
1

Extending Apalache
to Symbolically Reason

about Temporal Properties
of TLA+

Philip Offtermatt

Joint work with Jure Kukovec and Igor Konnov

TLA+ Conference
22.9.2022

What is Apalache?

Apalache

Symbolic model checker for
TLA+ – formally verify TLA+
specifications for real-world

distributed systems
protocols

2

● Symbolic bounded model checker
vs TLC: state-space enumeration

Specification Constraints SMT Solver

● Symbolically reason about infinite state-spaces
“amount \in Nat”

● Bounded executions
“There is no invariant violation in the first 50 steps”

● Adds Types and Type Checking to TLA+ VARIABLE
 * @type: Int;
 amount

● Successfully used to verify Tendermint

● Also used by external users to verify
other distributed algorithms

What is Apalache?

3

Developed at

https://apalache.informal.systems/

Team:
Igor Konnov | Jure Kukovec | Shon Feder

Rodrigo Otoni | Gabriela Moreira

Thomas Pani | Philip Offtermatt (Internship)

Releases, Manual, Tutorials, Example Specs, …

Apalache keeps you safe…
…but lacks support for liveness

Apalache

Symbolic model checker for
TLA+ – formally verify TLA+
specifications for real-world

distributed systems
protocols

4

state invariants
“balances never go negative”

action invariants
“each round inflates the token supply

by exactly 200”

trace invariants
“the token supply in the last state is

twice as large as in the first state”

StateInvariant == balance >= 0

ActionInvariant ==
tokens’ = tokens + 200

TraceInvariant(hist) ==
hist[Len(hist)].tokens =

hist[1].tokens * 2

Trace invariants:

● can express liveness

● are hard to write

Liveness?
“eventually something

good happens”

Liveness(hist) ==
\E step \in DOMAIN hist:

hist[step].tokens >= 2

Liveness == <> tokens >= 2

vs.

Goal:
native support for

temporal properties
in Apalache

5

Preprocessing

Spec with temporal
properties: Liveness

Spec with invariants:
Safety

Symbolic
Model

Checking

OK

Apalache

Error trace

Liveness-To-Safety

6

What can you get out of this talk?

Preprocessing

Spec with temporal
properties: Liveness

Spec with invariants:
Safety

Symbolic
Model

Checking

OK

Apalache

Error trace

(1) What are
counterexamples
to liveness?

(2) How to transform
liveness to safety
properties

(3) Tricks for applying
techniques for classical
LTL to TLA+:
History/Prophecy
Variables

Biere et al.: Linear Encodings of Bounded LTL Model Checking

8

A toy example: TrafficLight

Waiting for green

9

A specification for the TrafficLight

Waiting for green

VARIABLES
* @type: Bool;
isGreen,

* @type: Bool;
requestedGreen

~isGreen

~requestedGreen

~isGreen

requestedGreen

~isGreen

requestedGreen

10

A liveness property for the TrafficLight

Waiting for green

Liveness ==
<>isGreen

~isGreen

~requestedGreen

~isGreen

requestedGreen

~isGreen

requestedGreen

What do violations to
liveness properties look
like?

11

Counterexamples to Liveness

Waiting for green

Liveness ==
<>isGreen

~isGreen

~requestedGreen

~isGreen

requestedGreen

isGreen

requestedGreen

Init

~isGreen

Not a counterexample!

Maybe isGreen could appear in the

future?

12

Counterexamples to Liveness: Lassos

Waiting for green

Liveness ==
<>isGreen

~isGreen

~requestedGreen

~isGreen

requestedGreen

isGreen

requestedGreen

Init

~isGreen

In finite-state systems:

Counterexamples to liveness are lassos

~isGreen

Next stop:

Encoding traces with lassos

13

Encoding Lassos
First loop state = Last loop state

=> Remember first loop state: Additional variables

(“History Variables”)

VARIABLES
* @type: Bool;
InLoop,

* @type: Bool;
loop_isGreen,

* @type: Bool;
loop_requestedGreen

Next == …
/\ InLoop' \in BOOLEAN
/\ (InLoop => InLoop')
/\ (IF InLoop = InLoop'

THEN UNCHANGED (<<loop_isGreen, loop_requestedGreen>>)
ELSE loop_isGreen’ = isGreen /\ loop_requestedGreen’ = requestedGreen)

How do we know when the loop starts?

Nondeterministic guessing!

How do we know what’s a valid last state for the loop?

Ensure current state is equal to the remembered first state!

LoopOK ==
/\ InLoop
/\ loop_isGreen = isGreen
/\ loop_requestedGreen = requestedGreen

14

Finding Loops that are Counterexamples
Init

~isGreen

~isGreen

Finding traces that have a loop: ✔

Liveness ==
<>isGreen

VARIABLE
* @type: Bool;
satisfied_(<>isGreen)

satisfied_(<>isGreen) promises future behaviour!

(“Prophecy variable”)

Promises traces that satisfy/don’t satisfy <>isGreen:

● Guess the value initially

● Only allow traces that match the guess

Additional variable: satisfied_(<>isGreen) is true if and

only if isGreen is true at some later point in the trace

Next step: Restrict to loops that are

counterexamples

15

Prophecy Variables

…
satisfied_(<>isGreen)?

