
A model-based approach for the formal verification of 

specification 

This work proposes a methodology for the automatic 

translation of a system model (with the level-crossing 

model example) into TLA+ for the formal verification of 

its safety properties. To achieve this, the proposed 

approach considers the interactions among the controller 

software, hardware components, sensors, actuators 

(including signaling equipment), and the dynamic 

behavior of the train and contextual systems. The primary 

safety objective in the given example is to ensure that no 

train passes through the level-crossing while road traffic 

remains possible.  

 

Our approach consisted of specifying the SoI (System of 

Interest) model behavior and description of its 

environment. The entire model is defined using a 

specialized Domain-Specific Language (DSL) within the 

arKItect tool.  

We introduced a structured language for textual 

requirement descriptions, similar to the Formal 

Requirements Elicitation Tool (FRET) developed by 

NASA Ames Research Center. This approach enables the 

definition of requirements in plain text with a specialized 

structure: 

{If} text describing additional conditions {Formula},  

{Then} text describing the resulting behavior {Formula} 

{Else} text describing the alternative behavior {Formula} 

The syntax is short in comparison to FRET, and the set of 

available keywords is very small: preconditions are given 

after {When} and {If} keywords given in curly braces, all 

variables are treated as input signals, the action is 

described after {Then} and {Else} keywords and treated 

as output signal. The difference between {When} and {If} 

is only semantic: usually, we put simple requirement 

conditions after {If} and temporal conditions after 

{When}. {Formula} is a text in curly brackets providing 

the logic for the precedent keyword. 

For example, Sensor C1 registers Train (note that the 

distance between C1 and FC1 can be so big that the C1 

output signal can become False before the train comes to 

FC1). The C1trig variable represents the interaction 

between the train and the sensor. This can be described as: 

{When} sensor is triggered {C1trig = True} {Then} 

output signal is True {C1 = True} {Else} output signal is 

False {C1 = False} 

Each requirement is presented in textual form, and when 

translated into the model description, it is represented as a 

set of objects connected by appropriate data flows. All 

translated requirements are stored within the model's 

hierarchy, which describes the corresponding formulas. 

This approach facilitates the analysis of data flows and 

generates relational diagrams that depict the dependencies 

between requirements. Here is the example of C1 behavior 

description (automatically generated with the DSL help 

from the textual form) given as AST of the formula (for 

C1: C1 = True if C1trig = True else False) in the model: 

 

We utilize a scenario-based approach to reduce possible 

alternatives studied by Model Checking. In our case, this 

was done manually using a state machine to describe the 

behavior of a train passing through the level crossing, 

moving from one zone to another, triggering the 

appropriate sensors, and interacting with components in a 

specified sequence. After detailing trivial steps, an 

alternative scenario was described: if car traffic is blocked, 

Barrier T1 should have True on its output, but if it fails to 

close, the resulting signal is supposed to be equal to False. 

In such cases, the train is supposed to be stopped to prevent 

crossing the road while there is traffic. Therefore, if the 

semaphore for the train is Red, the train should stop. If the 

train does not stop, it is intended to be automatically halted 

by the system AA1. 

 



 

Having modeled all system parts, we can get a schema 

representing all data flows between the SoI, Train behavior 

FSM, traffic FSM, and initial variables. 

 

When the model is consistent, we can generate valid TLA+ 

code automatically, helping in model validation with the 

Model Checking. Here is the basis structure of the TLA+ 

code we generate. 

 

Hardware components are given with simple logical 

blocks, where the ‘future’ values are directly given to all 

impacted variables. When the requirement does not define 

the alternative value of a variable, it is automatically 

described as ‘unchanged’. 

 

 

The specification is given as a set of actions being 

performed at each tick (‘instantly’ in terms of behavior), 

except for ActionTrain and Controller components 

(representing Train and Controller behaviors), which are 

marked as ‘critical’ in the model and should be executed 

one after another.  

 

Behavior FSM is exported as classic FSM interpretation in 

TLA+, triggering the following states with transitions 

given in the model and producing signals for hardware 

components. In addition, behavior FSM is protected with 

the ControllerReady (CR) variable, staying True only 

when the controller finishes all its actions (assuming the 

controller responds instantly compared to the 

environment). A list of all unchanged variables (related to 

controller behavior) is generated. 

 

Controller (critical component) generation is also 

represented as FSM, yet it is described with a set of 

requirements in the model. Our goal was to ensure that all 

actions described in the requirements were completed 

before activating the next stage in the Train behavioral 

finite state machine.  

 
The automatically generated TLA+ code can be executed 

without modifications with the TLC model checker. The 

implemented Model-in-the-loop approach allows the 

testing of systems with different behaviors. Having all data 

stored in the Model, this solution implements a no-code 

approach for systems design and validation. This, 

collectively, clarifies the model definition, accelerates the 

coding process, and significantly lowers the entry barrier 

for engineers using TLA+. 


