Obtaining statistical properties
by simulating specs with TLC

Jack Vanlightly & Markus A. Kuppe

Jack Vanlightly
Researcher at Confluent

%) CONFLUENT

&8 Kaifka

(29

Markus A. Kuppe
Principal Research Engineer

Jack Vanlightly @vanlightly - Jul 20, 2020

I'Vé Rounds to steady state with 10 queues, client dimension *

cor 3-15, random subscribe order Jo
get 40 - nds Min
: + SP \ds p50
N statistics W! 2\23—: Qnd s 275
She Hi, you car ga‘\’_C)‘S S'\mu\a’t\O"‘ 's p95
100 if YOU use p99
Jac & '\'LCGet/ Set. — Rounds Max

— L WL .29 PM
Im 2 N Jul 20; 20'20»6'29\D %
|np 0 e —— ——

Q Client Count

Marc Brooker

@MarcJBrooker
This week I'm doing an internal talk at Amazon about
an approach to system design that | use
think would use useful to a lot of people: simulation.

This thread is a summary of the talk 1/

Marc Brooker @MarcJBrooker - Mar 16
Replying to @MarcJBrooker

Formal tools (like P and TLA+) do a great job of helping us answer questions
about the safety and liveness properties of systems. Safety is obviously
critical, butlliveness is a bit unfulfilling. l/ly customers don't care about
'‘eventually’, they care about latency!

Q 1 T 3 QO 62 q

Marc Brooker @MarcJBrooker - Mar 16
We care about cost, about throughput, about availability, about durability,
etc. These are mostly probabilistic properties |there's no perfectly available
system!) but we care deeply what the probabilities are (‘eventually' doesn't
cutit). 3/

O 1 . 2 Q 45 by

Marc's Blog

Blog Posts

2022

Histogram vs eCDF
What is Backoff For?

Getting into formal specification, and getting my_

The DynamoDB paper
Formal Methods Only Solve Half My Problems

What 1s a simple system?
I Simple Simulations for System Builders

Fixing retries with token buckets and circuit bre:

Will circuit breakers solve my problems?

Software Deployment, Speed, and Safety

DynamoDB's Best Feature: Predictability

The Bug in Paxos Made Simple
I Serial, Parallel, and Quorum Latencies

Why measure statistical properties through simulation?

e Doesn’t require engineers to have a high level of statistics
e No system-level noise with specs => Reproducible

e Evaluate hyperproperties
o Is a property common or rare?
o Aliveness property can tell us something good eventually, but what is the distribution “time passed”
across N traces?
o ldentify worst-case complexity / pathological behaviour

e Differential analysis

o Comparing algorithm variants
o Comparing tunable parameters
o Seeing the impact on specification changes

How to measure statistical properties?

e Run TLC in “generation” mode
e Count events (counters)

o Messages sent
o Protocol rounds
e Count objects that satisfy a predicate (gauges)

o Elements in a queue
o Number of members that have detected a dead peer

e Cannot measure wall-clock time (use a proxy if you have one)
e \Write out counters along with other attributes to CSV

e Use favourite statistical analysis tooling
o Markus and | like R and ggplot2

e Hopefully reuse standard safety/liveness spec

Spec

Cfg
TLC

Env

CSV

Y

R, Python,
Google
sheets etc

Demo

(Knuth-Yao & EWD998)

Demo

(Knuth-Yao

Knuth Yao - Simulate six-sided die (1976)

Knuth Yao - Simulate six-sided die (1976)

Solve Markov Chain:
e Analytically
e Prism, ...

“Model Checking Meets Probability: A Gentle Introduction® by Joost-Pieter Katoen

http://i-cav.org/2015/wp-content/uploads/2015/07/mod12_katoen.pdf
http://www.prismmodelchecker.org/tutorial/die.php

Knuth Yao - Simulate six-sided die (1976)

____________ MODULE KnuthYaol
EXTENDS Reals

VARIABLES p, s, f

== [s@ |-> [H |-> "s1", T |-> "s2"],
sl |-> [H |-> "s3", T |-> "s4"], e TLC no support for R
s2 |-> [H |-> "s5", T |-> "s6"], e Infinite state space
s3 |-=> [H |-> "s1", T |-> "1" 1, o Halving p in the cycles
s4 |-> [H |- "2", T |- "3"], e Cannot state “fair die” property in TLA+
s5 |-> [H |-> "4", T |- "5" 1, o Not true/false of a behavior
s6 |-> [H |-> "6", T |- "s2"]] o \Ad\in 1..6: Pr(<>(s=d)) = 1/6

