June 2014 49 / 52



Necessitation and assumptions II

@ Now, the claim is valid, even if
in a trivial way

CONSTANT x

THEOREM ASSUME x=0 PROVE [J[x'=x+1]_x => [1(x \in {0,1})
<1>1. x=@ => x \in {0,1}
0BVIOUS
<1>2. x\in {0,1} A\ x"'=x+1 = x" \in {0,1}
0BVIOUS
<1>3. QED BY <1»1,<1>2,PTL
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Necessitation and assumptions II

@ Now, the claim is valid, even if
in a trivial way

CONSTANT x

THEOREM ASSUME x=0 PROVE [J[x'=x+1]_x => [1(x \in {0,1})

151. x® - x \in {0,1} L. .
“ovous @ The proof is idential to the
<1-2. x\in {0,1} /A x'=x+1 == x' \in {0,1} .

OBVIOUS previous one

<1>3. QED BY <1»1,<1»2,PTL

@ This time, necessitation is
applied
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Necessitation and assumptions II

CONSTANT x

THEOREM ASSUME x=0 PROVE [J[x'=x+1]_x => [1(x \in {0,1})
<1>1. x=@ => x \in {0,1}

0BVIOUS
<1>2. x\in {0,1} A\ x"'=x+1 = x" \in {0,1}
0BVIOUS

<1>3. QED BY <1»1,<1»2,PTL

@ Now, the claim is valid, even if
in a trivial way

@ The proof is idential to the
previous one

@ This time, necessitation is
applied

@ What is the difference?
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Boxable assumptions

@ Assumptions P, such that P < 0OP, allow for necessitation.
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Boxable assumptions

@ Assumptions P, such that P < 0OP, allow for necessitation.

@ We determine this using the following i s_box algorithm:

» is _?{A,B,... |- F) =-> is_?(F)

» is_?(F) -> True if F is constant

» is_? (True | False) -> True

# is_box([]F) -> True

# is_diamond(<>F) -> True

w is 2([]JF | <>F | F') -» is_2(F)

» is_box(~F) -> is_diamond (F)

» is_diamond(~F) -> is_box(F)

» is 2(F /\ G | F A/ G) -> is_2(F) /\ is_?(G) and similarly for lists

» is_box(F -> G) -> is_diameond(F) /\ is_bex(G) and similarly for {{is_diamond(F -> G)} |
is_?(F <-> G)}

» is_?(opla,b,...)) => is_2(a) /\ is_?(b) /\ ...
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Boxable assumptions

@ Assumptions P, such that P < 0OP, allow for necessitation.

@ We determine this using the following i s_box algorithm:

» is ?(A,B,... |- F) ->» is ?(F)

» is_?(F) -> True if F onstant

#» is_?(True | False) -> True

# is box([]F) -> True

# is diamond(<>F) -> True

w is P([)JF | <>F | F') -» is 2?(F)

» is _box(~F) => is_diamond (F)

#» is_diamond(~F) -> is_box(F)

» is P(F /NG | FAS G) -» is ?(F) /\ is_?(G) and similarly for lists

# is box(F -> G) -> is diamond(F) /\ is_box (G) and similarly for {{is_diamond(F -> G)} |

Is_?F <-> G)}
» is_?(opla,b,...)) => is_?{a) /\ is_?(b} /\ ...

» else False

o’

@ An assumption proved in the scope of a non-boxed assumption is

considered as non-boxed as well
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Conclusion

@ TLA™ proofs for quantified temporal formulas - Why and How
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Conclusion

@ TLA™ proofs for quantified temporal formulas - Why and How
@ Which:

» for all safety properties

» for liveness properties - still require:

* reasoning about ENABLED
* some proofs require full quantified temporal reasoning - Ex:
Vx.OP(x) < OVx.P(x)
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