
Obtaining statistical properties
by simulating specs with TLC

Jack Vanlightly & Markus A. Kuppe

Jack Vanlightly
Researcher at Confluent

Markus A. Kuppe
Principal Research Engineer

Why measure statistical properties through simulation?

● Doesn’t require engineers to have a high level of statistics
● No system-level noise with specs => Reproducible
● Evaluate hyperproperties

○ Is a property common or rare?
○ A liveness property can tell us something good eventually, but what is the distribution “time passed”

across N traces?
○ Identify worst-case complexity / pathological behaviour

● Differential analysis
○ Comparing algorithm variants
○ Comparing tunable parameters
○ Seeing the impact on specification changes

How to measure statistical properties?

● Run TLC in “generation” mode
● Count events (counters)

○ Messages sent
○ Protocol rounds

● Count objects that satisfy a predicate (gauges)
○ Elements in a queue
○ Number of members that have detected a dead peer

● Cannot measure wall-clock time (use a proxy if you have one)
● Write out counters along with other attributes to CSV
● Use favourite statistical analysis tooling

○ Markus and I like R and ggplot2

● Hopefully reuse standard safety/liveness spec

TLC

CSV

R, Python,
Google

sheets etc

Spec

Cfg

Env

Demo

(Knuth-Yao & EWD998)

Demo

(Knuth-Yao & EWD998)

Knuth Yao - Simulate six-sided die (1976)

Knuth Yao - Simulate six-sided die (1976)

“Model Checking Meets Probability: A Gentle Introduction“ by Joost-Pieter Katoen

Solve Markov Chain:
● Analytically
● Prism, …

http://i-cav.org/2015/wp-content/uploads/2015/07/mod12_katoen.pdf
http://www.prismmodelchecker.org/tutorial/die.php

Knuth Yao - Simulate six-sided die (1976)

A spec of a fair die?

● TLC no support for ℝ
● Infinite state space

○ Halving p in the cycles
● Cannot state “fair die” property in TLA+

○ Not true/false of a behavior
○ \A d \in 1..6: Pr(<>(s=d)) = 1/6

KnuthYao spec by Ron Pressler

Crooked Coin - Simulate six-sided die

$ bin/prism die.pm -ss

…

Printing steady-state probabilities in plain text format below:

7:(7,1)=0.2882349195996611

8:(7,2)=0.2882349195996611

9:(7,3)=0.12352925125699758

10:(7,4)=0.18607580157067485

11:(7,5)=0.0797467721017178

12:(7,6)=0.034177188043593335

Demo

(Knuth-Yao & EWD998)

Outline Demo - Knuth Yao

1. Show graph on slides
2. Show Ron’s spec
3. Dyadic Rationals
4. Environment checks (assumes)

a. Simulate with -depth 5
5. CSVWrite header
6. CSVWrite in “terminal” state
7. Why not all p \in 2^p in plot? => Some values of p are not Done states
8. Crooked Heads/Tails

a. Stateless and Stateful

EWD998 - Termination Detection in a Ring

● An active node may send a message
● A message activates and taints the receiver

node
● Initiator sends token around the (overlay) ring
● Initiator detects termination iff token

○ at initiator
○ untainted
○ sum of in-flight messages is zero

● Safe: [](terminationDetected => terminated)
● Live: terminated ~> terminationDetected

https://www.cs.utexas.edu/users/EWD/ewd09xx/EWD998.PDF

EWD998 - Proposed Optimizations (Safe & Live hold)

An active node may pass the token if
the node is black.

An node returns the token to
the initiator if the node is
black, i.e., abort inconclusive
token round.