Init == s = "s@" /\ p =1 /\ f \in {"H","T"}

Next == /\ s \notin 1..6 /\ s' = T[s][f]
/\ pl - p/2 /\ fl \ln {IIHII'IITII}

A Spec of a fair die? KnuthYao spec by Ron Pressler

Crooked Coin - Simulate six-sided die

$ bin/prism die.pm -ss

Printing steady-state probabilities in plain text format below:
7:(7,1)=0.2882349195996611

8:(7,2)=0.2882349195996611
9:(7,3)=0.12352925125699758
10:(7,4)=0.18607580157067485
11:(7,5)=0.0797467721017178

12:(7,6)=0.034177188043593335

Demo

EWD998)

Outline Demo - Knuth Yao

Show graph on slides
Show Ron’s spec
Dyadic Rationals

Environment checks (assumes)
a. Simulate with -depth 5

CSVWrite header
CSVWrite in “terminal’ state

Why not all p \in 2”p in plot? => Some values of p are not Done states
Crooked Heads/Tails

a. Stateless and Stateful

LN~

© N O O

EWD998 - Termination Detection in a Ring

Circle: Active, Black: Tainted

Line: Message, Arrow: Receiver
Dashed: In-Flight, Solid: Arrival in next

Level: 1

©

An active node may send a message
A message activates and taints the receiver
node
Initiator sends token around the (overlay) ring
Initiator detects termination iff token

o atinitiator

o untainted

o sum of in-flight messages is zero

Safe: [[(terminationDetected => terminated)
Live: terminated ~> terminationDetected

https://www.cs.utexas.edu/users/EWD/ewd09xx/EWD998.PDF

EWD998 - Proposed Optimizations (Safe & Live hold)

An active node may pass the token if PassToken(i) ==
. (x Rules 2 + 4 + 7 %)
the node is black. /\ ~ active[il \x If machine i is active,

I /\ \/ ~ activel[i]l \x If machine i is acti
\/ color[i] = "black"
/\'token.pos = g
/\ token' = [token EXCEPT !.pos =@ - 1,

PassToken(i) ==
(x Rules 2 + 4 + 7 x)
/\ ~ active[il \x If machine i is active, keep the token. An node returns the token to

/\ token.pos = i .y . .
a1 = i the initiator if the node is

/\ token' = [token EXCEPT !.pos = IF color[il = "black” THEN @ ELSE @ - 1, black, i.e., abort inconclusive
l.q = @ + counterl[i], token round

EWD998 - Deoptimization Analyzed

Circle: Active, Black: Tainted Circle: Active, Black: Tainted

Line: Message, Arrow: Receiver Line: Message, Arrow: Receiver
Dashed: In-Flight, Solid: Arrival in nex Dashed: In-Flight, Solid: Arrival in nex
Level: IQTerminated: T Detected: F Level: 1 Terminated: T Detected: F

-

o Bo

Token passes: Token passes:
O(3N) O(((N+1)2+ (N+1)/2)-1)

Outline Demo - EWD998

Intro termination detection algorithm

Outline the proposed optimizations

Spec: Feature flags in PassTokenOpts

Spec: Hooks in AtTermination and AtTerminationDetection
Spec: Validation with asserts in AtTerminationDetection
Spec: Decreasing probability of SendMsgQOpts

Spec: “Script” EWD998 optsSC.tla and IOUtils!IOEnv
Graph: T2TD

a. Point out that all optimization combinations are simulated
Graph: occurrence of actions

©NOORAE DN =

©

Case Studies

(SWIM, |

SWIM

e Group membership
e Failure detection component
e Dissemination component -

infection style

[8) HashiCorp

Serf

Decentralized Cluster Membership, Failure
Detection, and Orchestration.

https://www.cs.cornell.edu/projects/Quicksilver/public_pdfs/SWIM.pdf

SWIM: Scalable Weakly-consistent /nfection-style Process Group Membership
Protocol

Abhinandan Das, Indranil Gupta, Ashish Motivala®
Dept. of Computer Science, Cornell University

Abstract

Several distributed peer-to-peer applications require
weakly-consistent knowledge of process growp membership
informution @ all purticipating processes. SWIM is a
generic software module that offers this service for lurge-
scule process groups. The SWIM effort is motivated by the
unscalabilin of truditional iu’url-}wur:r:q profocols, w fich
either impose network loads that grow quadratically with
ROMP SIZ€, OF COMPromise response times or ,'.u'.'-r positive
frequency w.rt. detecting process crushes. This paper re-
ports on the n“rll_i"l, ilupllf'/urur.l.'l'tlr: and performance of the
SWIM sub-svstem on a lurge cluster of commodity PCs.

