
A Tutorial Introduction to TLAPS

Jael Kriener 1 Tom Rodeheffer 2 Tomer Libal 1

1

2

TLA+ Community Event, ABZ 2014
Toulouse, June 3, 2014

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 1 / 52

http://www.msr-inria.fr/
http://research.microsoft.com/en-us/default.aspx

Outline

1 TLAPS Basics

2 Tips and Best Practices for Using TLAPS

3 Temporal Reasoning in TLAPS

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 2 / 52

TLAPS in Context

TLA: specification language

proof language
hierarchical structuring + tactics

TLAPS: proof manager
compiles proofs into obligations

SMT solvers
(Z3, CVC)

1st-order solvers
(Zenon)

Isabelle Modal solvers
(LS4)

. . . ?

TLAPS: proof system

T
L

C
:m

od
el

ch
ec

ke
r

PLUSCAL: pseudo code

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 3 / 52

TLAPS in Context

TLA: specification language

proof language
hierarchical structuring + tactics

TLAPS: proof manager
compiles proofs into obligations

SMT solvers
(Z3, CVC)

1st-order solvers
(Zenon)

Isabelle Modal solvers
(LS4)

. . . ?

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 4 / 52

TLAPS in Context

TLAPS essentially does two things:

translate between TLA and the languages that the backend
provers understand;

help the user break up a theorem P into obligations O1 . . . On,
while maintaining the fact that O1 ∧ . . . ∧On ⇒ P .

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 5 / 52

Talking to ATPs about TLA Specs
Z3, CVC

Zenon

Isabelle

LS4

SMTLIB2

certificates

“abcd”

“efgh”

“ijkl”

“mnop”

“prst”

“uvxy”

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 6 / 52

Talking to ATPs about TLA Specs

TLAPS

Z3, CVC

Zenon

Isabelle

LS4

OBVIOUS
BY .. DEF ..
ASSUME ... PROVE ...
CASE
PICK
WITNESS
SUFFICES
USE
HIDE
QED

Proof Language

Colours
SM

TLIB
2cer

tifi
cates

“abcd”

“efgh”

“ijkl”

“mnop”

“prst”

“uvxy”

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 7 / 52

Hence the way the interface looks:

conversation snipplets of conversations
user⇐⇒ TLAPS TLAPS⇐⇒ backend provers

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 8 / 52

TLAPS Proofs

There are two kinds of TLAPS proofs:

one-liners

OBVIOUS

BY . . . [DEF . . .]

Each one-line proof generates
one obligation.

(Or there abouts...)

hierarchical

〈1〉1 X
〈2〉1 Y

OBVIOUS
...
〈2〉q QED

BY . . . DEF . . .
...

〈1〉q QED
BY . . . DEF . . .

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 9 / 52

Obligations

An obligation is a claim of the form Γ ` P,
which is translated and handed on to the backend provers.

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 10 / 52

Obligations

An obligation is a claim of the form ASSUME Γ PROVE P,
which is translated and handed on to the backend provers.

To prove an obligation, by default, TLAPS will ask:
1 CVC
2 Zenon
3 Isabelle

But one can change that...

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 11 / 52

Obligations: Controlling Γ

An obligation is a claim of the form ASSUME Γ PROVE P,
which is translated and handed on to the backend provers.

The TLAPS game is mainly to construct obligations so that:
1 they are true, i.e.:

1 Γ contains all relevant facts), and
2 all relevant definitions are unfolded;

2 they are not too big for the backend provers to handle.

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 12 / 52

Obligations: Controlling Γ

Once one has one’s logic right, the game is to control Γ.

By default:
all constant-/variable-declarations, with domain-assumptions, are
in Γ;
no definitions are unfolded.

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 13 / 52

Obligations: Controlling Γ

Once one has one’s logic right, the game is to control Γ.

named & un-named steps

〈1〉1 X
. . .

〈1〉 Y
. . .

〈1〉3 Z
(* here Y is in Γ, but X is not *)
BY 〈1〉1 (* here Y and X are in Γ *)

USE & HIDE

The keywords USE resp. HIDE

include in resp. remove from Γ
steps, theorems or assumptions;

USE [DEF] resp. HIDE [DEF] fold
resp. unfold definitions in Γ.

Whether a USE- and HIDE-step is named
or un-named does not matter.

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 14 / 52

Writing a simple Hierarchical Proof

quick recap: EWD 840

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 15 / 52

Writing a simple Hierarchical Proof

The safety-proof has the following structure:

LEMMA Spec⇒ 2TerminationDetection

(* Dijkstra’s invariant implies correctness *)
〈1〉1 Inv⇒ TerminationDetection

(* Dijkstra’s invariant is (trivially) established by the initial condition *)
〈1〉2 Init⇒ Inv

(* Dijkstra’s invariant is inductive relative to the type invariant *)
〈1〉3 TypeOK ∧ Inv∧ [Next]vars ⇒ Inv′

〈1〉q QED
BY 〈1〉1, 〈1〉2, 〈1〉3, TypeOKinv, PTL DEF Spec

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 16 / 52

Writing a simple Hierarchical Proof

writing a simple hierarchical proof

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 17 / 52

Some more Proof Constructs: WITNESS

When proving a goal of the form:

∃x ∈ S : P(x)

To prove it we can write:

〈1〉6 WITNESS a ∈ S
for some a already in Γ.

The effect is:
1 step 〈1〉6 needs a proof that a ∈ S;
2 the goal from now on is P(a).

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 18 / 52

Some more Proof Constructs: PICK

When Γ contains a statement of the form:

∃x ∈ S : P(x)

To use it we can write:

〈1〉6 PICK a ∈ S : P(a)
for some fresh a.

The effect is:
1 we have a new a ∈ S in Γ;
2 using 〈1〉6 will put P(a) into Γ.

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 19 / 52

Some more Proof Constructs: SUFFICES

SUFFICES is useful to avoid deeply nested hierarchical proofs:

〈6〉4 X
〈7〉 proof Π

〈6〉q QED
BY 〈6〉4, proof Σ

〈6〉4 SUFFICES X
proof Σ

〈6〉5 proof Π

〈6〉q QED
BY 〈6〉4, 〈6〉5

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 20 / 52

Outline

1 TLAPS Basics

2 Tips and Best Practices for Using TLAPS

3 Temporal Reasoning in TLAPS

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 21 / 52

A simple theorem about sequences

Concat left cancellation: Given three sequences A, B, C where
C ◦A = C ◦ B, it follows that A = B.

I Simple, but not trivial. Multiplication, for example, does not have
left cancellation, because you can multiply by zero.

Write the theorem in TLA

As a quantified formula:

∀ S : ∀A, B, C ∈ Seq(S) :
C ◦A = C ◦ B⇒ A = B

As an ASSUME-PROVE:

ASSUME

NEW S,
NEW A ∈ Seq(S),
NEW B ∈ Seq(S),
NEW C ∈ Seq(S),
C ◦A = C ◦ B

PROVE A = B

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 22 / 52

A simple theorem about sequences

Concat left cancellation: Given three sequences A, B, C where
C ◦A = C ◦ B, it follows that A = B.

I Simple, but not trivial. Multiplication, for example, does not have
left cancellation, because you can multiply by zero.

Write the theorem in TLA

As a quantified formula:

∀ S : ∀A, B, C ∈ Seq(S) :
C ◦A = C ◦ B⇒ A = B

As an ASSUME-PROVE:

ASSUME

NEW S,
NEW A ∈ Seq(S),
NEW B ∈ Seq(S),
NEW C ∈ Seq(S),
C ◦A = C ◦ B

PROVE A = B

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 22 / 52

A simple theorem about sequences

Concat left cancellation: Given three sequences A, B, C where
C ◦A = C ◦ B, it follows that A = B.

I Simple, but not trivial. Multiplication, for example, does not have
left cancellation, because you can multiply by zero.

Write the theorem in TLA

As a quantified formula:

∀ S : ∀A, B, C ∈ Seq(S) :
C ◦A = C ◦ B⇒ A = B

As an ASSUME-PROVE:

ASSUME

NEW S,
NEW A ∈ Seq(S),
NEW B ∈ Seq(S),
NEW C ∈ Seq(S),
C ◦A = C ◦ B

PROVE A = B

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 22 / 52

A simple theorem about sequences

Concat left cancellation: Given three sequences A, B, C where
C ◦A = C ◦ B, it follows that A = B.

I Simple, but not trivial. Multiplication, for example, does not have
left cancellation, because you can multiply by zero.

Write the theorem in TLA

As a quantified formula:

∀ S : ∀A, B, C ∈ Seq(S) :
C ◦A = C ◦ B⇒ A = B

As an ASSUME-PROVE:

ASSUME

NEW S,
NEW A ∈ Seq(S),
NEW B ∈ Seq(S),
NEW C ∈ Seq(S),
C ◦A = C ◦ B

PROVE A = B

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 22 / 52

Proof attempt 1 - is it obvious - fail

THEOREM ConcatLeftCancel
∆

=

ASSUME
NEW S ,
NEW A ∈ Seq(S),
NEW B ∈ Seq(S),
NEW C ∈ Seq(S),
C ◦A = C ◦ B

PROVE
A = B

PROOF
〈1〉 QED OBVIOUS unable to prove it

Figure 1: First proof attempt (unsuccessful).

THEOREM ConcatLeftCancel
∆

=

ASSUME
NEW S ,
NEW A ∈ Seq(S),
NEW B ∈ Seq(S),
NEW C ∈ Seq(S),
C ◦A = C ◦ B

PROVE
A = B

PROOF
〈1〉1. Len(A) = Len(B) OBVIOUS C ◦A = C ◦B
〈1〉2. A ∈ [1 . . Len(A)→ S] OBVIOUS A ∈ Seq(S)
〈1〉3. B ∈ [1 . . Len(A)→ S] BY 〈1〉1
〈1〉4. ∀ i ∈ 1 . . Len(A) : A[i] = (C ◦A)[i + Len(C)] OBVIOUS
〈1〉5. ∀ i ∈ 1 . . Len(A) : B [i] = (C ◦ B)[i + Len(C)] BY 〈1〉1
〈1〉 QED BY 〈1〉2, 〈1〉3, 〈1〉4, 〈1〉5 unable to prove it

Figure 2: Second proof attempt (also unsuccessful).

system considers obvious.1

Unfortunately, the TLA+ proof system is unable to
prove our theorem immediately. Perhaps the proof sys-
tem needs some additional facts. There are five facts that
seem relevant:

1. Because C ◦A = C ◦B , the lengths of A and B must
be the same.

2. Because A ∈ Seq(S), A is a function from 1 . .
Len(A) to S .

3. Because B ∈ Seq(S), B is a function from 1 . .
Len(B) to S .

4. From the definition of ◦ , each element of A must
appear in C ◦A at offset Len(C).

5. From the definition of ◦ , each element of B must
appear in C ◦ B at offset Len(C).

By using fact 1, we can write Len(A) instead of Len(B)
in facts 3 and 5. Figure 2 shows our second attempt at a
proof.

1And if you can ever catch it proving something that it could not
possibly prove, you might have the beginnings of a glorious bug report.

