Extending Apalache
to Symbolically Reason
about Temporal Properties
of TLA+

TLA+ Conference
22.9.2022

Philip Offtermatt

Joint work with Jure Kukovec and Igor Konnov

INformal
MS

SY>TE

| What is Apalache?

e Symbolic bounded model checker
vs TLC: state-space enumeration

@ Specification —— Constraints —— SMT Solver

Apalache
e Symbolically reason about infinite state-spaces
Symbolic model checker for : - .
TLA+ - formally verify TLA+ amount \in Nat

specifications for real-world
distributed systems
protocols

e Bounded executions
“There is no invariant violation in the first 50 steps”

e Adds Types and Type Checking to TLA+

e Successfully used to verify Tendermint

[timidoes
o AISO used by eXternaI users to Verlfy Successful verification of a classic distributed

* 0 a algorithm with @ApalacheTLA: github.com/nano-
other distributed algorithms ekl

I'm not aware of a published inductive invariant, but it
was easy to find it with Apalache. 1/2

| What is Apalache?

Developedat [NTOrmMal Team:

- lgor Konnov | Jure Kukovec | Shon Feder
Rodrigo Otoni | Gabriela Moreira
Thomas Pani | Philip Offtermatt (Internship)

Releases, \
> Manual, Tytoy
Examp,e She. orials,

https://apalache.informal.systems/

| Apalache keeps you safe...
...but lacks support for liveness

state invariants — bal b
: . == balance >=0
balances never go negative
Apalache .

action invariants

Symbolic model checker for « . :

TLA+ - formally verify TLA® each round inflates the token supply tokens’ = tokens + 200

specifications for real-world ”

distributed systems by exaCtly 200
protocols

trace invariants —
“the token supply in the last state is hist[Len(hist)].tokens =
twice as large as in the first state” hist[1].tokens * 2

Liveness?

Goal:

good happens native support for
Trace invariants: .
i \E step \in DOMAIN hist: temporal propertles
® Canexpressliveness hist[step].tokens >= 2 in Apalache

e arehardtowrite

iInNformal 4

SEYASHTE M S

| Liveness-To-Safety

Spec with temporal
properties: Liveness

@ Apalache

Spec with invariants:
Safety

| What can you get out of this talk?

(1) What are
counterexamples
to liveness?

Spec with temporal
properties: Liveness

O :vaacie (2) How to transform

liveness to safety
- r - properties
/

Spec with invariants:
Safety

(3) Tricks for applying
techniques for classical
LTL to TLA+:
History/Prophecy
Variables

iInNformal

SEYESHERE-M3S

| Biere et al.: Linear Encodings of Bounded LTL Model Checking

Logical Methods in Computer Science
Vol. 2 (5:5) 2006, pp. 1-64 Submitted Feb. 16, 2006
www.Imcs-online.org Published Nov. 15, 2006

LINEAR ENCODINGS OF BOUNDED LTL MODEL CHECKING

ARMIN BIERE®, KELJO HELJANKO®, TOMMI JUNTTILA ¢, TIMO LATVALA ¢,
AND VIKTOR SCHHUPPAN ©

“ Institute for Formal Models and Verification, Johannes Kepler University, Altenbergerstrasse 69,
A-4040 Linz, Austria
e-mail address: biere@jku.at

%€ Laboratory for Theoretical Computer Science, Helsinki University of Technology, .0. Box 5400,
FI-02015 TKK, Finland
e-mail address: {Keijo.Ileljanko, Tommi.Junttila}@tkk.fi

4 Department of Computer Science, University of Illinois at Urbana-Champaign, 201 Goodwin Ave.,
Urbana, IL 61801-2302, USA
e-mail address: tlatvala@uiuc.edu

¢ Computer Systems Institute, ET'H Zentrum, CH-8092 Ziirich, Switzerland
e-mail address: vschuppan@acm.org

ABSTRACT. We consider the problem of bounded model checking (BMC) for linear tempo-
ral logic (LT'L). We present several efficient encodings that have size linear in the bound.
Furthermore, we show how the encodings can be extended to LTL with past operators
(PLTL). The generalised encoding is still of linear size, but cannot detect minimal length
counterexamples. By using the virtual unrolling technique minimal length counterexam-
ples can be captured, however, the size of the encoding is quadratic in the specification.
We also extend virtual unrolling to Biichi automata, enabling them to accept minimal
length counterexamples.