Unlike truditional heartheating protocols. SWIM sepu-
rates the fuilure detection and membership update dissem-
inuation functionalities of the membership protocol. Pro-
cesses ure monitored through an efficient peer-to-peer peri-
lln‘h' m!k}nmf:rd’]UvJ'il.'-:; protec 'm'. ﬂu.vr': n':r «'\pn'l(-)‘ lirne
to furst detection of each process 'm.'llurr, and the c'\pn‘lrd’
message "l'n’(l. [’('f "f('"l’}‘f’ d‘l’ no yan ll'l‘ll’l Ql?'.’t[’ sie.
Information about membership changes, such as process
joins, drop-outs and fuilures, is propagated via piggvback-
ing on ping messages and acknowledgments. This results in
a robust and fast infection style (also epidemic or gossip-

stvle) of dissem
The rate of false fuilure detections in the SWIM system
s :

1 . |
is reduced by nnlu‘lf\m-; the pln’ux‘m‘ to allow group
' R '

mem-
' e [

Ithaca NY 14853 USA
{asdas,gupta,ashish}@cs.cornell.edu

1. Introduction

As vou swim lazily throwgh the milien,

The secrets of the world will infect you.

Several large-scale peer-to-peer distributed process groups
running over the Internet rely on a distributed membership
maintenance sub-system. Examples of existing middieware
systems that utilize a membership protocol include reliable
multicast [3, 11]. axl epidemic-style infonmation dissemi-
nation [4, 8, [3]. These protocols in turn find use in applica-
tions such as distributed databases that need to reconcile re-
cent disconnected updates [14], publish-subscribe systems,
anx large-scalke peer-to-peer systems| 15]. The perfonmance
of other emerging applications such as large-scale cooper-
ative gaming. and other collaborative distributed applica-
tions. depends critically on the reliability amx scalability of
the membership maintenance protocol used within.

Bricfly. a membership protocol provides cach process
(“member”) of the group with a locally-maintained list of
other non-faulty processes in the group. The protocol en-
sures that the membership list is updated with changes re-
sulting from new members joining the group. or dropping
out (cither voluntarily or through a failure). The member-
ship list is made available to the application cither directly
in its address space. or through a callback interface or an
APIL. The application is free to use the contents of the list as
required, ¢.g. gossip-based dissemination protocols woukd

SR RIRRO

PRI = R S U WSS SR A R B i S

Infection-style spread of member state information

pro'tocol eeriod 1 (oro‘tocol eeriod 2

O0p 00p O%¢
O Q O Q
Ooiz Qo7 U

pro'tocol eriod 3 Ppo'tocolpeﬁod)’
5
O

Failure detection component

Choose k members to
send ping-re_q

| eing

No response!

k = Peer Group Size

Failure detection component

Dissemination component - information is infectious!

{Sto\‘te_, dissemination countert

b -> So\ wve, 3¢
c -> Ealive, 3¢
Li 2% % e wve, 3}'1

) la > Calive, 22|
VY A wis fo\l?\/g, 24
. _d % fdead, O}_‘J

T—

a -> falive, 3¢
b -> Ealive, 3¢
d -> fah\/e, 3¢

Can be shared 3 times
until it becomes benign

Dissemination component
ss’Co\‘te, dissemination Qoun‘tef‘}

b -> {O\h\/e, 3}
=2 alive“ ;L
b > ¢dead, OF

B Nle > falive, 32
A [-5 §dead, 1

a -> EO\I?VQI oy
b -> Sah\/e_' 3}
d -> SO\hVe, 3}‘}

Suspicion mechanism

Remains suspect for
"suspe_ct timeout" pr‘o‘toco[pe_r‘?ods

SWIM - Checking results against the paper

Message load per member per round

[e=]