THEOREM ConcatLeftCancel
∆

=

ASSUME
NEW S ,
NEW A ∈ Seq(S),
NEW B ∈ Seq(S),
NEW C ∈ Seq(S),
C ◦A = C ◦ B

PROVE
A = B

PROOF
〈1〉1. Len(A) = Len(B) OBVIOUS C ◦A = C ◦B
〈1〉2. A ∈ [1 . . Len(A)→ S] OBVIOUS A ∈ Seq(S)
〈1〉3. B ∈ [1 . . Len(A)→ S] BY 〈1〉1
〈1〉4. ∀ i ∈ 1 . . Len(A) : A[i] = (C ◦A)[i + Len(C)] OBVIOUS
〈1〉5. ∀ i ∈ 1 . . Len(A) : B [i] = (C ◦ B)[i + Len(C)] BY 〈1〉1
〈1〉6. ∀ i ∈ 1 . . Len(A) : A[i] = B [i] BY 〈1〉4, 〈1〉5
〈1〉 QED BY 〈1〉2, 〈1〉3, 〈1〉6

Figure 3: Third proof attempt (successful).

TLA+ proof system can prove each of our new facts
immediately. Unfortunately, even using these new facts,
the TLA+ proof system still cannot prove our theorem.

We have to guess why the TLA+ proof system is unable
to conclude the theorem from the facts at hand. Maybe
the problem is that the proof system does not realize that
A[i] = B [i] for each i ∈ 1 . . Len(A).

So we write this fact down specifically as fact 6 and
state that it follows from facts 4 and 5. We justify the
major claim by fact 6 in place of facts 4 and 5. Figure 3
shows our third attempt at a proof.

The TLA+ proof system can indeed verify that fact 6
follows from facts 4 and 5. And using fact 6 it can prove
the major claim.

Now that we have a proof of our theorem that the TLA+

proof system can verify, we can make it easier for humans
to understand if we structure it more logically. In this case,
facts 4 and 5 are used only to support fact 6, and we can
make this dependence clear by demoting them to a sub-
proof of fact 6. Using this structure we can also simplify
these facts by extracting the identical quantifiers into an
ASSUME-PROVE. Figure 4 shows the result.

Of course, in more complicated proofs, it often turns
out that a certain fact is used in support of several other
facts, in which case the only reasonable approach is to
leave the supporting fact at the higher level so that it can
be referenced each time it is needed.

Lessons from this example:
r The proof of ConcatLeftCancel centers on showing
that two functions, A and B , are equal. In order to prove
that two functions are equal, you must show that they are
both functions with the same domain and that they have
the same value at each point in their domain. It would
seem that the TLA+ proof system finds this a particularly

2

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 23 / 52

Proof attempt 2 - add some facts - still fail

THEOREM ConcatLeftCancel
∆

=

ASSUME
NEW S ,
NEW A ∈ Seq(S),
NEW B ∈ Seq(S),
NEW C ∈ Seq(S),
C ◦A = C ◦ B

PROVE
A = B

PROOF
〈1〉 QED OBVIOUS unable to prove it

Figure 1: First proof attempt (unsuccessful).

THEOREM ConcatLeftCancel
∆

=

ASSUME
NEW S ,
NEW A ∈ Seq(S),
NEW B ∈ Seq(S),
NEW C ∈ Seq(S),
C ◦A = C ◦ B

PROVE
A = B

PROOF
〈1〉1. Len(A) = Len(B) OBVIOUS C ◦A = C ◦B
〈1〉2. A ∈ [1 . . Len(A)→ S] OBVIOUS A ∈ Seq(S)
〈1〉3. B ∈ [1 . . Len(A)→ S] BY 〈1〉1
〈1〉4. ∀ i ∈ 1 . . Len(A) : A[i] = (C ◦A)[i + Len(C)] OBVIOUS
〈1〉5. ∀ i ∈ 1 . . Len(A) : B [i] = (C ◦ B)[i + Len(C)] BY 〈1〉1
〈1〉 QED BY 〈1〉2, 〈1〉3, 〈1〉4, 〈1〉5 unable to prove it

Figure 2: Second proof attempt (also unsuccessful).

system considers obvious.1

Unfortunately, the TLA+ proof system is unable to
prove our theorem immediately. Perhaps the proof sys-
tem needs some additional facts. There are five facts that
seem relevant:

1. Because C ◦A = C ◦B , the lengths of A and B must
be the same.

2. Because A ∈ Seq(S), A is a function from 1 . .
Len(A) to S .

3. Because B ∈ Seq(S), B is a function from 1 . .
Len(B) to S .

4. From the definition of ◦ , each element of A must
appear in C ◦A at offset Len(C).

5. From the definition of ◦ , each element of B must
appear in C ◦ B at offset Len(C).

By using fact 1, we can write Len(A) instead of Len(B)
in facts 3 and 5. Figure 2 shows our second attempt at a
proof.

1And if you can ever catch it proving something that it could not
possibly prove, you might have the beginnings of a glorious bug report.

THEOREM ConcatLeftCancel
∆

=

ASSUME
NEW S ,
NEW A ∈ Seq(S),
NEW B ∈ Seq(S),
NEW C ∈ Seq(S),
C ◦A = C ◦ B

PROVE
A = B

PROOF
〈1〉1. Len(A) = Len(B) OBVIOUS C ◦A = C ◦B
〈1〉2. A ∈ [1 . . Len(A)→ S] OBVIOUS A ∈ Seq(S)
〈1〉3. B ∈ [1 . . Len(A)→ S] BY 〈1〉1
〈1〉4. ∀ i ∈ 1 . . Len(A) : A[i] = (C ◦A)[i + Len(C)] OBVIOUS
〈1〉5. ∀ i ∈ 1 . . Len(A) : B [i] = (C ◦ B)[i + Len(C)] BY 〈1〉1
〈1〉6. ∀ i ∈ 1 . . Len(A) : A[i] = B [i] BY 〈1〉4, 〈1〉5
〈1〉 QED BY 〈1〉2, 〈1〉3, 〈1〉6

Figure 3: Third proof attempt (successful).

TLA+ proof system can prove each of our new facts
immediately. Unfortunately, even using these new facts,
the TLA+ proof system still cannot prove our theorem.

We have to guess why the TLA+ proof system is unable
to conclude the theorem from the facts at hand. Maybe
the problem is that the proof system does not realize that
A[i] = B [i] for each i ∈ 1 . . Len(A).

So we write this fact down specifically as fact 6 and
state that it follows from facts 4 and 5. We justify the
major claim by fact 6 in place of facts 4 and 5. Figure 3
shows our third attempt at a proof.

The TLA+ proof system can indeed verify that fact 6
follows from facts 4 and 5. And using fact 6 it can prove
the major claim.

Now that we have a proof of our theorem that the TLA+

proof system can verify, we can make it easier for humans
to understand if we structure it more logically. In this case,
facts 4 and 5 are used only to support fact 6, and we can
make this dependence clear by demoting them to a sub-
proof of fact 6. Using this structure we can also simplify
these facts by extracting the identical quantifiers into an
ASSUME-PROVE. Figure 4 shows the result.

Of course, in more complicated proofs, it often turns
out that a certain fact is used in support of several other
facts, in which case the only reasonable approach is to
leave the supporting fact at the higher level so that it can
be referenced each time it is needed.

Lessons from this example:
r The proof of ConcatLeftCancel centers on showing
that two functions, A and B , are equal. In order to prove
that two functions are equal, you must show that they are
both functions with the same domain and that they have
the same value at each point in their domain. It would
seem that the TLA+ proof system finds this a particularly

2

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 24 / 52

Proof attempt 3 - another fact - success

THEOREM ConcatLeftCancel
∆

=

ASSUME
NEW S ,
NEW A ∈ Seq(S),
NEW B ∈ Seq(S),
NEW C ∈ Seq(S),
C ◦A = C ◦ B

PROVE
A = B

PROOF
〈1〉 QED OBVIOUS unable to prove it

Figure 1: First proof attempt (unsuccessful).

THEOREM ConcatLeftCancel
∆

=

ASSUME
NEW S ,
NEW A ∈ Seq(S),
NEW B ∈ Seq(S),
NEW C ∈ Seq(S),
C ◦A = C ◦ B

PROVE
A = B

PROOF
〈1〉1. Len(A) = Len(B) OBVIOUS C ◦A = C ◦B
〈1〉2. A ∈ [1 . . Len(A)→ S] OBVIOUS A ∈ Seq(S)
〈1〉3. B ∈ [1 . . Len(A)→ S] BY 〈1〉1
〈1〉4. ∀ i ∈ 1 . . Len(A) : A[i] = (C ◦A)[i + Len(C)] OBVIOUS
〈1〉5. ∀ i ∈ 1 . . Len(A) : B [i] = (C ◦ B)[i + Len(C)] BY 〈1〉1
〈1〉 QED BY 〈1〉2, 〈1〉3, 〈1〉4, 〈1〉5 unable to prove it

Figure 2: Second proof attempt (also unsuccessful).

system considers obvious.1

Unfortunately, the TLA+ proof system is unable to
prove our theorem immediately. Perhaps the proof sys-
tem needs some additional facts. There are five facts that
seem relevant:

1. Because C ◦A = C ◦B , the lengths of A and B must
be the same.

2. Because A ∈ Seq(S), A is a function from 1 . .
Len(A) to S .

3. Because B ∈ Seq(S), B is a function from 1 . .
Len(B) to S .

4. From the definition of ◦ , each element of A must
appear in C ◦A at offset Len(C).

5. From the definition of ◦ , each element of B must
appear in C ◦ B at offset Len(C).

By using fact 1, we can write Len(A) instead of Len(B)
in facts 3 and 5. Figure 2 shows our second attempt at a
proof.

1And if you can ever catch it proving something that it could not
possibly prove, you might have the beginnings of a glorious bug report.

THEOREM ConcatLeftCancel
∆

=

ASSUME
NEW S ,
NEW A ∈ Seq(S),
NEW B ∈ Seq(S),
NEW C ∈ Seq(S),
C ◦A = C ◦ B

PROVE
A = B

PROOF
〈1〉1. Len(A) = Len(B) OBVIOUS C ◦A = C ◦B
〈1〉2. A ∈ [1 . . Len(A)→ S] OBVIOUS A ∈ Seq(S)
〈1〉3. B ∈ [1 . . Len(A)→ S] BY 〈1〉1
〈1〉4. ∀ i ∈ 1 . . Len(A) : A[i] = (C ◦A)[i + Len(C)] OBVIOUS
〈1〉5. ∀ i ∈ 1 . . Len(A) : B [i] = (C ◦ B)[i + Len(C)] BY 〈1〉1
〈1〉6. ∀ i ∈ 1 . . Len(A) : A[i] = B [i] BY 〈1〉4, 〈1〉5
〈1〉 QED BY 〈1〉2, 〈1〉3, 〈1〉6

Figure 3: Third proof attempt (successful).

TLA+ proof system can prove each of our new facts
immediately. Unfortunately, even using these new facts,
the TLA+ proof system still cannot prove our theorem.

We have to guess why the TLA+ proof system is unable
to conclude the theorem from the facts at hand. Maybe
the problem is that the proof system does not realize that
A[i] = B [i] for each i ∈ 1 . . Len(A).

So we write this fact down specifically as fact 6 and
state that it follows from facts 4 and 5. We justify the
major claim by fact 6 in place of facts 4 and 5. Figure 3
shows our third attempt at a proof.

The TLA+ proof system can indeed verify that fact 6
follows from facts 4 and 5. And using fact 6 it can prove
the major claim.