Our BMC encodings can be made incremental in order to benefit from incremental
SAT technology. With fairly small modifications the incremental encoding can be [urther
enhanced with a termination check, allowing us to prove properties with BMC.

An analysis of the liveness-to-safety transformation reveals many similarities to the
BMC encodings in this paper. We conduct experiments to determine the advantage of em-
ploying dedicated BMC encodings for PLT'L over combining more general but potentially
less efficient approaches with BMC: the liveness-to-safetv transformation with invariant

| A toy example: TrafficLight

|

SSSSSSS

| A specification for the TrafficLight

~isGreen
~requestedGreen

&

~isGreen
V\ requestedGreen

@
l ‘ J isGreen,
@

requestedGreen

Waiting for green

~isGreen
requestedGreen

iInNformal

SSSSSSS

| Aliveness property for the TrafficLight

~isGreen
~requestedGreen

&

~isGreen
V\ requestedGreen

@
l ‘ J <>isGreen
g

Waiting for green

~isGreen
requestedGreen What do violations to
liveness properties look
like?

iInNformal 10

SSSSSSS

| Counterexamples to Liveness

~isGreen
~requestedGreen

G

isGreen

V\ requestedGreen

@
'
@

o

Ll

Waiting for green

~isGreen

requestedGreen

<>isGreen

\

> ~isGreen

VJ

Not a counterexample!

Maybe isGreen could appear in the

future?

11

| Counterexamples to Liveness: Lassos

<>isGreen

~isGreen <
~requestedGreen
isGreen
C' ‘ LS requestedGreen > ~isGreen
«l lgl J L
~isGreen
~isGreen
requestedGreen
In finite-state systems: Next stop:
Counterexamples to liveness are lassos Encoding traces with lassos

12

| Encoding Lassos

First loop state = Last loop state

InLoop,

=> Remember first loop state: Additional variables

' : . | isGreen,
(“History Variables”) COP_IStreen

How do we know when the loop starts? loop_requestedGreen
Nondeterministic guessing!

N\ InLoop'\in BOOLEAN

N\ (InLoop => InLoop")

N\ (InLoop = InLoop'
UNCHANGED (<<loop_isGreen, loop_requestedGreen>>)
loop_isGreen’ = isGreen /\ loop requestedGreen’ = requestedGreen)

How do we know what’s a valid last state for the loop?
Ensure current state is equal to the remembered first state!

/\ InLoop
/\ loop_isGreen = isGreen

\ loop_requestedGreen = requestedGreen

13

| Finding Loops that are Counterexamples

Finding traces that have a loop: v/ Init

\
Next step: Restrict to loops that are S ==
counterexamples <>isGreen
> ~isGreen
Additional variable: satisfied_(<>isGreen) is true if and
only if isGreen is true at some later point in the trace T
Y

satisfied_(<>isGreen)

~isGreen

satisfied_(<>isGreen) promises future behaviour!
(“Prophecy variable”)
Promises traces that satisfy/don’t satisfy <>isGreen:
e Guess the valueinitially
e Only allow traces that match the guess

iInNformal 14
MS

SEVESETSE

| Prophecy Variables

0000000

satisfied (<>isGreen)?

v vi Vv v v X X

satisfied_(<>isGreen) behaves as if it knew the Easy in TLA+:
future of the run!

N\ satisfied (<>isGreen)' \in BOOLEAN

N\ satisfied_(<>isGreen) <=> isGreen \/ satisfied (<>isGreen)’

...a bit harder for Apalache: Could Solution: Another promise variable

introduce double-priming, whichis that promises the next value of satisfied (<>isGreen)
not allowed!

satisfied_(<>isGreen)_ next

infor

SEYES

z2Q
v —_—

15

-]
m

| Prophecy Variables & Loops

0000000

satisfied (<>isGreen)?

v |v VvV v Vv vV @

Promise variables in the last state depend on the promise
variables in the first state of the loop
(“roll over” to the start of the loop)

=> Save the status of promise variables when the loop starts

loop_satisfied_(<>isGreen)

al 16
MS

| Encoding Temporal Properties

Prophecy Variables + Encoding Loops are enough to encode temporal
properties

A traceis bad if:
e ~satisfied (<>isGreen)in the initial state, and
e we can close a loop (while satisfying promise variables)

== ~initially_satisfied_(<>isGreen) /\ LoopOK

Thanks to promise and history variables, only depends on the current
state, but still reasons about the whole trace!

iInNformal 17

SSSSSSS

| Nested Temporal Properties

What about more complex temporal properties?