Sent message's T
Recvd. messages &

~
r

(o2}
T

o
T

w
-

no

Average member message load/protocol period
— R

o

8 16 24 32 40 48 56
Group Size

SWIM - Checking results against the paper

Message load per member per round

Message load (In and out) per member per round
As a function of group size

n

MessageType

. IncomingMessages
. OutgoingMessages

Message load in vs out

10 20 30 40
Number of members

SWIM - Checking results against the paper

Protocol rounds to first detection of dead member
8

Avg. First Detection —
Analytic=e/(g-1) -~

o B T
(9]
L]
)
o
Q
g X
g 4
S <
8
X i

0
£
F oot x X

I SRR S X% x

PoX -
0 (R i 1 i 1
8 16 24 32 40

Group Size

SWIM - Checking results against the paper

Protocol rounds to first detection of dead member

Rounds to first detectlon of dead member
As a function of group size

4
Run 10
times per
group size 2 ' I | | | |
0
10 20 30

Group size
40

30

Rounds

20

10

40

Group size

SWIM - Checking results against the paper

Protocol rounds to first detection of dead member
Group size
40
30
20
10
40

Rounds to first detectlon of dead member
As a function of group size

Run 1000
times per)
group size

Group size

Rounds

30

case studies/swim/differential-analysis

Differential analysis

e Exploring tunable parameters as dimensions
e Comparing algorithm variants

Dimension: Dissemination limit with group size=20

Mean rounds to convergence with standard deviation
As a function of dissemination limit and number of dead to detect

NumDead: 1

' i DisseminationLimit
2 4 6

Dissemintation Limit

—
(5]

o
- N W s, 0>

Rounds to achieve convergence
wm

0

Inspecting specific traces - propagation of dead states

All members
have been
infected

Round

State type
— Dead

Variants: “SWIM + Inf” vs “SWIM + Inf + Susp”

Dimensions: Suspect Timeout (with 10% message loss)

Propagation of false dead states over rounds
As a function of suspect timeout

-~

SWIM + Inf

SuspectTimeout: 1 SuspectTimeout: 2

All members / !

think all other

member are " “ Found
dead® e v .HH"

\ u :— SuspectTimeout: 4 SuspectTimeout: 5
o]

SWIM+ _*

Inf + Susp

. ...‘uuM“"M""w MQIIIM“"“
0 10 20 30 40 O 10 20 3(j
Round

Variant: “SWIM + Inf + Susp” and Suspect Timeout=5

Dimension: Peer Group Size (with 10% message loss)

Propagation of false dead states over rounds
As a function of peer group size

PeerGroupSize: 1 PeerGroupSize: 2

3

o

2

. ..NMHM“M“WNN‘ ...Mmuuumuuimﬂi -

o

%]
2
©
‘&") Ry Sl aliy Mottt bt e o S s ey oo e one L i LTS LT]
ks
5] PeerGroupSize: 3
o
o)
0
L‘E 30

20

10

P TR R | EEEs R I-H-lHQ-'I-H*“*m*H**H‘

0 10 20 30 40
Round

SWIM - Ensuring uniform distribution of simulation
dimensions

Behavlours per round and PG

8000 -

6000 -

€ 4000 =
2000 - 3000 -
0- 0-
1 1 Ll 1 1 L] 1] L]) L]
0 10 20 30 40 0 10 20 30 40
Round

Round

SWIM - Ensuring uniform distribution of simulation
dimensions

Alive, suspect and dead states across the group

SuspectTimeout: 0 SuspectTimeout: 3
All members
believe all
other
members
300 1
are dead
State type
8 200+ - Dead
o
) — Allve
- Suspect
1004
" /_/*/\
b | T T T T ¥ T Ll T 1
0 10 20 30 40 0 10 20 30 40

Round

SWIM - Challenges

e Performance

o Overrides required for larger models to achieve higher behaviour counts
o TLC improvements

e Specification complexity
o Not just basic abstraction
o Implement variants faithfully
o Support for configuring variants and dimensions
o Ensuring metrics emitted at the right time

(

Case Studies

. RabbitMQ,

)

RabbitMQ Reactor Streams library

e (Cooperative resource allocation
o Multiple clients cooperate to balance queue assignment
fairly

e High degree of non-determinism

RabbitMQ Reactor Streams library

S?ngle_ active consumer

RabbitMQ Reactor Streams library

Cooperative clients

Client 1 releases res 3

cli 1 subserib
ient 1 subseribes Client 2 subseribes
and resubscrﬁbes

to all resources
to all resources

777 /{/W U,
&/ (06 |

7R, / 7 s%W

AN

7 | / %ﬂ//%

N\

Scenario: Concurrent start-up of clients
Dimension: Number of clients
Measured: Total queue releases