Now that we have a proof of our theorem that the TLA+

proof system can verify, we can make it easier for humans
to understand if we structure it more logically. In this case,
facts 4 and 5 are used only to support fact 6, and we can
make this dependence clear by demoting them to a sub-
proof of fact 6. Using this structure we can also simplify
these facts by extracting the identical quantifiers into an
ASSUME-PROVE. Figure 4 shows the result.

Of course, in more complicated proofs, it often turns
out that a certain fact is used in support of several other
facts, in which case the only reasonable approach is to
leave the supporting fact at the higher level so that it can
be referenced each time it is needed.

Lessons from this example:
r The proof of ConcatLeftCancel centers on showing
that two functions, A and B , are equal. In order to prove
that two functions are equal, you must show that they are
both functions with the same domain and that they have
the same value at each point in their domain. It would
seem that the TLA+ proof system finds this a particularly

2

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 25 / 52

Proof with better structure

THEOREM ConcatLeftCancel
∆

=

ASSUME
NEW S ,
NEW A ∈ Seq(S),
NEW B ∈ Seq(S),
NEW C ∈ Seq(S),
C ◦A = C ◦ B

PROVE
A = B

PROOF
〈1〉1. Len(A) = Len(B) OBVIOUS C ◦A = C ◦B
〈1〉2. A ∈ [1 . . Len(A)→ S] OBVIOUS A ∈ Seq(S)
〈1〉3. B ∈ [1 . . Len(A)→ S] BY 〈1〉1
〈1〉4. ASSUME NEW i ∈ 1 . . Len(A) PROVE A[i] = B [i]
〈2〉1. A[i] = (C ◦A)[i + Len(C)] OBVIOUS defn of C ◦A
〈2〉2. B [i] = (C ◦ B)[i + Len(C)] BY 〈1〉1 defn of C ◦B
〈2〉 QED BY 〈2〉1, 〈2〉2
〈1〉 QED BY 〈1〉2, 〈1〉3, 〈1〉4

Figure 4: Better structured proof.

hard conclusion to reach, and that the evidence must be
presented in a relatively explicit manner.
r When developing a proof, check whether the proof sys-
tem can verify a fact before going on to write a more de-
tailed proof.
r When the proof system fails to verify a fact (assuming
it really is a fact), you have to scratch your head and figure
out what more specific, supporting facts you can provide
that perhaps the proof system is failing to consider. In
this example, we went through this process twice before
arriving at a proof that the proof system could verify.
r It is good practice, when introducing a new symbol x
in a theorem, an ASSUME-PROVE, or a quantifier, to
introduce it with a domain formula, x ∈ S for some set
S . The domain formula will become common knowledge
throughout the scope of the symbol and usually the proof
system can use this knowledge advantageously.

2 Applying ConcatLeftCancel

Now let us consider an example in which we apply the
ConcatLeftCancel theorem that we proved in the previ-
ous section.

Often, what a theorem considers as constant parame-
ters are actually messy formulas at the point where we
wish to apply the theorem. In other words, the situation
complicated. For our example, we conjure up formulas
that happen to be sequences, present an instance of conca-
tentation with common left-hand arguments, and ask the
TLA+ proof system to apply our theorem from the previ-
ous section. Figure 5 shows our example.

Unfortunately, the TLA+ proof system is unable to ap-
ply the theorem. It was unable to recognize that the situ-

THEOREM UseConcatLeftCancel
∆

=

ASSUME
NEW S ,
NEW u ∈ Seq(S),
NEW v ∈ Seq(S),
NEW w ∈ Seq(S),
NEW x ∈ Seq(S),
NEW m ∈ S ,
NEW n ∈ S ,
u ◦ 〈m , n〉 ◦ v ◦ x = u ◦ 〈m , n〉 ◦ w ◦ x

PROVE
v ◦ x = w ◦ x

PROOF
〈1〉 QED BY ConcatLeftCancel unable to prove it

Figure 5: First use attempt (unsuccessful).

THEOREM UseConcatLeftCancel
∆

=

ASSUME
NEW S ,
NEW u ∈ Seq(S),
NEW v ∈ Seq(S),
NEW w ∈ Seq(S),
NEW x ∈ Seq(S),
NEW m ∈ S ,
NEW n ∈ S ,
u ◦ 〈m , n〉 ◦ v ◦ x = u ◦ 〈m , n〉 ◦ w ◦ x

PROVE
v ◦ x = w ◦ x

PROOF
〈1〉1. u ◦ 〈m , n〉 ∈ Seq(S) OBVIOUS ◦ closed
〈1〉 QED BY 〈1〉1, ConcatLeftCancel unable to prove it

Figure 6: Second use attempt (also unsuccessful).

ation was, in fact, suitable for application of the theorem.
One approach in such a case is to adduce more facts.

For our second attempt, we adduce an additional fact.
Maybe the TLA+ proof system was unaware the u◦〈m , n〉
is a sequence. We claim this fact and then attempt to use it
to apply the theorem. Figure 6 shows the result. Although
the TLA+ proof system is able to prove our new fact im-
mediately, it does not help in applying our theorem.

For our third attempt, we adduce some more facts.
Maybe the TLA+ proof system was unaware that v ◦ x
and w ◦ x are sequences. So we claim these facts and add
them to the justification of the application of the theorem.
Figure 7 shows the result. Although the TLA+ proof sys-
tem is able to prove these new facts immediately, using
them still does not help in applying our theorem.

For our fourth attempt, we adduce yet another fact.
Since ◦ is associative, we can reassociate the known
equality to make it explicit that v ◦x and w ◦x are present
in the formula. Figure 8 shows the result. The TLA+ proof
system is able to prove the reassociated equality immedi-
ately. Using all of the adduced facts, the proof system is
finally able to discover that the situation is an instance of

3

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 26 / 52

Lessons from proving ConcatLeftCancel

The proof centers on showing A = B where A, B are functions
I For two functions to be equal, you must show

F they have the same domain
F they have the same value at each point in the domain

I It seems this is relatively difficult for TLAPS to conclude

Before writing a subproof, check if TLAPS thinks a fact is obvious
When TLAPS fails, try to figure out what specific fact you could
provide that it is failing to consider
When introducing a new symbol x, generally it is a good idea to
use a domain formula x ∈ S

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 27 / 52

Lessons from proving ConcatLeftCancel

The proof centers on showing A = B where A, B are functions
I For two functions to be equal, you must show

F they have the same domain
F they have the same value at each point in the domain

I It seems this is relatively difficult for TLAPS to conclude

Before writing a subproof, check if TLAPS thinks a fact is obvious
When TLAPS fails, try to figure out what specific fact you could
provide that it is failing to consider
When introducing a new symbol x, generally it is a good idea to
use a domain formula x ∈ S

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 27 / 52

Lessons from proving ConcatLeftCancel

The proof centers on showing A = B where A, B are functions
I For two functions to be equal, you must show

F they have the same domain
F they have the same value at each point in the domain

I It seems this is relatively difficult for TLAPS to conclude

Before writing a subproof, check if TLAPS thinks a fact is obvious

When TLAPS fails, try to figure out what specific fact you could
provide that it is failing to consider
When introducing a new symbol x, generally it is a good idea to
use a domain formula x ∈ S

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 27 / 52

Lessons from proving ConcatLeftCancel

The proof centers on showing A = B where A, B are functions
I For two functions to be equal, you must show

F they have the same domain
F they have the same value at each point in the domain

I It seems this is relatively difficult for TLAPS to conclude

Before writing a subproof, check if TLAPS thinks a fact is obvious
When TLAPS fails, try to figure out what specific fact you could
provide that it is failing to consider

When introducing a new symbol x, generally it is a good idea to
use a domain formula x ∈ S

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 27 / 52

Lessons from proving ConcatLeftCancel

The proof centers on showing A = B where A, B are functions
I For two functions to be equal, you must show

F they have the same domain
F they have the same value at each point in the domain

I It seems this is relatively difficult for TLAPS to conclude

Before writing a subproof, check if TLAPS thinks a fact is obvious
When TLAPS fails, try to figure out what specific fact you could
provide that it is failing to consider
When introducing a new symbol x, generally it is a good idea to
use a domain formula x ∈ S

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 27 / 52

Using the theorem ConcatLeftCancel

Often, what a theorem considers as constant parameters are messy
formulas at the point where we wish to apply the theorem. In this
example, we conjure up formulas that happen to be sequences, and
ask TLAPS to apply ConcatLeftCancel.

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 28 / 52

Use attempt 1 - is it obvious - fail

THEOREM ConcatLeftCancel
∆

=

ASSUME
NEW S ,
NEW A ∈ Seq(S),
NEW B ∈ Seq(S),
NEW C ∈ Seq(S),
C ◦A = C ◦ B

PROVE
A = B

PROOF
〈1〉1. Len(A) = Len(B) OBVIOUS C ◦A = C ◦B
〈1〉2. A ∈ [1 . . Len(A)→ S] OBVIOUS A ∈ Seq(S)
〈1〉3. B ∈ [1 . . Len(A)→ S] BY 〈1〉1
〈1〉4. ASSUME NEW i ∈ 1 . . Len(A) PROVE A[i] = B [i]
〈2〉1. A[i] = (C ◦A)[i + Len(C)] OBVIOUS defn of C ◦A
〈2〉2. B [i] = (C ◦ B)[i + Len(C)] BY 〈1〉1 defn of C ◦B
〈2〉 QED BY 〈2〉1, 〈2〉2
〈1〉 QED BY 〈1〉2, 〈1〉3, 〈1〉4

Figure 4: Better structured proof.

hard conclusion to reach, and that the evidence must be
presented in a relatively explicit manner.
r When developing a proof, check whether the proof sys-
tem can verify a fact before going on to write a more de-
tailed proof.
r When the proof system fails to verify a fact (assuming
it really is a fact), you have to scratch your head and figure
out what more specific, supporting facts you can provide
that perhaps the proof system is failing to consider. In
this example, we went through this process twice before
arriving at a proof that the proof system could verify.
r It is good practice, when introducing a new symbol x
in a theorem, an ASSUME-PROVE, or a quantifier, to
introduce it with a domain formula, x ∈ S for some set
S . The domain formula will become common knowledge
throughout the scope of the symbol and usually the proof
system can use this knowledge advantageously.

2 Applying ConcatLeftCancel

Now let us consider an example in which we apply the
ConcatLeftCancel theorem that we proved in the previ-
ous section.

Often, what a theorem considers as constant parame-
ters are actually messy formulas at the point where we
wish to apply the theorem. In other words, the situation
complicated. For our example, we conjure up formulas
that happen to be sequences, present an instance of conca-
tentation with common left-hand arguments, and ask the
TLA+ proof system to apply our theorem from the previ-
ous section. Figure 5 shows our example.

Unfortunately, the TLA+ proof system is unable to ap-
ply the theorem. It was unable to recognize that the situ-

THEOREM UseConcatLeftCancel
∆

=

ASSUME
NEW S ,
NEW u ∈ Seq(S),
NEW v ∈ Seq(S),
NEW w ∈ Seq(S),
NEW x ∈ Seq(S),
NEW m ∈ S ,
NEW n ∈ S ,
u ◦ 〈m , n〉 ◦ v ◦ x = u ◦ 〈m , n〉 ◦ w ◦ x

PROVE
v ◦ x = w ◦ x

PROOF
〈1〉 QED BY ConcatLeftCancel unable to prove it

Figure 5: First use attempt (unsuccessful).