EWD998 - Deoptimization Analyzed

Token passes:
O(((N+1)² + (N+1) / 2) - 1)

Token passes:
O(3N)

Outline Demo - EWD998

1. Intro termination detection algorithm
2. Outline the proposed optimizations
3. Spec: Feature flags in PassTokenOpts
4. Spec: Hooks in AtTermination and AtTerminationDetection
5. Spec: Validation with asserts in AtTerminationDetection
6. Spec: Decreasing probability of SendMsgOpts
7. Spec: “Script” EWD998_optsSC.tla and IOUtils!IOEnv
8. Graph: T2TD

a. Point out that all optimization combinations are simulated
9. Graph: occurrence of actions

Case Studies

(SWIM, RabbitMQ, Kafka)

SWIM

● Group membership
● Failure detection component
● Dissemination component -

infection style

https://www.cs.cornell.edu/projects/Quicksilver/public_pdfs/SWIM.pdf

Infection-style spread of member state information

Failure detection component

k = Peer Group Size

Failure detection component

Dissemination component - information is infectious!

Can be shared 3 times
until it becomes benign

Dissemination component

Suspicion mechanism

SWIM - Checking results against the paper
Message load per member per round

SWIM - Checking results against the paper
Message load per member per round

SWIM - Checking results against the paper
Protocol rounds to first detection of dead member

SWIM - Checking results against the paper
Protocol rounds to first detection of dead member

Run 10
times per
group size

SWIM - Checking results against the paper
Protocol rounds to first detection of dead member

Run 1000
times per
group size

Differential analysis

● Exploring tunable parameters as dimensions
● Comparing algorithm variants

case studies/swim/differential-analysis

Dimension: Dissemination limit with group size=20

Inspecting specific traces - propagation of dead states

All members
have been
infected

Variants: “SWIM + Inf” vs “SWIM + Inf + Susp”
Dimensions: Suspect Timeout (with 10% message loss)

SWIM + Inf

SWIM +
Inf + Susp

All members
think all other
member are
deadº

Variant: “SWIM + Inf + Susp” and Suspect Timeout=5
Dimension: Peer Group Size (with 10% message loss)

SWIM - Ensuring uniform distribution of simulation
dimensions

SWIM - Ensuring uniform distribution of simulation
dimensions

All members
believe all
other
members
are dead

SWIM - Challenges

● Performance
○ Overrides required for larger models to achieve higher behaviour counts
○ TLC improvements

● Specification complexity
○ Not just basic abstraction
○ Implement variants faithfully
○ Support for configuring variants and dimensions
○ Ensuring metrics emitted at the right time

Case Studies

(SWIM, RabbitMQ, Kafka)

RabbitMQ Reactor Streams library

● Cooperative resource allocation
○ Multiple clients cooperate to balance queue assignment

fairly
● High degree of non-determinism

RabbitMQ Reactor Streams library

RabbitMQ Reactor Streams library
Cooperative clients

Scenario: Concurrent start-up of clients
Dimension: Number of clients
Measured: Total queue releases

Scenario: Concurrent start-up of clients
Dimension: Number of clients
Measured: Total queue releases

Scenario: Concurrent start-up of clients
Dimension: Number of clients
Measured: Rounds to reach balance and stability Each round is 30 seconds

=>
p99 of 25 minutes!

Scenario: One client dies
Dimension: Number of clients
Measured: Rounds to reach balance and stability

Why such variance?

Finding an optimization

Opt1:
Non-active
release

Opt2: Ranking
algorithm
(pos2)

Scenario: Concurrent start-up of clients
Dimension: Number of clients
Measured: Rounds to reach balance and stability

Opt1:
Non-active
release

Opt2: Ranking
algorithm
(pos2)

Scenario: One client dies
Dimension: Number of clients
Measured: Rounds to reach balance and stability

Checking dimension
distributions

Comparing TLA+ data to original Python simulation

TLA+ Python

Comparing TLA+ data to original Python simulation

TLA+ Python

Case Studies

(SWIM, RabbitMQ, Kafka)

Kafka Group Rebalancing Protocol v3

● Leader based resource allocation
○ Multiple assignment strategies

● Low degree of non-determinism
● Design

○ Broker performs partition assignments by piggybacking on heartbeat messages
○ Strategies