Distribution of queue releases for different client counts

Queues: 20
200

150

100

Total queue releases

50

A I O

Number of clients

Scenario: Concurrent start-up of clients
Dimension: Number of clients
Measured: Total queue releases

Total queue releases with percentiles

Queues: 20
200 4

150 ‘ ‘ Percentiles
Min
- P50
— p75
pso
— p95

1004

Total queue releases

- P99

509 - Max

Number of clients

Scenario: Concurrent start-up of clients
Dimension: Number of clients

Measured: Rounds to reach balance and stability =ach round is 30 seconds
Rounds to reach stabllity with percentiles p99 of 25 minutes!
Queues: 20
™1 Percentiles

Min

- p50
— p75
poo
- p95
= P99

Rounds to reach stability

- Max

Number of clients

Scenario: One client dies
Dimension: Number of clients
Measured: Rounds to reach balance and stability

Rounds to reach stabillity with percentiles
Queues: 20

50 Percentiles

- Min
— p50
404 - P75

p90
-— p95

- po99

Rounds to reach stability

= Max

Number of clients

Why such variance?

Finding an optimization

Scenario: Concurrent start-up of clients

Dimension: Number of clients

Measured: Rounds to reach balance and stability
Rounds with percentiles

Opt1:
Non-active
release

Opt2: Ranking
algorithm
(pos2)

Rounds

Queues: 20

pos1-activerelease

posi-nonactiverelease

——

pos2-activerelease

pos2-nonactiverelease

1
20

T
30
Number of clients

T ¥
10 20

L e =

T
30

Percentiles

— Min
—_pb0
—p7h

poo
— p95
—099
— Max

Scenario: One client dies
Dimension: Number of clients

Measured: Rounds to reach balance and stability
Rounds with percentiles

Queues: 20
Opt1 . ’ posi-activerelease posi-nonactiverelease
Non-active St
release 1 Percentles
20-: — MIn
. AR —— p50
Opt2: Ranking 3 o : -
a | g Orith m é DOSZ-actIvereIeas'e pos2-nonactiverelease so0
60 - f\ =P85
(pOSZ) A — p99
40 — Max
204
01, , = = e {§ - - . . J
0 10 20 300 10 20 30

Number of clients

Checking dimension
distributions

Behavlours per client count
Client Count
30
£ 4000
3
S 20
s
$ 2000
@ 10
0
10 20 30
Number of clients
Behavlours per client count and algorithm
Algorithm
% 4000 - pos1-activerelease
E posi-nonactiverelease
§ 2000~ pos2-activerelease
pos2-nonactiverelease
o g .) .
20 30

10

Number of clients

Queue releases

Comparing TLA+ data to original Python simulation

Total queue releases with standard dev Total queue releases with st dev
Queues: 20 Queues: 20
60 60
Client Count
4 30
%]
40 8 40
o
=
S
O
20 ii iii iiiii Wiiii ii"
, aﬁiiii iii 1 iiii
Number of cllents Number of cIIents

TLA+ Python

Total queue releases

Comparing TLA+ data to original Python simulation

Total queue releases with percentiles Total queue releases with percentiles
Queues: 20 Queues: 20
200 2004
150 4 | Percentile 150 4
[}
Min 2
(V]
— p50 ©
e
100+ — P15 6400
pso &
o
— p95
— pos 2
504 . 504
0 oA
10 20 30 10 20 30
AppCount Number of clients

TLA+ Python

Percentiles
- Min
— P50
— p75
— p9s5
— po9
— Max

Case Studies

, , Kafka)

Kafka Group Rebalancing Protocol v3

e |eader based resource allocation
o Multiple assignment strategies

e Low degree of non-determinism

e Design
o Broker performs partition assignments by piggybacking on heartbeat messages
o Strategies
m Round-robin
m Range
m Sticky
o Partition revocations disruptive
m Minimize as much as possible

Kafka Group Rebalancing Protocol v3
Assignment strategies and revocations

Revocatlons with standard dev

range

mIIIi'iilliiIIIliiiiiiiilllmmmi

roundrobin

s D
o o

20 partitions
and killing a
single client

n
(=T -]