THEOREM UseConcatLeftCancel
∆

=

ASSUME
NEW S ,
NEW u ∈ Seq(S),
NEW v ∈ Seq(S),
NEW w ∈ Seq(S),
NEW x ∈ Seq(S),
NEW m ∈ S ,
NEW n ∈ S ,
u ◦ 〈m , n〉 ◦ v ◦ x = u ◦ 〈m , n〉 ◦ w ◦ x

PROVE
v ◦ x = w ◦ x

PROOF
〈1〉1. u ◦ 〈m , n〉 ∈ Seq(S) OBVIOUS ◦ closed
〈1〉 QED BY 〈1〉1, ConcatLeftCancel unable to prove it

Figure 6: Second use attempt (also unsuccessful).

ation was, in fact, suitable for application of the theorem.
One approach in such a case is to adduce more facts.

For our second attempt, we adduce an additional fact.
Maybe the TLA+ proof system was unaware the u◦〈m , n〉
is a sequence. We claim this fact and then attempt to use it
to apply the theorem. Figure 6 shows the result. Although
the TLA+ proof system is able to prove our new fact im-
mediately, it does not help in applying our theorem.

For our third attempt, we adduce some more facts.
Maybe the TLA+ proof system was unaware that v ◦ x
and w ◦ x are sequences. So we claim these facts and add
them to the justification of the application of the theorem.
Figure 7 shows the result. Although the TLA+ proof sys-
tem is able to prove these new facts immediately, using
them still does not help in applying our theorem.

For our fourth attempt, we adduce yet another fact.
Since ◦ is associative, we can reassociate the known
equality to make it explicit that v ◦x and w ◦x are present
in the formula. Figure 8 shows the result. The TLA+ proof
system is able to prove the reassociated equality immedi-
ately. Using all of the adduced facts, the proof system is
finally able to discover that the situation is an instance of

3

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 29 / 52

Use attempt 2 - add a closure fact - still fail

THEOREM ConcatLeftCancel
∆

=

ASSUME
NEW S ,
NEW A ∈ Seq(S),
NEW B ∈ Seq(S),
NEW C ∈ Seq(S),
C ◦A = C ◦ B

PROVE
A = B

PROOF
〈1〉1. Len(A) = Len(B) OBVIOUS C ◦A = C ◦B
〈1〉2. A ∈ [1 . . Len(A)→ S] OBVIOUS A ∈ Seq(S)
〈1〉3. B ∈ [1 . . Len(A)→ S] BY 〈1〉1
〈1〉4. ASSUME NEW i ∈ 1 . . Len(A) PROVE A[i] = B [i]
〈2〉1. A[i] = (C ◦A)[i + Len(C)] OBVIOUS defn of C ◦A
〈2〉2. B [i] = (C ◦ B)[i + Len(C)] BY 〈1〉1 defn of C ◦B
〈2〉 QED BY 〈2〉1, 〈2〉2
〈1〉 QED BY 〈1〉2, 〈1〉3, 〈1〉4

Figure 4: Better structured proof.

hard conclusion to reach, and that the evidence must be
presented in a relatively explicit manner.
r When developing a proof, check whether the proof sys-
tem can verify a fact before going on to write a more de-
tailed proof.
r When the proof system fails to verify a fact (assuming
it really is a fact), you have to scratch your head and figure
out what more specific, supporting facts you can provide
that perhaps the proof system is failing to consider. In
this example, we went through this process twice before
arriving at a proof that the proof system could verify.
r It is good practice, when introducing a new symbol x
in a theorem, an ASSUME-PROVE, or a quantifier, to
introduce it with a domain formula, x ∈ S for some set
S . The domain formula will become common knowledge
throughout the scope of the symbol and usually the proof
system can use this knowledge advantageously.

2 Applying ConcatLeftCancel

Now let us consider an example in which we apply the
ConcatLeftCancel theorem that we proved in the previ-
ous section.

Often, what a theorem considers as constant parame-
ters are actually messy formulas at the point where we
wish to apply the theorem. In other words, the situation
complicated. For our example, we conjure up formulas
that happen to be sequences, present an instance of conca-
tentation with common left-hand arguments, and ask the
TLA+ proof system to apply our theorem from the previ-
ous section. Figure 5 shows our example.

Unfortunately, the TLA+ proof system is unable to ap-
ply the theorem. It was unable to recognize that the situ-

THEOREM UseConcatLeftCancel
∆

=

ASSUME
NEW S ,
NEW u ∈ Seq(S),
NEW v ∈ Seq(S),
NEW w ∈ Seq(S),
NEW x ∈ Seq(S),
NEW m ∈ S ,
NEW n ∈ S ,
u ◦ 〈m , n〉 ◦ v ◦ x = u ◦ 〈m , n〉 ◦ w ◦ x

PROVE
v ◦ x = w ◦ x

PROOF
〈1〉 QED BY ConcatLeftCancel unable to prove it

Figure 5: First use attempt (unsuccessful).

THEOREM UseConcatLeftCancel
∆

=

ASSUME
NEW S ,
NEW u ∈ Seq(S),
NEW v ∈ Seq(S),
NEW w ∈ Seq(S),
NEW x ∈ Seq(S),
NEW m ∈ S ,
NEW n ∈ S ,
u ◦ 〈m , n〉 ◦ v ◦ x = u ◦ 〈m , n〉 ◦ w ◦ x

PROVE
v ◦ x = w ◦ x

PROOF
〈1〉1. u ◦ 〈m , n〉 ∈ Seq(S) OBVIOUS ◦ closed
〈1〉 QED BY 〈1〉1, ConcatLeftCancel unable to prove it

Figure 6: Second use attempt (also unsuccessful).

ation was, in fact, suitable for application of the theorem.
One approach in such a case is to adduce more facts.

For our second attempt, we adduce an additional fact.
Maybe the TLA+ proof system was unaware the u◦〈m , n〉
is a sequence. We claim this fact and then attempt to use it
to apply the theorem. Figure 6 shows the result. Although
the TLA+ proof system is able to prove our new fact im-
mediately, it does not help in applying our theorem.

For our third attempt, we adduce some more facts.
Maybe the TLA+ proof system was unaware that v ◦ x
and w ◦ x are sequences. So we claim these facts and add
them to the justification of the application of the theorem.
Figure 7 shows the result. Although the TLA+ proof sys-
tem is able to prove these new facts immediately, using
them still does not help in applying our theorem.

For our fourth attempt, we adduce yet another fact.
Since ◦ is associative, we can reassociate the known
equality to make it explicit that v ◦x and w ◦x are present
in the formula. Figure 8 shows the result. The TLA+ proof
system is able to prove the reassociated equality immedi-
ately. Using all of the adduced facts, the proof system is
finally able to discover that the situation is an instance of

3

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 30 / 52

Use attempt 3 - add more closure facts - still fail

THEOREM UseConcatLeftCancel
∆

=

ASSUME
NEW S ,
NEW u ∈ Seq(S),
NEW v ∈ Seq(S),
NEW w ∈ Seq(S),
NEW x ∈ Seq(S),
NEW m ∈ S ,
NEW n ∈ S ,
u ◦ 〈m , n〉 ◦ v ◦ x = u ◦ 〈m , n〉 ◦ w ◦ x

PROVE
v ◦ x = w ◦ x

PROOF
〈1〉1. u ◦ 〈m , n〉 ∈ Seq(S) OBVIOUS ◦ closed
〈1〉2. v ◦ x ∈ Seq(S) OBVIOUS ◦ closed
〈1〉3. w ◦ x ∈ Seq(S) OBVIOUS ◦ closed
〈1〉 QED BY 〈1〉1, 〈1〉2, 〈1〉3, ConcatLeftCancel unable to prove it

Figure 7: Third use attempt (still unsuccessful).

THEOREM UseConcatLeftCancel
∆

=

ASSUME
NEW S ,
NEW u ∈ Seq(S),
NEW v ∈ Seq(S),
NEW w ∈ Seq(S),
NEW x ∈ Seq(S),
NEW m ∈ S ,
NEW n ∈ S ,
u ◦ 〈m , n〉 ◦ v ◦ x = u ◦ 〈m , n〉 ◦ w ◦ x

PROVE
v ◦ x = w ◦ x

PROOF
〈1〉1. u ◦ 〈m , n〉 ∈ Seq(S) OBVIOUS ◦ closed
〈1〉2. v ◦ x ∈ Seq(S) OBVIOUS ◦ closed
〈1〉3. w ◦ x ∈ Seq(S) OBVIOUS ◦ closed
〈1〉4. u ◦ 〈m , n〉 ◦ (v ◦ x) = u ◦ 〈m , n〉 ◦ (w ◦ x) OBVIOUS
〈1〉 QED BY 〈1〉1, 〈1〉2, 〈1〉3, 〈1〉4, ConcatLeftCancel

Figure 8: Fourth use attempt (successful).

our theorem, and apply it.
Lessons from this example:

r The application of ConcatLeftCancel shows how im-
portant are the common mathematical properties of clo-
sure and associativity. Humans are good at utilizing these
properties when proving deductions. Even though the
TLA+ proof system considered applications of closure
and associativity as obvious, it was unable to supply them
automatically when trying to prove a deduction that re-
quired them.
r When the proof system fails to verify a fact, one ap-
proach is to figure out what more specific, supporting facts
you can provide that perhaps the proof system is failing to
consider. In this example, we went through this process
three times before arriving at a proof that the proof sys-
tem could verify.

THEOREM FiniteNatInduction
∆

=

ASSUME
NEW P (), predicate
NEW m ∈ Nat , start
NEW n ∈ Nat , limit
P (m), base case
∀ i ∈ m . . (n − 1) : P (i)⇒ P (i + 1) finite ind hyp

PROVE ∀ i ∈ m . . n : P (i)
PROOF
〈1〉 DEFINE Q(i) ∆

= i ∈ m . . n ⇒ P (i)
〈1〉 SUFFICES ∀ i ∈ Nat : Q(i) OBVIOUS

base case

〈1〉1. Q(0) OBVIOUS

inductive step

〈1〉2. ∀ i ∈ Nat : Q(i)⇒ Q(i + 1)
〈1〉 HIDE DEF Q hide defn of induction predicate
〈1〉 QED BY 〈1〉1, 〈1〉2, NatInduction

Figure 9: Setting up an inductive argument to prove
FiniteNatInduction .

3 Finite induction over naturals
In this section we define and prove a theorem about finite
induction over the natural numbers. We use this theorem
later in Section 5.

The ordinary form of induction is simple induction over
the naturals, in which a predicate P (i) is proved to hold
for all i ∈ Nat . The TLA+ proof system has a theorem
NatInduction , in the library module NaturalsInduction ,
which encapsulates the simple inductive argument. For
any predicate P (), given the base case

P (0)
and the inductive step

∀ i ∈ Nat : P (i)⇒ P (i + 1)
NatInduction concludes

∀ i ∈ Nat : P (i)

Sometimes, however, we do not want or need to prove
that predicate P (i) holds for all i ∈ Nat , but rather only
for a finite range i ∈ m . . n . Such a situation often occurs
when proving things about sequences, for example.

We could, of course, always employ NatInduction in
such cases, by defining a more general predicate that holds
for all i ∈ Nat . However, the proof of the inductive step
would be cluttered up dealing with the transition of i as it
crosses into and out of the range m . . n .

