

Verification Driven Development
 github.com/informalsystems/vdd

● Developed English and TLA+ specifications
of the core protocols

● Model-checked the TLA+ specs
with Apalache

● Helped to fix subtle protocol issues,
clarify the protocol understanding

● Realized the gap between
the specs and the code

English Spec

TLA+ Spec

Rust code

Manual

Manual

Apalache

Automatic

Automatic

Verification Driven Development
 github.com/informalsystems/vdd

● Developed English and TLA+ specifications
of the core protocols

● Model-checked the TLA+ specs
with Apalache

● Helped to fix subtle protocol issues,
clarify the protocol understanding

● Realized the gap between
the specs and the code

English Spec

TLA+ Spec

Rust code

Manual

Manual

Apalache

Automatic

Automatic

Rust codeRust codeRust codeRust codeRust code

Model-Based Testing

● Generate integration tests
for production code from TLA+ specs
and simple assertions

● Helped to eliminate the growing
spec/code divergence

● Significantly improves

– ease of writing / using the tests

– tests maintainability

– code coverage
Test

English Spec

TLA+ Spec

Rust code

Manual

Apalache

Automatic

Automatic
 Automatic

Automatic

Automatic

Model-Based Testing

● Generate integration tests
for production code from TLA+ specs
and simple assertions

● Helped to eliminate the growing
spec/code divergence

● Significantly improves

– ease of writing / using the tests

– tests maintainability

– code coverage
Test

English Spec

TLA+ Spec

Rust code

Manual

Apalache

 Automatic

Automatic

Rust codeRust codeRust codeRust code

TLA+ SpecTLA+ SpecTLA+ SpecTLA+ Spec
Automatic

Automatic

Automatic

… before diving into MBT...

Standard testing

Standard testing:
manual code generation

Standard testing:
integration test

Standard testing:
test driver

Standard testing

● Manual generation

– lots of efforts

– inflexible: fixes all parameters
● Hard to:

– understand the intention

– maintain

– cover all cases (many 100s)

Model-based testing

Demo: Continuous Integration

Model: Tendermint LightClient

Tendermint Blockchain

Tendermint Blockchain

Tendermint Light Client: skipping verification

Details: A Tendermint Light Client arxiv.org/abs/2010.07031

Tendermint Light Client

TLA+ tests

TLA+ tests

Modular extension of the TLA+ model

Model-checker: Apalache

Model checker: Apalache

Apalache demo

Apalache extension: TLA+↔Json

Apalache

TLA+

Json

Counterexamples as tests

Counterexamples as tests

Counterexamples as tests

Counterexample transformation

Counterexample transformation

Testgen: from abstract to concrete

Testgen: from abstract to concrete

Abstract: TLA+ Concrete: RustTestgen

“n1”

header |->
 [NextVS |-> {},
 VS |-> {"n4"},
 height |-> 4,
 lastCommit |-> "n1", "n2", "n3" },
 time |-> 1402]

"header": {
 "version": {
 "block": "0",
 "app": "0"
 },
 "chain_id": "test-chain",
 "height": "4",
 "time": "1970-01-01T00:23:22Z",
 "last_block_id": null,
 "last_commit_hash": A1227FA5ABACADB137F59906C4A604E806190C9991D6D965C50BED0D28CA8375,
 "data_hash": null,
 "validators_hash": "C8F8530F1A2E69409F2E0B4F86BB568695BC9790BA77EAC1505600D5506E22DA",
 "next_validators_hash": "E3B0C44298FC1C149AFBF4C8996FB92427AE41E4649B934CA495991B7852B855",
 "consensus_hash": "C8F8530F1A2E69409F2E0B4F86BB568695BC9790BA77EAC1505600D5506E22DA",
 "app_hash": "",
 "last_results_hash": null,
 "evidence_hash": null,
 "proposer_address": "0616A636E7D0579A632EC37ED3C3F2B7E8522A0A"
}

“validator”: {
 "address": "6AE5C701F508EB5B63343858E068C5843F28105F",
 "pub_key": {
 "type": "tendermint/PubKeyEd25519",
 "value": "GQEC/HB4sDBAVhHtUzyv4yct9ZGnudaP209QQBSTfSQ="
 },
 "voting_power": "50",
 "proposer_priority": null
}

MBT eliminates the divergence
between the specs and the code

MBT eliminates the divergence
between the specs and the code

MBT improves code coverage

MBT finds real bugs

Conclusion

● MBT significantly improves

– ease of writing / using the tests

– tests maintainability

– code coverage

● MBT allows to keep specifications and code synchronized
● The benefits substantially outweigh infrastructure investments

Work in progress

● Fuzzing
– additional mutation at the level of datastructures

– allows to cover scenarios inexpressible in the abstract model

– already helped us to discover some bugs

● Extension to Tendermint-go
– use auto-generated test files to test the Tendermint in Go LightClient

– required to write a simple test driver in Go; close to be finished

● Extensions to IBC-rs and IBC-go
– devised a concrete plan on replacing hand-written tests with model-based ones

– the development team is very enthusiastic

Future work

● Apalache extensions
– continuation of search to enumerate all counterexamples

– alternative approaches for faster counterexample search

● Executable TLA+
– code generation from TLA+; will allow to substantially speed up testing

● Distributed testing
– cut the system at the interface points

– replace some modules with executable specs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