■ Round-robin
■ Range
■ Sticky

○ Partition revocations disruptive
■ Minimize as much as possible

Kafka Group Rebalancing Protocol v3
Assignment strategies and revocations

20 partitions
and killing a
single client

Kafka Group Rebalancing Protocol v3
Sticky assignment optimization: Distance to ideal assignment

Distances:
1-4

20 partitions
and killing a
single client

Conclusion

● Tried simulation successfully on 8 toy and real-world specs
○ Insights led to changes in RabbitMQ Reactor Streams client

● Unit of measure?
○ First-class citizen of spec :-)
○ System-level measures such as coherence & contention :-(

● Define the workload & perturbations of the system in TLA+
○ N% message loss, M dead nodes, W writes, …
○ Not via (non-machine-closed) fairness constraint :-(

● Scalability and Small scope hypothesis?
○ Larger number increase the resolution but do not seem to change the trend
○ Simulation is embarrassingly parallelizable!
○ TLC: Java Module Overrides (profiler), CommunityModules, TLCCache, Randomization.tla, …

=> keep talking at https://github.com/tlaplus/tlaplus/issues/601

https://github.com/tlaplus/CommunityModules/blob/master/modules/FiniteSetsExt.tla#L79-L93
https://github.com/tlaplus/tlaplus/blob/bb81284a49775b25fb47b6b8b869fdd57714cfbe/tlatools/org.lamport.tlatools/src/tla2sany/StandardModules/TLCExt.tla#L146-L154
https://github.com/tlaplus/tlaplus/blob/master/tlatools/org.lamport.tlatools/src/tla2sany/StandardModules/Randomization.tla
https://github.com/tlaplus/tlaplus/issues/601

Questions?

Q&A

Specs
● https://github.com/Vanlightly/formal-methods-playground/tree/master/tla/tlaplus-conf/swim

● https://github.com/Vanlightly/formal-methods-playground/tree/master/tla/tlaplus-conf/rabbitmq

● https://github.com/Vanlightly/formal-methods-playground/tree/master/tla/tlaplus-conf/kafka

● https://github.com/tlaplus/Examples/tree/master/specifications/KnuthYao

● https://github.com/tlaplus/Examples/tree/master/specifications/ewd998

● https://github.com/lemmy/ewd840/tree/mku-simulate-new

● System-level:

● https://github.com/lemmy/BlockingQueue/

● https://github.com/lemmy/PageQueue/

https://github.com/tlaplus/Examples/tree/master/specifications/KnuthYao
https://github.com/tlaplus/Examples/tree/master/specifications/ewd998
https://github.com/lemmy/ewd840/tree/mku-simulate-new
https://github.com/lemmy/BlockingQueue/blob/main/BlockingQueuePoisonApple_stats.tla
https://github.com/lemmy/PageQueue/

TLC Design Guidelines

● One language to rule them all
○ Define what is measured in TLA+

● Analysis orthogonal to TLA+
○ Integration with R, matplotlib, … via CSV/Json
○ But move more and more stats into TLA+

● “Wer misst misst Mist” (Who measures measures rubbish)
○ Environment and behavior validation in TLA+

TLC Changes

● TLC
○ Replace non-determinism with uniform probabilities in TLC in “-generate” mode
○ Built-in statistics in simulation mode
○ PostCondition

● TLC.tla
○ TLCGet(“config”)
○ TLCGet(“stats”)
○ TLCEval
○ TLCDefer (obsolete with -generate)

● TLCExt.tla
○ TLCTrace

● IOUtils.tla
○ IOEnv
○ IO[Env]Exec

● CommunityModules
○ CSV.tla
○ FiniteSetsExt.tla
○ Combinatorics.tla

TLCExt!TLCCache

● Introduce TLCCache operator
○ Its TLA+ definition / What is its parameter
○ Example where it is useful

● Contrast its performance benefits with a dedicated module override
○ https://github.com/Vanlightly/formal-methods-playground/issues/2

● Annotation-based module overrides

https://github.com/Vanlightly/formal-methods-playground/issues/2