A better approach is to define and prove a theorem
FiniteNatInduction that explicitly deals with finite in-
duction over the naturals. This approach moves the tran-
sitional clutter into the proof of FiniteNatInduction and
makes all the proofs that need to use finite induction a bit
cleaner. Figure 9 shows our theorem and the first steps in
its proof.

4

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 31 / 52

Use attempt 4 - add an associativity fact - success

THEOREM UseConcatLeftCancel
∆

=

ASSUME
NEW S ,
NEW u ∈ Seq(S),
NEW v ∈ Seq(S),
NEW w ∈ Seq(S),
NEW x ∈ Seq(S),
NEW m ∈ S ,
NEW n ∈ S ,
u ◦ 〈m , n〉 ◦ v ◦ x = u ◦ 〈m , n〉 ◦ w ◦ x

PROVE
v ◦ x = w ◦ x

PROOF
〈1〉1. u ◦ 〈m , n〉 ∈ Seq(S) OBVIOUS ◦ closed
〈1〉2. v ◦ x ∈ Seq(S) OBVIOUS ◦ closed
〈1〉3. w ◦ x ∈ Seq(S) OBVIOUS ◦ closed
〈1〉 QED BY 〈1〉1, 〈1〉2, 〈1〉3, ConcatLeftCancel unable to prove it

Figure 7: Third use attempt (still unsuccessful).

THEOREM UseConcatLeftCancel
∆

=

ASSUME
NEW S ,
NEW u ∈ Seq(S),
NEW v ∈ Seq(S),
NEW w ∈ Seq(S),
NEW x ∈ Seq(S),
NEW m ∈ S ,
NEW n ∈ S ,
u ◦ 〈m , n〉 ◦ v ◦ x = u ◦ 〈m , n〉 ◦ w ◦ x

PROVE
v ◦ x = w ◦ x

PROOF
〈1〉1. u ◦ 〈m , n〉 ∈ Seq(S) OBVIOUS ◦ closed
〈1〉2. v ◦ x ∈ Seq(S) OBVIOUS ◦ closed
〈1〉3. w ◦ x ∈ Seq(S) OBVIOUS ◦ closed
〈1〉4. u ◦ 〈m , n〉 ◦ (v ◦ x) = u ◦ 〈m , n〉 ◦ (w ◦ x) OBVIOUS
〈1〉 QED BY 〈1〉1, 〈1〉2, 〈1〉3, 〈1〉4, ConcatLeftCancel

Figure 8: Fourth use attempt (successful).

our theorem, and apply it.
Lessons from this example:

r The application of ConcatLeftCancel shows how im-
portant are the common mathematical properties of clo-
sure and associativity. Humans are good at utilizing these
properties when proving deductions. Even though the
TLA+ proof system considered applications of closure
and associativity as obvious, it was unable to supply them
automatically when trying to prove a deduction that re-
quired them.
r When the proof system fails to verify a fact, one ap-
proach is to figure out what more specific, supporting facts
you can provide that perhaps the proof system is failing to
consider. In this example, we went through this process
three times before arriving at a proof that the proof sys-
tem could verify.

THEOREM FiniteNatInduction
∆

=

ASSUME
NEW P (), predicate
NEW m ∈ Nat , start
NEW n ∈ Nat , limit
P (m), base case
∀ i ∈ m . . (n − 1) : P (i)⇒ P (i + 1) finite ind hyp

PROVE ∀ i ∈ m . . n : P (i)
PROOF
〈1〉 DEFINE Q(i) ∆

= i ∈ m . . n ⇒ P (i)
〈1〉 SUFFICES ∀ i ∈ Nat : Q(i) OBVIOUS

base case

〈1〉1. Q(0) OBVIOUS

inductive step

〈1〉2. ∀ i ∈ Nat : Q(i)⇒ Q(i + 1)
〈1〉 HIDE DEF Q hide defn of induction predicate
〈1〉 QED BY 〈1〉1, 〈1〉2, NatInduction

Figure 9: Setting up an inductive argument to prove
FiniteNatInduction .

3 Finite induction over naturals
In this section we define and prove a theorem about finite
induction over the natural numbers. We use this theorem
later in Section 5.

The ordinary form of induction is simple induction over
the naturals, in which a predicate P (i) is proved to hold
for all i ∈ Nat . The TLA+ proof system has a theorem
NatInduction , in the library module NaturalsInduction ,
which encapsulates the simple inductive argument. For
any predicate P (), given the base case

P (0)
and the inductive step

∀ i ∈ Nat : P (i)⇒ P (i + 1)
NatInduction concludes

∀ i ∈ Nat : P (i)

Sometimes, however, we do not want or need to prove
that predicate P (i) holds for all i ∈ Nat , but rather only
for a finite range i ∈ m . . n . Such a situation often occurs
when proving things about sequences, for example.

We could, of course, always employ NatInduction in
such cases, by defining a more general predicate that holds
for all i ∈ Nat . However, the proof of the inductive step
would be cluttered up dealing with the transition of i as it
crosses into and out of the range m . . n .

A better approach is to define and prove a theorem
FiniteNatInduction that explicitly deals with finite in-
duction over the naturals. This approach moves the tran-
sitional clutter into the proof of FiniteNatInduction and
makes all the proofs that need to use finite induction a bit
cleaner. Figure 9 shows our theorem and the first steps in
its proof.

4

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 32 / 52

Lessons from applying ConcatLeftCancel

Common mathematical properties of closure and associativity can
be important

I Humans are really good at utilizing these properties
I Even though TLAPS considered the properties obvious, it was

unable to supply them automatically when trying to prove a
deduction that required them

I In my experience, TLAPS has a really difficult time applying
associativity

When TLAPS fails, try to figure out what specific fact you could
provide that it is failing to consider

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 33 / 52

Lessons from applying ConcatLeftCancel

Common mathematical properties of closure and associativity can
be important

I Humans are really good at utilizing these properties
I Even though TLAPS considered the properties obvious, it was

unable to supply them automatically when trying to prove a
deduction that required them

I In my experience, TLAPS has a really difficult time applying
associativity

When TLAPS fails, try to figure out what specific fact you could
provide that it is failing to consider

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 33 / 52

Lessons from applying ConcatLeftCancel

Common mathematical properties of closure and associativity can
be important

I Humans are really good at utilizing these properties

I Even though TLAPS considered the properties obvious, it was
unable to supply them automatically when trying to prove a
deduction that required them

I In my experience, TLAPS has a really difficult time applying
associativity

When TLAPS fails, try to figure out what specific fact you could
provide that it is failing to consider

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 33 / 52

Lessons from applying ConcatLeftCancel

Common mathematical properties of closure and associativity can
be important

I Humans are really good at utilizing these properties
I Even though TLAPS considered the properties obvious, it was

unable to supply them automatically when trying to prove a
deduction that required them

I In my experience, TLAPS has a really difficult time applying
associativity

When TLAPS fails, try to figure out what specific fact you could
provide that it is failing to consider

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 33 / 52

Lessons from applying ConcatLeftCancel

Common mathematical properties of closure and associativity can
be important

I Humans are really good at utilizing these properties
I Even though TLAPS considered the properties obvious, it was

unable to supply them automatically when trying to prove a
deduction that required them

I In my experience, TLAPS has a really difficult time applying
associativity

When TLAPS fails, try to figure out what specific fact you could
provide that it is failing to consider

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 33 / 52

Lessons from applying ConcatLeftCancel

Common mathematical properties of closure and associativity can
be important

I Humans are really good at utilizing these properties
I Even though TLAPS considered the properties obvious, it was

unable to supply them automatically when trying to prove a
deduction that required them

I In my experience, TLAPS has a really difficult time applying
associativity

When TLAPS fails, try to figure out what specific fact you could
provide that it is failing to consider

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 33 / 52

Finite induction over naturals

The ordinary form of induction is simple induction over the
naturals, in which a predicate P(i) is proved to hold for all i ∈ Nat.
TLAPS has a libary theorem NatInduction, in the library module
NaturalsInduction, that encapsulates the simple inductive
argument. For any P(), given the base case

P(0)

and the inductive step

∀ i ∈ Nat : P(i)⇒ P(i + 1)

NatInduction concludes

∀ i ∈ Nat : P(i)

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 34 / 52

Finite induction over naturals

The ordinary form of induction is simple induction over the
naturals, in which a predicate P(i) is proved to hold for all i ∈ Nat.

TLAPS has a libary theorem NatInduction, in the library module
NaturalsInduction, that encapsulates the simple inductive
argument. For any P(), given the base case

P(0)

and the inductive step

∀ i ∈ Nat : P(i)⇒ P(i + 1)

NatInduction concludes

∀ i ∈ Nat : P(i)

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 34 / 52

Finite induction over naturals

The ordinary form of induction is simple induction over the
naturals, in which a predicate P(i) is proved to hold for all i ∈ Nat.
TLAPS has a libary theorem NatInduction, in the library module
NaturalsInduction, that encapsulates the simple inductive
argument. For any P(), given the base case

P(0)

and the inductive step

∀ i ∈ Nat : P(i)⇒ P(i + 1)

NatInduction concludes

∀ i ∈ Nat : P(i)

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 34 / 52

Finite induction over naturals - 2

Sometimes we do not want or need to prove that P(i) holds for all
i ∈ Nat, but rather only for a finite range i ∈ m..n. This often
occurs when proving things about sequences.

In such cases, we could, of course, define a more general predicate

Q(i) ∆
= i ∈ m..n⇒ P(i)

use NatInduction to prove that Q(i) holds for all i ∈ Nat and then
deduce what we want about P(). But the proof would be
cluttered with the transitions of i into and out of m..n.
A better approach is to define a prove and prove a theorem
FiniteNatInduction that explicitly deals with finite induction over
the naturals.

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 35 / 52

Finite induction over naturals - 2

Sometimes we do not want or need to prove that P(i) holds for all
i ∈ Nat, but rather only for a finite range i ∈ m..n. This often
occurs when proving things about sequences.
In such cases, we could, of course, define a more general predicate

Q(i) ∆
= i ∈ m..n⇒ P(i)

use NatInduction to prove that Q(i) holds for all i ∈ Nat and then
deduce what we want about P(). But the proof would be
cluttered with the transitions of i into and out of m..n.

A better approach is to define a prove and prove a theorem
FiniteNatInduction that explicitly deals with finite induction over
the naturals.

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 35 / 52

Finite induction over naturals - 2

Sometimes we do not want or need to prove that P(i) holds for all
i ∈ Nat, but rather only for a finite range i ∈ m..n. This often
occurs when proving things about sequences.
In such cases, we could, of course, define a more general predicate

Q(i) ∆
= i ∈ m..n⇒ P(i)

use NatInduction to prove that Q(i) holds for all i ∈ Nat and then
deduce what we want about P(). But the proof would be
cluttered with the transitions of i into and out of m..n.
A better approach is to define a prove and prove a theorem
FiniteNatInduction that explicitly deals with finite induction over
the naturals.

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 35 / 52

Setting up the inductive argument

THEOREM UseConcatLeftCancel
∆

=

ASSUME
NEW S ,
NEW u ∈ Seq(S),
NEW v ∈ Seq(S),
NEW w ∈ Seq(S),
NEW x ∈ Seq(S),
NEW m ∈ S ,
NEW n ∈ S ,
u ◦ 〈m , n〉 ◦ v ◦ x = u ◦ 〈m , n〉 ◦ w ◦ x

PROVE
v ◦ x = w ◦ x

PROOF
〈1〉1. u ◦ 〈m , n〉 ∈ Seq(S) OBVIOUS ◦ closed
〈1〉2. v ◦ x ∈ Seq(S) OBVIOUS ◦ closed
〈1〉3. w ◦ x ∈ Seq(S) OBVIOUS ◦ closed
〈1〉 QED BY 〈1〉1, 〈1〉2, 〈1〉3, ConcatLeftCancel unable to prove it

Figure 7: Third use attempt (still unsuccessful).

