
A model-based approach for the formal verification of

specification

This work proposes a methodology for the automatic

translation of a system model (with the level-crossing

model example) into TLA+ for the formal verification of

its safety properties. To achieve this, the proposed

approach considers the interactions among the controller

software, hardware components, sensors, actuators

(including signaling equipment), and the dynamic

behavior of the train and contextual systems. The primary

safety objective in the given example is to ensure that no

train passes through the level-crossing while road traffic

remains possible.

Our approach consisted of specifying the SoI (System of

Interest) model behavior and description of its

environment. The entire model is defined using a

specialized Domain-Specific Language (DSL) within the

arKItect tool.

We introduced a structured language for textual

requirement descriptions, similar to the Formal

Requirements Elicitation Tool (FRET) developed by

NASA Ames Research Center. This approach enables the

definition of requirements in plain text with a specialized

structure:

{If} text describing additional conditions {Formula},

{Then} text describing the resulting behavior {Formula}

{Else} text describing the alternative behavior {Formula}

The syntax is short in comparison to FRET, and the set of

available keywords is very small: preconditions are given

after {When} and {If} keywords given in curly braces, all

variables are treated as input signals, the action is

described after {Then} and {Else} keywords and treated

as output signal. The difference between {When} and {If}

is only semantic: usually, we put simple requirement

conditions after {If} and temporal conditions after

{When}. {Formula} is a text in curly brackets providing

the logic for the precedent keyword.

For example, Sensor C1 registers Train (note that the

distance between C1 and FC1 can be so big that the C1

output signal can become False before the train comes to

FC1). The C1trig variable represents the interaction

between the train and the sensor. This can be described as:

{When} sensor is triggered {C1trig = True} {Then}

output signal is True {C1 = True} {Else} output signal is

False {C1 = False}

Each requirement is presented in textual form, and when

translated into the model description, it is represented as a

set of objects connected by appropriate data flows. All

translated requirements are stored within the model's

hierarchy, which describes the corresponding formulas.

This approach facilitates the analysis of data flows and

generates relational diagrams that depict the dependencies

between requirements. Here is the example of C1 behavior

description (automatically generated with the DSL help

from the textual form) given as AST of the formula (for

C1: C1 = True if C1trig = True else False) in the model:

We utilize a scenario-based approach to reduce possible

alternatives studied by Model Checking. In our case, this

was done manually using a state machine to describe the

behavior of a train passing through the level crossing,

moving from one zone to another, triggering the

appropriate sensors, and interacting with components in a

specified sequence. After detailing trivial steps, an

alternative scenario was described: if car traffic is blocked,

Barrier T1 should have True on its output, but if it fails to

close, the resulting signal is supposed to be equal to False.

In such cases, the train is supposed to be stopped to prevent

crossing the road while there is traffic. Therefore, if the

semaphore for the train is Red, the train should stop. If the

train does not stop, it is intended to be automatically halted

by the system AA1.

Having modeled all system parts, we can get a schema

representing all data flows between the SoI, Train behavior

FSM, traffic FSM, and initial variables.

When the model is consistent, we can generate valid TLA+

code automatically, helping in model validation with the

Model Checking. Here is the basis structure of the TLA+

code we generate.

Hardware components are given with simple logical

blocks, where the ‘future’ values are directly given to all

impacted variables. When the requirement does not define

the alternative value of a variable, it is automatically

described as ‘unchanged’.

The specification is given as a set of actions being

performed at each tick (‘instantly’ in terms of behavior),

except for ActionTrain and Controller components

(representing Train and Controller behaviors), which are

marked as ‘critical’ in the model and should be executed

one after another.

Behavior FSM is exported as classic FSM interpretation in

TLA+, triggering the following states with transitions

given in the model and producing signals for hardware

components. In addition, behavior FSM is protected with

the ControllerReady (CR) variable, staying True only

when the controller finishes all its actions (assuming the

controller responds instantly compared to the

environment). A list of all unchanged variables (related to

controller behavior) is generated.

Controller (critical component) generation is also

represented as FSM, yet it is described with a set of

requirements in the model. Our goal was to ensure that all

actions described in the requirements were completed

before activating the next stage in the Train behavioral

finite state machine.

The automatically generated TLA+ code can be executed

without modifications with the TLC model checker. The

implemented Model-in-the-loop approach allows the

testing of systems with different behaviors. Having all data

stored in the Model, this solution implements a no-code

approach for systems design and validation. This,

collectively, clarifies the model definition, accelerates the

coding process, and significantly lowers the entry barrier

for engineers using TLA+.

