.,

N
oM~

Open Networking Foundation

Bridging the Verifiability Gap

Why we need more from our specs and how we can get it

Jordan Halterman

An Operator Led Consortium

— o0 M %
= AT&T snssgméﬂ comcast IF=- Google @NTTGrowp TurkTetskor

Overview

Distributed Systems at ONF

The Verifiability Gap

Model-Based Trace Checking
Model-Based Conformance Monitoring

What We Learned Along the Way

Distributed Systems at ONF

ONF

The Open Networking The Open Network
Foundation is an industry Operating System (ONOS)
funded open source Open source network
foundation controller

Dedicated to bringing The first project created at
software-defined networking ONF

technology to industry Brought to production in a
Small engineering staff nationwide network

develops ambitious projects

ONQOS

Controller

ONOS

ONQOS

Gossip

Consensus Primary-backup

<€------ > ONOS *----- > ONOS

Switch

Switch Switch

O M-

The Verifiability Gap

ONOS in Production

In 2018 we began field trials of ONOS
Production scale testing exposed distributed systems bugs that

had laid dormant for years

Spent hours and often days scanning trace logs to identify bugs
After years of work, ONOS was eventually deployed in
production in a nationwide network

TLA+ at ONF

TLA+ a critical tool for productionizing ONOS
Designing new distributed systems protocols
Improving existing distributed systems protocols

TLA+ in ONOS
Extending the Raft consensus protocol
Distributed locking algorithms
Custom primary-backup protocols
Network-optimized consensus protocols

Helped validate solutions for numerous bugs

Could have been more effective if used in initial design

O M-

A New ONOS

In 2019, the ONOS team began a complete rewrite
of ONOS using cloud native architecture

Opportunity!

A New ONOS

~ocus on testing and debugging infrastructure
How can we reduce the number of bugs?
How can we making debugging easier?

A New Commitment to TLA+

Began using TLA+ to design new systems
Document and verify algorithms
Provide a foundation for experimenting with enhancements

Used to
Design new leader election algorithm
Verify control loop logic
Design distributed cache

Now we know the algorithm is correct...

How do we know the code is correct?

The Ideal Solution

Design a new algorithm with TLA+

Verify the new algorithm with TLC
Implement the algorithm with Go/Java/etc
Verify the implementation against TLA+ spec
Debug the implementation using TLA+ spec

Why TLA+?

Algorithms already specified in TLA+

Using an alternative tool would present the same
problem: maintaining consistency with the TLA+
spec

Could help encourage the use of TLA+ to design
new algorithms

Model-Based Trace Checking

Model-Based Trace Checking

Run application

Log structured (e.g. JSON) traces
Consume structured traces in TLA+
Change model state

Verify state adheres to invariants

Test Framework

Test CLI

Kubernetes
D
Trace Coordinator Test
Raft ONOS
3 —_———

OMF

Trace Checking

| MODULE MapCacheTrace

EXTENDS Naturals, Sequences, TLC, Trace

VARIABLE reads

VARIABLE events

VARIABLE ¢

INSTANCE MapHistory WITH history < reads, events < events

Read £
LET record = Trace[i']
IN
V A V record.op = “put”
V record.op = “get”
V record.op = “remove”
A RecordRead(record.process, record.key, record.version)
A UNCHANGED (events)
V A record.op = “event”
A Record Event(record.process, record.key, record.version)
A UNCHANGED (reads)

Next =
Vi < Len(Trace) Ai' =i+ 1A Read

V UNCHANGED (i, reads, events)

Spec = Init A D[Next](i, reads, events)

Trace Checking

Record a read to the history
RecordRead(c, k, v) =
A V A ¢ € DOMAIN history
A k € DOMAIN history|c|
A history’ = |history EXCEPT ![c|[k] = Append (history[c][k], v)]
V A ¢ € DOMAIN history
A k ¢ DOMAIN history|c]
A history’ = |history EXCEPT ![c| = history[c| QQ (k:> (v))]
V A ¢ ¢ DOMAIN history
A history’ = history QQ (¢:> [i € {k} — (v)])

Trace Checking

The state invariant checks that the client’s history never go back in time
StateInvariant =
AY ¢ € DOMAIN history :
AV k € DOMAIN history|c] :
AV r € DOMAIN history[c][k] :
r > 1 = history|[c][k][r] > history[c][k][r — 1]

Challenges

Worked great for checking client-centric consistency models
Still not obvious how to ensure the code correctly implements
every step in the spec

Production experience limits confidence in our ability to
produce safety violations in test environments

Need to be able to detect bugs when they occur rather than
relying on our ability to make them occur

O M-

Model-Based Conformance Monitoring

Conformance Monitoring

Near-real time trace checking
Log application traces to stream
Consume stream in TLC process
Update model state

Verify state adheres to invariants
Alert when invariant is violated

ONOS

Conformance Monitoring

Trace

https://qgithub.com/onosproject/tlaplus-monitor

Kafka

N ——— e’

Model

v

Model Checker

—

-

{“op™: “read”, ...

{“op”: “write”, “...

{“Op": “read”, i

https://github.com/onosproject/tlaplus-monitor

Conformance Monitoring

I MODULE MapCacheTrace

EXTENDS Naturals, Sequences, TLC, Trace
VARIABLE reads

VARIABLE events

VARIABLE offset

INSTANCE Traces

INSTANCE MapHistory WITH history < reads, events < events

Read =
A offset’ = offset + 1
A LET
record = Trace(offset’)
IN

V A V record.op = “put”
V record.op = "get”
V record.op = “"remove”
A RecordRead(record.process, record.key, record.version)
A UNCHANGED (events)
V A record.op = “event”
A RecordEvent(record.process, record.key, record.version)
A UNCHANGED (reads)

Init =
A offset =0
Areads =[p € {} = [k € {} = (}]]
Nevents=[p € {} = [k € {} = (]]
Next =
V Read
V UNCHANGED (offset, reads, events)

Spec = Init A D[Nezt](oﬁset, reads, events)

Conformance Monitoring

Read ©

A offset’ = offset + 1
record = Trace(offset’)

V A V record.op = “put”
V record.op = “get”
V record.op = “remove”
A RecordRead (record.process, record.key, record.version)
A UNCHANGED (events)
V A record.op = “event”
A RecordEvent(record.process, record.key, record.version)
A UNCHANGED (reads)

I

Conformance Monitoring

The state invariant checks that the client’s history never go back in time
StateInvariant =
V AV c € DOMAIN history :
AV k € DOMAIN history|c] :

AY r € DOMAIN history|c][k] :
r> 1= historulellkllr] > bistarulcllkllr — 11

Alert([msg — “Invariant was violated”)

Challenges

Difficult to limit the size of the trace in an infinite stream
Ordering can be established within a single process

Must rely on timestamps for ordering across processes
May work best for client-centric consistency models
Modern ns-scale clock synchronization protocols (Huygens,
DPTP, etc) could help

Still need a sorting step

O M-

What We Learned Along the Way

What We Learned Along the Way

Generally possible to use TLA+ to check traces against system
invariants both offline and online

Simpler to test local invariants than global invariants in a
distributed system

Not so easy to check traces using original design specs

Specs still need to be written for trace checking

Modularity of TLA+ does allow specs to share logic

What We Learned Along the Way

Still see significant value in trace checking with TLA+
Significant success in using it to verify APl guarantees
But not internal implementations, which was the goal

By making it part of our testing infrastructure
Detect bugs before they’re seen in production
Reduce the effort required to debug systems
Find ways to generalize trace checking for TLA+

Questions?

34