✔ ✔ ✔ ✔ ✔ ✘ ✘

Next == …
/\ satisfied_(<>isGreen)' \in BOOLEAN
/\ satisfied_(<>isGreen) <=> isGreen \/ satisfied_(<>isGreen)’

satisfied_(<>isGreen) behaves as if it knew the

future of the run!

…a bit harder for Apalache: Could

introduce double-priming, which is

not allowed!

Solution: Another promise variable

that promises the next value of satisfied_(<>isGreen)

Easy in TLA+:

VARIABLE
* @type: Bool;
satisfied_(<>isGreen)_next

16

Prophecy Variables & Loops

satisfied_(<>isGreen)?

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Promise variables in the last state depend on the promise

variables in the first state of the loop

(“roll over” to the start of the loop)

=> Save the status of promise variables when the loop starts
VARIABLE

* @type: Bool;
loop_satisfied_(<>isGreen)

17

Encoding Temporal Properties

Prophecy Variables + Encoding Loops are enough to encode temporal

properties

A trace is bad if:

● ~satisfied_(<>isGreen) in the initial state, and

● we can close a loop (while satisfying promise variables)

LivenessAsInvariant == ~initially_satisfied_(<>isGreen) /\ LoopOK

Thanks to promise and history variables, only depends on the current

state, but still reasons about the whole trace!

18

Nested Temporal Properties

What about more complex temporal properties?

ComplexLiveness == [](requestedGreen => <>isGreen)

[](requestedGreen => <>isGreen)

requestedGreen => <>isGreen

<>isGreen)

isGreen

requestedGreen

Depend on the future!

=> Prophecy variables for each!

19

TrafficLight in Action

Waiting for green

Liveness ==
<>isGreen

https://docs.google.com/file/d/1ydg7O1E6QNJGMq0tTQwkAN_kLZzF9_5-/preview

20

Unstuttering TrafficLight

Waiting for green

Liveness ==
<>isGreen

https://docs.google.com/file/d/1oiRwpkfeizgkk2xQCu7AdN4mAkfMGB3m/preview

21

TrafficLight in Action
Encoding needs lots of extra variables — How many?

VARIABLES

Original Liveness == <>isGreen ComplexLiveness ==
 [](requestedGreen
 => <>isGreen)

2 10 16

…but: extra variables cause almost no slowdown

TRANSITIONS

Original Liveness == <>isGreen ComplexLiveness ==
 [](requestedGreen
 => <>isGreen)

4 8 8

Doubles the number of symbolic transitions (no matter the property!)

22

Alternative Encodings
Temporal properties can be

encoded as Büchi automata

Fewer variables
Automaton state = single integer

Visualization

Large or nondeterministic

Many extra symbolic
transitions

Major slowdown for Apalache

Hard to understand
at a glance

23

Alternative Encodings

Straightforward translation

No extra variables

Translate temporal properties

to trace invariants

Can be slower

Traces can be
difficult to understand
Why was the property violated?

TraceInvariant(hist) ==
hist[Len(hist)].tokens =

hist[1].tokens * 2

24

Bounded Model Checking & Liveness
Apalache: Symbolic bounded model checker
Reasons about traces of finite length

What does this mean for lassos?

Bound on the length of the lasso: Handle + loop

“There is no counterexample

lasso of size at most 50”

“There is no invariant violation

in the first 50 steps”

Init

Handle Loop+ ≤ Bound

25

Fairness
FairLiveness ==

WF_vars(Next) => <> isGreen
Important for many temporal properties

…but: Apalache does not

support Fairness and ENABLED
● No problem for safety,

so no issue previously

Goal: Handling fairness

via preprocessing!

Could address Fairness by adjusting Apalache internals, but:

● Hard to change

● Expensive to maintain

WF_vars(Next) <=>
<>[](ENABLED <<A>>_v) => []<><<A>>_v

Instead: preprocess ENABLED

● Resilient to changes to internal transition execution

● ENABLED can be used outside of Fairness

Just need to handle ENABLED: Fairness can

be rewritten

26

Preprocessing ENABLED
Apalache has a symbolic transition finder – can help handling ENABLED

Action ==
 /\ x >= 5
 /\ x' = x + 1
 /\ y = x' + 5
 /\ z' \in {x', y}
 /\ y' = y

x' := x + 1

\E v \in {x',y}: z' := v

y' := y

Split into

Assignments

Conditions x >= 5

y = x' + 5

Replace with

true!

Replace with

assignment

to x’
ENABLED(Action) ==

/\ x >= 5
/\ y = (x + 1) + 5
/\ \E v \in {(x + 1), y}: TRUE

But: restricted to expressions that are

handled by the transition finder
ComplexAction ==

y’ * y’ +1 = 0

Straightforward
rewriting!

27

Apalache now supports arbitrary temporal properties

Temporal properties are transformed into invariants

using history and prophecy variables

Thanks for listening!
apalache.informal.systems

informal.systems
p-offtermatt.github.io

philip.offtermatt@informal.systems

https://apalache.informal.systems
https://informal.systems/
https://p-offtermatt.github.io/