THEOREM UseConcatLeftCancel
∆

=

ASSUME
NEW S ,
NEW u ∈ Seq(S),
NEW v ∈ Seq(S),
NEW w ∈ Seq(S),
NEW x ∈ Seq(S),
NEW m ∈ S ,
NEW n ∈ S ,
u ◦ 〈m , n〉 ◦ v ◦ x = u ◦ 〈m , n〉 ◦ w ◦ x

PROVE
v ◦ x = w ◦ x

PROOF
〈1〉1. u ◦ 〈m , n〉 ∈ Seq(S) OBVIOUS ◦ closed
〈1〉2. v ◦ x ∈ Seq(S) OBVIOUS ◦ closed
〈1〉3. w ◦ x ∈ Seq(S) OBVIOUS ◦ closed
〈1〉4. u ◦ 〈m , n〉 ◦ (v ◦ x) = u ◦ 〈m , n〉 ◦ (w ◦ x) OBVIOUS
〈1〉 QED BY 〈1〉1, 〈1〉2, 〈1〉3, 〈1〉4, ConcatLeftCancel

Figure 8: Fourth use attempt (successful).

our theorem, and apply it.
Lessons from this example:

r The application of ConcatLeftCancel shows how im-
portant are the common mathematical properties of clo-
sure and associativity. Humans are good at utilizing these
properties when proving deductions. Even though the
TLA+ proof system considered applications of closure
and associativity as obvious, it was unable to supply them
automatically when trying to prove a deduction that re-
quired them.
r When the proof system fails to verify a fact, one ap-
proach is to figure out what more specific, supporting facts
you can provide that perhaps the proof system is failing to
consider. In this example, we went through this process
three times before arriving at a proof that the proof sys-
tem could verify.

THEOREM FiniteNatInduction
∆

=

ASSUME
NEW P (), predicate
NEW m ∈ Nat , start
NEW n ∈ Nat , limit
P (m), base case
∀ i ∈ m . . (n − 1) : P (i)⇒ P (i + 1) finite ind hyp

PROVE ∀ i ∈ m . . n : P (i)
PROOF
〈1〉 DEFINE Q(i) ∆

= i ∈ m . . n ⇒ P (i)
〈1〉 SUFFICES ∀ i ∈ Nat : Q(i) OBVIOUS

base case

〈1〉1. Q(0) OBVIOUS

inductive step

〈1〉2. ∀ i ∈ Nat : Q(i)⇒ Q(i + 1)
〈1〉 HIDE DEF Q hide defn of induction predicate
〈1〉 QED BY 〈1〉1, 〈1〉2, NatInduction

Figure 9: Setting up an inductive argument to prove
FiniteNatInduction .

3 Finite induction over naturals
In this section we define and prove a theorem about finite
induction over the natural numbers. We use this theorem
later in Section 5.

The ordinary form of induction is simple induction over
the naturals, in which a predicate P (i) is proved to hold
for all i ∈ Nat . The TLA+ proof system has a theorem
NatInduction , in the library module NaturalsInduction ,
which encapsulates the simple inductive argument. For
any predicate P (), given the base case

P (0)
and the inductive step

∀ i ∈ Nat : P (i)⇒ P (i + 1)
NatInduction concludes

∀ i ∈ Nat : P (i)

Sometimes, however, we do not want or need to prove
that predicate P (i) holds for all i ∈ Nat , but rather only
for a finite range i ∈ m . . n . Such a situation often occurs
when proving things about sequences, for example.

We could, of course, always employ NatInduction in
such cases, by defining a more general predicate that holds
for all i ∈ Nat . However, the proof of the inductive step
would be cluttered up dealing with the transition of i as it
crosses into and out of the range m . . n .

A better approach is to define and prove a theorem
FiniteNatInduction that explicitly deals with finite in-
duction over the naturals. This approach moves the tran-
sitional clutter into the proof of FiniteNatInduction and
makes all the proofs that need to use finite induction a bit
cleaner. Figure 9 shows our theorem and the first steps in
its proof.

4

Define the more general
predicate Q()

Use a SUFFICES to change the
goal to ∀ i ∈ Nat : Q(i)

State the base case and
inductive step as facts

Hide the definition of the
inductive predicate Q()

Appeal to NatInduction

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 36 / 52

Completing the subproof of the inductive step

inductive step

〈1〉2. ∀ i ∈ Nat : Q(i)⇒ Q(i + 1)
〈2〉1. SUFFICES ASSUME NEW i ∈ Nat , Q(i)

PROVE Q(i + 1) OBVIOUS
〈2〉2.CASE i + 1 ∈ (m + 1) . . n BY 〈2〉1, 〈2〉2
〈2〉3.CASE i + 1 = m BY 〈2〉3
〈2〉4.CASE i + 1 < m . . n BY 〈2〉4
〈2〉 QED BY 〈2〉2, 〈2〉3, 〈2〉4

Figure 10: Proof of the inductive step.

In the proof we define a new predicate
Q(i) ∆

= i ∈ m . . n ⇒ P (i)
It suffices to prove that Q(i) holds for all i ∈ Nat . In step
〈1〉1 we assert the base case and in step 〈1〉2 we assert the
inductive step. The base case is obvious since if m = 0
we have P (m). Given the base case and the inductive
step, NatInduction can conclude that Q(i) holds for all
i ∈ Nat , which is the current goal.

It is good practice, when writing inductive proofs, to
hide the definition of the induction predicate, Q in this
case, before appealing to NatInduction . In order to ap-
ply NatInduction the TLA+ proof system does not need
to know the definition of the induction predicate, and, in-
deed, if the definition is at all complicated, the proof sys-
tem will tend to get lost in it and be unable to verify the
conclusion. With the definition hidden, the proof system
sees only an uninterpreted operator symbol appearing in
the exact form of an inductive argument, and the argument
will be verified.

More generally, whenever applying a proof rule con-
taining a NEW Q() that must be instantiated with some
operator Op, you should hide the definition of Op.

Now we prove the inductive step, as shown in Fig-
ure 10. The first thing we do is to disassemble the uni-
versal quantified implication. It suffices to assume that
we have a new symbol i ∈ Nat , that we have the hypoth-
esis Q(i), and that we have to prove Q(i + 1). This is step
〈2〉1. Then we use a case analysis.

Step 〈2〉2 handles the case of i + 1 ∈ (m + 1) . . n . In
this case, Q(i) from the inductive hypothesis implies P (i)
which implies P (i + 1) which implies Q(i + 1).

Step 〈2〉3 handles the case of i + 1 = m . In this case,
Q(i + 1) follows from P (m).

Step 〈2〉4 handles the case of i + 1 < m . . n . In this
case, Q(i + 1) holds directly from the definition of Q .
Since the three cases cover every possibility, the proof of
the inductive step is complete.

This completes the proof of the theorem. Figure 11
shows the complete proof.

I slid over the statement that “the three cases cover
every possibility” pretty fast. Like everything else in a

THEOREM FiniteNatInduction
∆

=

ASSUME
NEW P (), predicate
NEW m ∈ Nat , start
NEW n ∈ Nat , limit
P (m), base case
∀ i ∈ m . . (n − 1) : P (i)⇒ P (i + 1) finite ind hyp

PROVE ∀ i ∈ m . . n : P (i)
PROOF
〈1〉 DEFINE Q(i) ∆

= i ∈ m . . n ⇒ P (i)
〈1〉 SUFFICES ∀ i ∈ Nat : Q(i) OBVIOUS

base case

〈1〉1. Q(0) OBVIOUS

inductive step

〈1〉2. ∀ i ∈ Nat : Q(i)⇒ Q(i + 1)
〈2〉1. SUFFICES ASSUME NEW i ∈ Nat , Q(i)

PROVE Q(i + 1) OBVIOUS
〈2〉2.CASE i + 1 ∈ (m + 1) . . n BY 〈2〉1, 〈2〉2
〈2〉3.CASE i + 1 = m BY 〈2〉3
〈2〉4.CASE i + 1 < m . . n BY 〈2〉4
〈2〉 QED BY 〈2〉2, 〈2〉3, 〈2〉4
〈1〉 HIDE DEF Q hide defn of induction predicate
〈1〉 QED BY 〈1〉1, 〈1〉2, NatInduction
Figure 11: Complete proof of FiniteNatInduction .

THEOREM FiniteNatInduction
∆

=

ASSUME
NEW P (), predicate
NEW m ∈ Nat , start
NEW n ∈ Nat , limit
P (m), base case
∀ i ∈ m . . (n − 1) : P (i)⇒ P (i + 1) finite ind hyp

PROVE ∀ i ∈ m . . n : P (i)
PROOF
〈1〉 DEFINE Q(i) ∆

= i ∈ m . . n ⇒ P (i)
〈1〉 SUFFICES ∀ i ∈ Nat : Q(i) OBVIOUS

base case

〈1〉1. Q(0) OBVIOUS

inductive step

〈1〉2. ∀ i ∈ Nat : Q(i)⇒ Q(i + 1) OBVIOUS
〈1〉 HIDE DEF Q hide defn of induction predicate
〈1〉 QED BY 〈1〉1, 〈1〉2, NatInduction
Figure 12: Simplified proof of FiniteNatInduction .

machine-checked formal proof, the proof system will have
to be convinced of this fact. To complete the argument by
cases, there is an obligation to show that

∨ i + 1 ∈ (m + 1) . . n
∨ i + 1 = m
∨ i + 1 < m . . n

This follows from the fact that i , m , and n are all natural
numbers. In this example, the proof system was able to
discharge this obligation automatically. But in more com-
plicated examples, you may have to prove the coverage
fact explicitly.

I mentioned before that it is always a good idea to

5

Use SUFFICES ASSUME
PROVE to disassemble the
universal quantifier and the
implication

Use CASE to perform a case
analysis

The cases must cover all
possibilities

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 37 / 52

Simplified proof of FiniteNatInduction

inductive step

〈1〉2. ∀ i ∈ Nat : Q(i)⇒ Q(i + 1)
〈2〉1. SUFFICES ASSUME NEW i ∈ Nat , Q(i)

PROVE Q(i + 1) OBVIOUS
〈2〉2.CASE i + 1 ∈ (m + 1) . . n BY 〈2〉1, 〈2〉2
〈2〉3.CASE i + 1 = m BY 〈2〉3
〈2〉4.CASE i + 1 < m . . n BY 〈2〉4
〈2〉 QED BY 〈2〉2, 〈2〉3, 〈2〉4

Figure 10: Proof of the inductive step.

In the proof we define a new predicate
Q(i) ∆

= i ∈ m . . n ⇒ P (i)
It suffices to prove that Q(i) holds for all i ∈ Nat . In step
〈1〉1 we assert the base case and in step 〈1〉2 we assert the
inductive step. The base case is obvious since if m = 0
we have P (m). Given the base case and the inductive
step, NatInduction can conclude that Q(i) holds for all
i ∈ Nat , which is the current goal.