Client Count
40

30
10

stickyfairsimple

o

Revocations
n oS n
o o

o

60
40

20

I T 0 e I i e e e e e =i e e e e e 0 s - e e e e 8 o e e e e e e B e

0 10 20 30 40
Number of clients

Kafka Group Rebalancing Protocol v3

Sticky assignment optimization: Distance to ideal assignment
Revocatlons with standard dev

Distances: i s e
1-4 o M .Il
+ {ly i
20 partitions : i . Cllnt Count
and kilinga 5 st i)
single client § I — ! :z
@ 6 I I 10
M |
|
. III II
il I
o B ot | Lt

Number of clients

Conclusion

e Tried simulation successfully on 8 toy and real-world specs

o Insights led to changes in RabbitMQ Reactor Streams client
e Unit of measure?

o First-class citizen of spec :-)

o System-level measures such as coherence & contention :-(

e Define the workload & perturbations of the system in TLA+

o N% message loss, M dead nodes, W writes, ...
o Not via (hon-machine-closed) fairness constraint :-(

e Scalability and Small scope hypothesis?
o Larger number increase the resolution but do not seem to change the trend
o Simulation is embarrassingly parallelizable!
o TLC: Java Module Overrides (profiler), CommunityModules, TLCCache, Randomization.tla, ...
=> keep talking at https://github.com/tlaplus/tlaplus/issues/601

https://github.com/tlaplus/CommunityModules/blob/master/modules/FiniteSetsExt.tla#L79-L93
https://github.com/tlaplus/tlaplus/blob/bb81284a49775b25fb47b6b8b869fdd57714cfbe/tlatools/org.lamport.tlatools/src/tla2sany/StandardModules/TLCExt.tla#L146-L154
https://github.com/tlaplus/tlaplus/blob/master/tlatools/org.lamport.tlatools/src/tla2sany/StandardModules/Randomization.tla
https://github.com/tlaplus/tlaplus/issues/601

Questions?

Q&A

Specs

e https://qithub.com/Vanlightly/formal-methods-playaround/tree/master/tla/tlaplus-conf/swim

e https://github.com/Vanlightly/formal-methods-playground/tree/master/tla/tlaplus-conf/rabbitmq

e https://qithub.com/Vanlightly/formal-methods-playground/tree/master/tla/tlaplus-conf/kafka

e https://github.com/tlaplus/Examples/tree/master/specifications/KnuthYao

e https://github.com/tlaplus/Examples/tree/master/specifications/ewd998

e https://github.com/lemmy/ewd840/tree/mku-simulate-new

e System-level:

e https://github.com/lemmy/BlockingQueue/

e https://qithub.com/lemmy/PageQueue/

https://github.com/tlaplus/Examples/tree/master/specifications/KnuthYao
https://github.com/tlaplus/Examples/tree/master/specifications/ewd998
https://github.com/lemmy/ewd840/tree/mku-simulate-new
https://github.com/lemmy/BlockingQueue/blob/main/BlockingQueuePoisonApple_stats.tla
https://github.com/lemmy/PageQueue/

TLC Design Guidelines

e One language to rule them all
o Define what is measured in TLA+
e Analysis orthogonal to TLA+

o Integration with R, matplotlib, ... via CSV/Json
o But move more and more stats into TLA+

e “Wer misst misst Mist” (Who measures measures rubbish)
o Environment and behavior validation in TLA+

TLC Changes

e TLC
o Replace non-determinism with uniform probabilities in TLC in “-generate” mode
o Built-in statistics in simulation mode
o PostCondition
e TLC.tla
o TLCGet(“config”)
o TLCGet(“stats”)

o TLCEval

o TLCDefer (obsolete with -generate)
e TLCExt.tla

o TLCTrace
e |OUitils.tla

o IOEnv

o |O[Env]Exec
e CommunityModules
o CSV.la
o FiniteSetsExt.tla
o Combinatorics.tla

TLCEXxtITLCCache

e Introduce TLCCache operator

o lIts TLA+ definition / What is its parameter
o Example where it is useful

e Contrast its performance benefits with a dedicated module override
o https://qithub.com/Vanlightly/formal-methods-playground/issues/2

e Annotation-based module overrides

https://github.com/Vanlightly/formal-methods-playground/issues/2

