
  



  



  



  



  



  

Verification Driven Development
      github.com/informalsystems/vdd

● Developed English and TLA+ specifications 
of the core protocols

● Model-checked the TLA+ specs 
with Apalache

● Helped to fix subtle protocol issues, 
clarify the protocol understanding

● Realized the gap between 
the specs and the code

English Spec

TLA+ Spec

Rust code

Manual                  

Manual                 

Apalache

Automatic

Automatic
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Model-Based Testing

● Generate integration tests 
for production code from TLA+ specs 
and simple assertions

● Helped to eliminate the growing 
spec/code divergence

● Significantly improves 

– ease of writing / using the tests

– tests maintainability

– code coverage 
Test
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… before diving into MBT...



  

Standard testing



  

Standard testing: 
manual code generation



  

Standard testing: 
integration test



  

Standard testing: 
test driver



  

Standard testing

● Manual generation

– lots of efforts

– inflexible: fixes all parameters
● Hard to:

– understand the intention

– maintain

– cover all cases (many 100s)



  

Model-based testing



  

Demo: Continuous Integration



  

Model: Tendermint LightClient



  

Tendermint Blockchain



  

Tendermint Blockchain



  

Tendermint Light Client: skipping verification

Details: A Tendermint Light Client arxiv.org/abs/2010.07031



  

Tendermint Light Client



  

TLA+ tests



  

TLA+ tests



  

Modular extension of the TLA+ model



  

Model-checker: Apalache



  

Model checker: Apalache



  

Apalache demo



  

Apalache extension: TLA+↔Json 

Apalache

TLA+

Json



  

Counterexamples as tests 



  

Counterexamples as tests 



  

Counterexamples as tests 



  

Counterexample transformation



  

Counterexample transformation



  

Testgen: from abstract to concrete 



  

Testgen: from abstract to concrete 

Abstract: TLA+ Concrete: RustTestgen

“n1”

header |->
  [NextVS |-> {},
    VS |-> {"n4"},
    height |-> 4,
    lastCommit |-> "n1", "n2", "n3" },
    time |-> 1402]

"header": {
  "version": {
    "block": "0",
    "app": "0"
  },
  "chain_id": "test-chain",
  "height": "4",
  "time": "1970-01-01T00:23:22Z",
  "last_block_id": null,
  "last_commit_hash": A1227FA5ABACADB137F59906C4A604E806190C9991D6D965C50BED0D28CA8375,
  "data_hash": null,
  "validators_hash":  "C8F8530F1A2E69409F2E0B4F86BB568695BC9790BA77EAC1505600D5506E22DA",
  "next_validators_hash": "E3B0C44298FC1C149AFBF4C8996FB92427AE41E4649B934CA495991B7852B855",
  "consensus_hash": "C8F8530F1A2E69409F2E0B4F86BB568695BC9790BA77EAC1505600D5506E22DA",
  "app_hash": "",
  "last_results_hash": null,
  "evidence_hash": null,
  "proposer_address": "0616A636E7D0579A632EC37ED3C3F2B7E8522A0A"
}

“validator”: {
  "address": "6AE5C701F508EB5B63343858E068C5843F28105F",
  "pub_key": {
    "type": "tendermint/PubKeyEd25519",
    "value": "GQEC/HB4sDBAVhHtUzyv4yct9ZGnudaP209QQBSTfSQ="
  },
  "voting_power": "50",
  "proposer_priority": null
}



  

MBT eliminates the divergence 
between the specs and the code



  

MBT eliminates the divergence 
between the specs and the code



  

MBT improves code coverage



  

MBT finds real bugs



  

Conclusion

● MBT significantly improves 

– ease of writing / using the tests

– tests maintainability

– code coverage 

● MBT allows to keep specifications and code synchronized
● The benefits substantially outweigh infrastructure investments 



  

Work in progress

● Fuzzing
– additional mutation at the level of datastructures

– allows to cover scenarios inexpressible in the abstract model

– already helped us to discover some bugs

● Extension to Tendermint-go
– use auto-generated test files to test the Tendermint in Go LightClient

– required to write a simple test driver in Go; close to be finished

● Extensions to IBC-rs and IBC-go
– devised a concrete plan on replacing hand-written tests with model-based ones

– the development team is very enthusiastic



  

Future work

● Apalache extensions
– continuation of  search to enumerate all counterexamples

– alternative approaches for faster counterexample search

● Executable TLA+
– code generation from TLA+; will allow to substantially speed up testing

● Distributed testing
– cut the system at the interface points

– replace some modules with executable specs
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