It is good practice, when writing inductive proofs, to
hide the definition of the induction predicate, Q in this
case, before appealing to NatInduction . In order to ap-
ply NatInduction the TLA+ proof system does not need
to know the definition of the induction predicate, and, in-
deed, if the definition is at all complicated, the proof sys-
tem will tend to get lost in it and be unable to verify the
conclusion. With the definition hidden, the proof system
sees only an uninterpreted operator symbol appearing in
the exact form of an inductive argument, and the argument
will be verified.

More generally, whenever applying a proof rule con-
taining a NEW Q() that must be instantiated with some
operator Op, you should hide the definition of Op.

Now we prove the inductive step, as shown in Fig-
ure 10. The first thing we do is to disassemble the uni-
versal quantified implication. It suffices to assume that
we have a new symbol i ∈ Nat , that we have the hypoth-
esis Q(i), and that we have to prove Q(i + 1). This is step
〈2〉1. Then we use a case analysis.

Step 〈2〉2 handles the case of i + 1 ∈ (m + 1) . . n . In
this case, Q(i) from the inductive hypothesis implies P (i)
which implies P (i + 1) which implies Q(i + 1).

Step 〈2〉3 handles the case of i + 1 = m . In this case,
Q(i + 1) follows from P (m).

Step 〈2〉4 handles the case of i + 1 < m . . n . In this
case, Q(i + 1) holds directly from the definition of Q .
Since the three cases cover every possibility, the proof of
the inductive step is complete.

This completes the proof of the theorem. Figure 11
shows the complete proof.

I slid over the statement that “the three cases cover
every possibility” pretty fast. Like everything else in a

THEOREM FiniteNatInduction
∆

=

ASSUME
NEW P (), predicate
NEW m ∈ Nat , start
NEW n ∈ Nat , limit
P (m), base case
∀ i ∈ m . . (n − 1) : P (i)⇒ P (i + 1) finite ind hyp

PROVE ∀ i ∈ m . . n : P (i)
PROOF
〈1〉 DEFINE Q(i) ∆

= i ∈ m . . n ⇒ P (i)
〈1〉 SUFFICES ∀ i ∈ Nat : Q(i) OBVIOUS

base case

〈1〉1. Q(0) OBVIOUS

inductive step

〈1〉2. ∀ i ∈ Nat : Q(i)⇒ Q(i + 1)
〈2〉1. SUFFICES ASSUME NEW i ∈ Nat , Q(i)

PROVE Q(i + 1) OBVIOUS
〈2〉2.CASE i + 1 ∈ (m + 1) . . n BY 〈2〉1, 〈2〉2
〈2〉3.CASE i + 1 = m BY 〈2〉3
〈2〉4.CASE i + 1 < m . . n BY 〈2〉4
〈2〉 QED BY 〈2〉2, 〈2〉3, 〈2〉4
〈1〉 HIDE DEF Q hide defn of induction predicate
〈1〉 QED BY 〈1〉1, 〈1〉2, NatInduction
Figure 11: Complete proof of FiniteNatInduction .

THEOREM FiniteNatInduction
∆

=

ASSUME
NEW P (), predicate
NEW m ∈ Nat , start
NEW n ∈ Nat , limit
P (m), base case
∀ i ∈ m . . (n − 1) : P (i)⇒ P (i + 1) finite ind hyp

PROVE ∀ i ∈ m . . n : P (i)
PROOF
〈1〉 DEFINE Q(i) ∆

= i ∈ m . . n ⇒ P (i)
〈1〉 SUFFICES ∀ i ∈ Nat : Q(i) OBVIOUS

base case

〈1〉1. Q(0) OBVIOUS

inductive step

〈1〉2. ∀ i ∈ Nat : Q(i)⇒ Q(i + 1) OBVIOUS
〈1〉 HIDE DEF Q hide defn of induction predicate
〈1〉 QED BY 〈1〉1, 〈1〉2, NatInduction
Figure 12: Simplified proof of FiniteNatInduction .

machine-checked formal proof, the proof system will have
to be convinced of this fact. To complete the argument by
cases, there is an obligation to show that

∨ i + 1 ∈ (m + 1) . . n
∨ i + 1 = m
∨ i + 1 < m . . n

This follows from the fact that i , m , and n are all natural
numbers. In this example, the proof system was able to
discharge this obligation automatically. But in more com-
plicated examples, you may have to prove the coverage
fact explicitly.

I mentioned before that it is always a good idea to

5

It turns out that TLAPS thinks
that the inductive step is
obvious. We neglected to
check this before plunging
into the case analysis. Hence
the proof can be simplified
considerably.

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 38 / 52

Lessons from proving FiniteNatInduction

Hide the definition of the induction predicate before appealing to
the induction theorem

I More generally, when applying a proof rule containing a NEW Q()
that must be instantiated with some operator Op, you should hide
the definition of Op

Use SUFFICES to change the goal
Use SUFFICES ASSUME PROVE to disassemble universal
quantifiers and implications
Use CASE statements to disassemble the current goal into cases

I TLAPS will have to be convinced that all cases are covered
I Often it can figure this out on its own, but sometimes you need to

present the fact explicitly

Always check to see if TLAPS can prove a fact (given the necessary
predicate facts) before plunging into a subproof

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 39 / 52

Lessons from proving FiniteNatInduction

Hide the definition of the induction predicate before appealing to
the induction theorem

I More generally, when applying a proof rule containing a NEW Q()
that must be instantiated with some operator Op, you should hide
the definition of Op

Use SUFFICES to change the goal
Use SUFFICES ASSUME PROVE to disassemble universal
quantifiers and implications
Use CASE statements to disassemble the current goal into cases

I TLAPS will have to be convinced that all cases are covered
I Often it can figure this out on its own, but sometimes you need to

present the fact explicitly

Always check to see if TLAPS can prove a fact (given the necessary
predicate facts) before plunging into a subproof

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 39 / 52

Lessons from proving FiniteNatInduction

Hide the definition of the induction predicate before appealing to
the induction theorem

I More generally, when applying a proof rule containing a NEW Q()
that must be instantiated with some operator Op, you should hide
the definition of Op

Use SUFFICES to change the goal
Use SUFFICES ASSUME PROVE to disassemble universal
quantifiers and implications
Use CASE statements to disassemble the current goal into cases

I TLAPS will have to be convinced that all cases are covered
I Often it can figure this out on its own, but sometimes you need to

present the fact explicitly

Always check to see if TLAPS can prove a fact (given the necessary
predicate facts) before plunging into a subproof

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 39 / 52

Lessons from proving FiniteNatInduction

Hide the definition of the induction predicate before appealing to
the induction theorem

I More generally, when applying a proof rule containing a NEW Q()
that must be instantiated with some operator Op, you should hide
the definition of Op

Use SUFFICES to change the goal

Use SUFFICES ASSUME PROVE to disassemble universal
quantifiers and implications
Use CASE statements to disassemble the current goal into cases

I TLAPS will have to be convinced that all cases are covered
I Often it can figure this out on its own, but sometimes you need to

present the fact explicitly

Always check to see if TLAPS can prove a fact (given the necessary
predicate facts) before plunging into a subproof

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 39 / 52

Lessons from proving FiniteNatInduction

Hide the definition of the induction predicate before appealing to
the induction theorem

I More generally, when applying a proof rule containing a NEW Q()
that must be instantiated with some operator Op, you should hide
the definition of Op

Use SUFFICES to change the goal
Use SUFFICES ASSUME PROVE to disassemble universal
quantifiers and implications

Use CASE statements to disassemble the current goal into cases
I TLAPS will have to be convinced that all cases are covered
I Often it can figure this out on its own, but sometimes you need to

present the fact explicitly

Always check to see if TLAPS can prove a fact (given the necessary
predicate facts) before plunging into a subproof

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 39 / 52

Lessons from proving FiniteNatInduction

Hide the definition of the induction predicate before appealing to
the induction theorem

I More generally, when applying a proof rule containing a NEW Q()
that must be instantiated with some operator Op, you should hide
the definition of Op

Use SUFFICES to change the goal
Use SUFFICES ASSUME PROVE to disassemble universal
quantifiers and implications
Use CASE statements to disassemble the current goal into cases

I TLAPS will have to be convinced that all cases are covered
I Often it can figure this out on its own, but sometimes you need to

present the fact explicitly

Always check to see if TLAPS can prove a fact (given the necessary
predicate facts) before plunging into a subproof

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 39 / 52

Lessons from proving FiniteNatInduction

Hide the definition of the induction predicate before appealing to
the induction theorem

I More generally, when applying a proof rule containing a NEW Q()
that must be instantiated with some operator Op, you should hide
the definition of Op

Use SUFFICES to change the goal
Use SUFFICES ASSUME PROVE to disassemble universal
quantifiers and implications
Use CASE statements to disassemble the current goal into cases

I TLAPS will have to be convinced that all cases are covered
I Often it can figure this out on its own, but sometimes you need to

present the fact explicitly

Always check to see if TLAPS can prove a fact (given the necessary
predicate facts) before plunging into a subproof

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 39 / 52

Outline

1 TLAPS Basics

2 Tips and Best Practices for Using TLAPS

3 Temporal Reasoning in TLAPS

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 40 / 52

Temporal proofs in TLAPS

A standard safety proof
I validation of a temporal formula
I mostly action reasoning
I temporal reasoning for validating

QED step

In this talk:
I Why

quantified temporal formulas can be proved using

first-order and propositional temporal backends

I How
to write the proofs correctly

I Which
formulas can be proved using that

F Note: TLA+ is not complete for
quantified temporal logic.

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 41 / 52

Temporal proofs in TLAPS

A standard safety proof
I validation of a temporal formula
I mostly action reasoning
I temporal reasoning for validating

QED step
In this talk:

I Why
quantified temporal formulas can be proved using

first-order and propositional temporal backends

I How
to write the proofs correctly

I Which
formulas can be proved using that

F Note: TLA+ is not complete for
quantified temporal logic.

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 41 / 52

Temporal proofs in TLAPS

A standard safety proof
I validation of a temporal formula
I mostly action reasoning
I temporal reasoning for validating

QED step
In this talk:

I Why
quantified temporal formulas can be proved using

first-order and propositional temporal backends

I How
to write the proofs correctly

I Which
formulas can be proved using that

F Note: TLA+ is not complete for
quantified temporal logic.

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 41 / 52

Temporal proofs in TLAPS

A standard safety proof
I validation of a temporal formula
I mostly action reasoning
I temporal reasoning for validating

QED step
In this talk:

I Why
quantified temporal formulas can be proved using

first-order and propositional temporal backends

I How
to write the proofs correctly

I Which
formulas can be proved using that

F Note: TLA+ is not complete for
quantified temporal logic.