== [](requestedGreen => <>isGreen)

----------- [[I(requestedGreen => <>isGreen)]

l—[requestedGreen => <>isGreen]j

: [requestedGreen] [<>isGreen)
/ i Y [isGreen

Depend on the future!
=> Prophecy variables for each!

iInfor

zQ)
”) —

SEYES

=

E

18

| TrafficLight in Action

https://docs.google.com/file/d/1ydg7O1E6QNJGMq0tTQwkAN_kLZzF9_5-/preview

| Unstuttering TrafficLight

Liveness ==
<>isGreen

P

informal

https://docs.google.com/file/d/1oiRwpkfeizgkk2xQCu7AdN4mAkfMGB3m/preview

| TrafficLight in Action

Encoding needs lots of extra variables — How many?

VARIABLES

: e ComplexLiveness ==
Original Liveness == <>isGreen [l(requestedGreen

=> <>isGreen)

2

...but: extra variables cause almost no slowdown

Doubles the number of symbolic transitions (no matter the property!)

TRANSITIONS

: e ComplexLiveness ==
Original HVEIEES == S EEE [l(requestedGreen

=> <>isGreen)

4

informal 21

| Alternative Encodings

Temporal properties can be
encoded as Blichi automata

Fewer variables
Automaton state = single integer

Visualization

iInNformal

Large or nondeterministic

Many extra symbolic

transitions
Major slowdown for Apalache

Hard to understand
at aglance

SEYESHERE-M3S

22

| Alternative Encodings

Translate temporal properties
to trace invariants

Straightforward translation

No extra variables

iInNformal

hist[Len(hist)].tokens =
hist[1].tokens * 2

Can be slower

Traces can be

difficult to understand
Why was the property violated?

SEYESHERE-M3S

23

| Bounded Model Checking & Liveness

Apalache: Symbolic bounded model checker
Reasons about traces of finite length

What does this mean for lassos?
Bound on the length of the lasso: Handle + loop

Handle & Loop < Bound

A A
(Y@ A\

“There is no invariant violation
in the first 50 steps”

“There is no counterexample
lasso of size at most 50”

| Fairness

Important for many temporal properties —

WEF_vars(Next) => <> isGreen

Just need to handle ENABLED: Fairness can

be rewritten ...but: Apalache does not

WF_vars(Next) <=> support Fairness and ENABLED
<>[J(ENABLED <<A>> V) => [[<><<A>> v e No problem for safety,

SO no issue previously

Could address Fairness by adjusting Apalache internals, but:
e Hardtochange
e EXxpensive to maintain

Instead: preprocess ENABLED
e Resilient to changes to internal transition execution
e ENABLED can be used outside of Fairness

Goal: Handling fairness
via preprocessing!

infor

zQ)
» —_—

SaYES

=1

E

| Preprocessing ENABLED

Apalache has a symbolic transition finder - can help handling ENABLED

Replace with
\E v \in [x','/}: ; pl
rue.

Assighments

Split into
N\ z'\in {X', y}
Ny =y Conditions Replace with
assignment
tox’

ENABLED() ==
Nx>=5
ANy=(x+1)+5 Straightforward

NE viin{(x+ 1) y}:|TRUE rewriting!

But: restricted to expressions that are
handled by the transition finder

iInNformal 26

SHYESHTHE"M'S

Apalache now supports arbitrary temporal properties

Temporal properties are transformed into invariants
using history and prophecy variables

Thanks for listening!

apalache.informal.systems p-offtermatt.qgithub.io
iInformal.systems philip.offtermatt@informal.systems

iInNformal 57

SSSSSSS

https://apalache.informal.systems
https://informal.systems/
https://p-offtermatt.github.io/