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 41 / 52

Temporal concepts in TLA+

Semantics

I Program Executions
I States
I Behaviors and suffixes

Syntax
I Constant expressions
I State expressions
I Action expressions
I Temporal expressions

Logic
I First-order [1]
I Temporal

F PTL

[1] Coalescing: Syntactic Abstraction for Reasoning in First-Order Modal Logics

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 42 / 52

Temporal concepts in TLA+

Semantics
I Program Executions

I States

I Behaviors and suffixes
Syntax

I Constant expressions
I State expressions
I Action expressions
I Temporal expressions

Logic
I First-order [1]
I Temporal

F PTL

[1] Coalescing: Syntactic Abstraction for Reasoning in First-Order Modal Logics

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 42 / 52

Temporal concepts in TLA+

Semantics
I Program Executions
I States

I Behaviors and suffixes
Syntax

I Constant expressions
I State expressions
I Action expressions
I Temporal expressions

Logic
I First-order [1]
I Temporal

F PTL

[1] Coalescing: Syntactic Abstraction for Reasoning in First-Order Modal Logics

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 42 / 52

Temporal concepts in TLA+

Semantics
I Program Executions
I States
I Behaviors and suffixes

Syntax
I Constant expressions

I State expressions
I Action expressions
I Temporal expressions

Logic
I First-order [1]
I Temporal

F PTL

[1] Coalescing: Syntactic Abstraction for Reasoning in First-Order Modal Logics

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 42 / 52

Temporal concepts in TLA+

Semantics
I Program Executions
I States
I Behaviors and suffixes

Syntax
I Constant expressions

I State expressions

I Action expressions
I Temporal expressions

Logic
I First-order [1]
I Temporal

F PTL

[1] Coalescing: Syntactic Abstraction for Reasoning in First-Order Modal Logics

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 42 / 52

Temporal concepts in TLA+

Semantics
I Program Executions
I States
I Behaviors and suffixes

Syntax
I Constant expressions
I State expressions

I Action expressions

I Temporal expressions
Logic

I First-order [1]
I Temporal

F PTL

[1] Coalescing: Syntactic Abstraction for Reasoning in First-Order Modal Logics

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 42 / 52

Temporal concepts in TLA+

Semantics
I Program Executions
I States
I Behaviors and suffixes

Syntax
I Constant expressions
I State expressions
I Action expressions

I Temporal expressions
Logic

I First-order [1]
I Temporal

F PTL

[1] Coalescing: Syntactic Abstraction for Reasoning in First-Order Modal Logics

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 42 / 52

Temporal concepts in TLA+

Semantics
I Program Executions
I States
I Behaviors and suffixes

Syntax
I Constant expressions
I State expressions
I Action expressions
I Temporal expressions

Logic
I First-order [1]

I Temporal

F PTL

[1] Coalescing: Syntactic Abstraction for Reasoning in First-Order Modal Logics

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 42 / 52

Temporal concepts in TLA+

Semantics
I Program Executions
I States
I Behaviors and suffixes

Syntax
I Constant expressions
I State expressions
I Action expressions
I Temporal expressions

Logic
I First-order [1]

I Temporal

F PTL

[1] Coalescing: Syntactic Abstraction for Reasoning in First-Order Modal Logics

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 42 / 52

Temporal concepts in TLA+

Semantics
I Program Executions
I States
I Behaviors and suffixes

Syntax
I Constant expressions
I State expressions
I Action expressions
I Temporal expressions

Logic
I First-order [1]
I Temporal

F PTL

[1] Coalescing: Syntactic Abstraction for Reasoning in First-Order Modal Logics

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 42 / 52

Temporal concepts in TLA+

Semantics
I Program Executions
I States
I Behaviors and suffixes

Syntax
I Constant expressions
I State expressions
I Action expressions
I Temporal expressions

Logic
I First-order [1]
I Temporal

F PTL

[1] Coalescing: Syntactic Abstraction for Reasoning in First-Order Modal Logics

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 42 / 52

Breaking temporal formulas into action formulas

Proving quantified temporal formulas from action formulas and
propositional temporal rules.

I find a temporal rule
I verify the rule
I understand failures

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 43 / 52

Breaking temporal formulas into action formulas

Proving quantified temporal formulas from action formulas and
propositional temporal rules.

I find a temporal rule

I verify the rule
I understand failures

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 43 / 52

Breaking temporal formulas into action formulas

Proving quantified temporal formulas from action formulas and
propositional temporal rules.

I find a temporal rule
I verify the rule

I understand failures

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 43 / 52

Breaking temporal formulas into action formulas

Proving quantified temporal formulas from action formulas and
propositional temporal rules.

I find a temporal rule
I verify the rule
I understand failures

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 43 / 52

How to find the rules

Safety properties - based on
variations of the inductive
invariant rule:

Other properties - other rules

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 44 / 52

How to find the rules

Safety properties - based on
variations of the inductive
invariant rule:

Other properties - other rules

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 44 / 52

How to find the rules

Safety properties - based on
variations of the inductive
invariant rule:

Other properties - other rules

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 44 / 52

How to find the rules

Safety properties - based on
variations of the inductive
invariant rule:

Other properties - other rules

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 44 / 52

How to find the rules

Safety properties - based on
variations of the inductive
invariant rule:

Other properties - other rules

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 44 / 52

Are the rules sound?

Rule is an instance of the PTL rule:

Success of PTL backend verifies this

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 45 / 52

Are the rules sound?

Rule is an instance of the PTL rule:

Success of PTL backend verifies this

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 45 / 52

Are the rules sound?

Rule is an instance of the PTL rule:

Success of PTL backend verifies this

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 45 / 52

Understanding failures

Consider this valid lemma

which seems to be an instance of the PTL rule:

But it is not, why?

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 46 / 52

Understanding failures

Consider this valid lemma
which seems to be an instance of the PTL rule:

But it is not, why?

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 46 / 52

Understanding failures

Consider this valid lemma
which seems to be an instance of the PTL rule:

But it is not, why?

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 46 / 52

Necessitation

Since 〈1〉2 holds in all
behaviours, it can be
boxed

This is called
necessitation
The PTL rules normally
requires the application
of necessitation on the
action steps

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 47 / 52

Necessitation

Since 〈1〉2 holds in all
behaviours, it can be
boxed

This is called
necessitation
The PTL rules normally
requires the application
of necessitation on the
action steps

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 47 / 52

Necessitation

Since 〈1〉2 holds in all
behaviours, it can be
boxed
This is called
necessitation

The PTL rules normally
requires the application
of necessitation on the
action steps

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 47 / 52

Necessitation

Since 〈1〉2 holds in all
behaviours, it can be
boxed
This is called
necessitation
The PTL rules normally
requires the application
of necessitation on the
action steps

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 47 / 52

Necessitation

Spec

Spec is assumed when
proving the proof steps

〈1〉2 doesn’t hold in all
behaviours
Necessitation is not
applied
Note: There is a
workaround

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 48 / 52

Necessitation

Spec

Spec is assumed when
proving the proof steps

〈1〉2 doesn’t hold in all
behaviours
Necessitation is not
applied
Note: There is a
workaround

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 48 / 52

Necessitation

Spec

Spec is assumed when
proving the proof steps
〈1〉2 doesn’t hold in all
behaviours

Necessitation is not
applied
Note: There is a
workaround

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 48 / 52

Necessitation

Spec

Spec is assumed when
proving the proof steps
〈1〉2 doesn’t hold in all
behaviours
Necessitation is not
applied

Note: There is a
workaround

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 48 / 52

Necessitation

Spec

Spec is assumed when
proving the proof steps
〈1〉2 doesn’t hold in all
behaviours
Necessitation is not
applied
Note: There is a
workaround

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 48 / 52

Necessitation and assumptions

Consider the following clearly
invalid claim

The rule is again an instance
of the previous PTL rule
The two hypothesis are valid
but the rule is not sound
Why? Necessitation fails for
〈1〉2
Confusing? Necessitation
failures are reported in the
obligation window

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 49 / 52

Necessitation and assumptions

Consider the following clearly
invalid claim
The rule is again an instance
of the previous PTL rule

The two hypothesis are valid
but the rule is not sound
Why? Necessitation fails for
〈1〉2
Confusing? Necessitation
failures are reported in the
obligation window

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 49 / 52

Necessitation and assumptions

Consider the following clearly
invalid claim
The rule is again an instance
of the previous PTL rule
The two hypothesis are valid
but the rule is not sound
Why? Necessitation fails for
〈1〉2

Confusing? Necessitation
failures are reported in the
obligation window

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 49 / 52

Necessitation and assumptions

Consider the following clearly
invalid claim
The rule is again an instance
of the previous PTL rule
The two hypothesis are valid
but the rule is not sound
Why? Necessitation fails for
〈1〉2
Confusing? Necessitation
failures are reported in the
obligation window

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 49 / 52

Necessitation and assumptions II

Now, the claim is valid, even if
in a trivial way

The proof is idential to the
previous one
This time, necessitation is
applied
What is the difference?

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 50 / 52

Necessitation and assumptions II

Now, the claim is valid, even if
in a trivial way
The proof is idential to the
previous one

This time, necessitation is
applied
What is the difference?

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 50 / 52

Necessitation and assumptions II

Now, the claim is valid, even if
in a trivial way
The proof is idential to the
previous one
This time, necessitation is
applied

What is the difference?

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 50 / 52

Necessitation and assumptions II

Now, the claim is valid, even if
in a trivial way
The proof is idential to the
previous one
This time, necessitation is
applied
What is the difference?

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 50 / 52

Boxable assumptions

Assumptions P, such that P⇔ 2P, allow for necessitation.

We determine this using the following is box algorithm:

An assumption proved in the scope of a non-boxed assumption is
considered as non-boxed as well

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 51 / 52

Boxable assumptions

Assumptions P, such that P⇔ 2P, allow for necessitation.
We determine this using the following is box algorithm:

An assumption proved in the scope of a non-boxed assumption is
considered as non-boxed as well

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 51 / 52

Boxable assumptions

Assumptions P, such that P⇔ 2P, allow for necessitation.
We determine this using the following is box algorithm:

An assumption proved in the scope of a non-boxed assumption is
considered as non-boxed as well

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 51 / 52

Conclusion

TLA+ proofs for quantified temporal formulas - Why and How

Which:
I for all safety properties
I for liveness properties - still require:

F reasoning about ENABLED
F some proofs require full quantified temporal reasoning - Ex:
∀x.2P(x)⇔ 2∀x.P(x)

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 52 / 52

Conclusion

TLA+ proofs for quantified temporal formulas - Why and How
Which:

I for all safety properties
I for liveness properties - still require:

F reasoning about ENABLED
F some proofs require full quantified temporal reasoning - Ex:
∀x.2P(x)⇔ 2∀x.P(x)

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 52 / 52

Conclusion

TLA+ proofs for quantified temporal formulas - Why and How
Which:

I for all safety properties

I for liveness properties - still require:
F reasoning about ENABLED
F some proofs require full quantified temporal reasoning - Ex:
∀x.2P(x)⇔ 2∀x.P(x)

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 52 / 52

Conclusion

TLA+ proofs for quantified temporal formulas - Why and How
Which:

I for all safety properties
I for liveness properties - still require:

F reasoning about ENABLED
F some proofs require full quantified temporal reasoning - Ex:
∀x.2P(x)⇔ 2∀x.P(x)

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 52 / 52

Conclusion

TLA+ proofs for quantified temporal formulas - Why and How
Which:

I for all safety properties
I for liveness properties - still require:

F reasoning about ENABLED

F some proofs require full quantified temporal reasoning - Ex:
∀x.2P(x)⇔ 2∀x.P(x)

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 52 / 52

Conclusion

TLA+ proofs for quantified temporal formulas - Why and How
Which:

I for all safety properties
I for liveness properties - still require:

F reasoning about ENABLED
F some proofs require full quantified temporal reasoning - Ex:
∀x.2P(x)⇔ 2∀x.P(x)

Jael K., Tom R. and Tomer L. TLAPS Tutorial Toulouse, June 2014 52 / 52

	tlaps Basics
	Tips and Best Practices for Using tlaps
	Temporal Reasoning in tlaps

