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Model expression (1)
−−−−−−−−−− MODULE SimpleAllocator −−−−−−−−
(**********************************************************************************)
(* Specification of an allocator managing a set of resources: *)
(* − Clients can request sets of resources whenever all their previous *)
(* requests have been satisfied. *)
(* − Requests can be partly fulfilled , and resources can be returned *)
(* even before the full request has been satisfied. However, clients *)
(* only have an obligation to return resources after they have *)
(* obtained all resources they requested. *)
(* S. Merz *)
(**********************************************************************************)
EXTENDS FiniteSets, TLC
CONSTANTS

Clients, \* set of all clients
Resources \* set of all resources

ASSUME IsFiniteSet(Resources)
VARIABLES

unsat, \* set of all outstanding requests per process
alloc \* set of resources allocated to given process
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Model expression (2)
(* Resources are available iff they have ¬been allocated. *)
available ≜ Resources \ (UNION {alloc[c] : c ∈ Clients})
(* Initially , no resources have been requested or allocated. *)
Init ≜
∧ unsat = [c ∈ Clients 7→ ∅]
∧ alloc = [ c ∈ Clients 7→ ∅]

(* A client c may request a set of resources provided that all of its *)
(* previous requests have been satisfied and that it doesn’t hold any *)
(* resources. *)
Request(c,S) ≜
∧ unsat[c] = ∅ ∧ alloc [ c] = ∅
∧ S # ∅ ∧ unsat’ = [ unsat EXCEPT ![c] = S]
∧ UNCHANGED alloc

(* Allocation of a set of available resources to a client that *)
(* requested them (the entire request does ¬have to be filled ) . *)
Allocate(c,S) ≜
∧ S # ∅ ∧ S ⊆ available ∩ unsat[c]
∧ alloc ’ = [ alloc EXCEPT ![c] = @ ∪ S]
∧ unsat’ = [ unsat EXCEPT ![c] = @ \ S]
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Model expression (4)

(* The next−state relation . *)
Next ≜
∃ c ∈ Clients, S ∈ SUBSET Resources :

Request(c,S) ∨ Allocate(c,S) ∨ Return(c,S)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(* The complete high−level specification. *)
SimpleAllocator ≜
∧ Init ∧ [□][Next]_vars
∧ ∀ c ∈ Clients: WF_vars(Return(c, alloc[c]))
∧ ∀ c ∈ Clients: SF_vars(∃ S ∈ SUBSET Resources: Allocate(c,S))
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Properties expression

(* Safety property *)
ResourceMutex ≜
∀ c1,c2 ∈ Clients : c1 # c2 ⇒ alloc [ c1] ∩ alloc [ c2] = ∅

(* Liveness property *)
ClientsWillReturn ≜
∀ c ∈ Clients : unsat[c]=∅ ⇝ alloc[c]=∅

(* Fairness properties *)
ClientsWillObtain ≜
∀ c ∈ Clients, r ∈ Resources : r ∈ unsat[c] ⇝ r ∈ alloc[ c]

InfOftenSatisfied ≜
∀ c ∈ Clients : [□]<>(unsat[c] = ∅)
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Obligations expression

THEOREM SimpleAllocator ⇒ [□]ResourceMutex
THEOREM SimpleAllocator ⇒ ClientsWillReturn
THEOREM SimpleAllocator2 ⇒ ClientsWillReturn
THEOREM SimpleAllocator ⇒ ClientsWillObtain
THEOREM SimpleAllocator ⇒ InfOftenSatisfied
(** The following do ¬hold: **)
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B/Event-B

Properties proof

TLC model checker for model-checking (finite instances).
TLAPS proofsystem (parameterized instances).

Discuss about the assistance for a TLA proof based
development.
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Specification in B/Event-B

context cSimpleAllocator
sets Clients Resources
axioms

@f_Resources finite(Resources)
end
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Specification in B/Event-B

machine mSimpleAllocator
sees cSimpleAllocator
variables unsat alloc
invariants
@unsat_ty unsat ∈ Clients → P(Resources)
@alloc_ty alloc ∈ Clients → P(Resources)
@ResourceMutex
∀ c1, c2· (c1 ∈ Clients ∧ c2 ∈ Clients ∧ c1 ̸= c2)

⇒ (( alloc (c1) ∩ alloc (c2)) = ∅)
events

event INITIALISATION then
@unsat_init unsat := Clients × {∅}
@alloc_init alloc := Clients × {∅}
end
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Specification in B/Event-B

event Request
any c S where
@c_ty c ∈ Clients
@S_ty S ∈ P(Resources)
@u_empty unsat(c) = ∅
@a_empty alloc(c) = ∅
@S_ne S ̸= ∅
then

@upd unsat(c) := unsat(c) ∪ S
end
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TLA
B/Event-B

Development in B/Event-B

Predefined properties.
Automatic generation of proof obligations.
Automatic proof and Interactive proof development.
Support for model checking (ProB).
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Development in B/Event-B (II)

Well definedness (wrt. B type theory).
Invariance.
Well foundedness.
Refinement.
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TLAPS as a proof environment for B/Event-B

B/Event-B and TLA+ are both based on set theory.
B/Event-B and TLA+ expressions are almost the same.
Both proof languages adopt a ML approach (sequent
based).
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EB2TLA

Event-B proof obligations are translated to TLA+ theorems
to be proved.
The Rodin generated Event-B proofs (proof tree) are
translated to TLAPS proofs to discharge the TLA+
generated theorems (sequent + proof).
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EB2TLA

component.bps
Rodin
plugin

R20caml
component.ml

Rodin expr TLA expr
Rodin pred

Rodin proof tree TLA sequent
TLA proof

component_po.tla

component_prf.tla
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Proof obligations in TLA (SimpleAllocator_po)

−−−−−−−−−−−−− MODULE SimpleAllocator_po−−−−−−−−−−−−−−−−−
EXTENDS Naturals, Integers, FiniteSets, TLC, TLAPS

, Relations, Partitions
THEOREM SimpleAllocator_ResourceMutex_WD_po ≜
ASSUME NEW Clients, NEW Resources, NEW alloc ∈ SUBSET((Clients ×

SUBSET(Resources))), (alloc ∈ TotalFunctions(Clients, SUBSET(
Resources)))

PROVE (∀ c1 ∈ Clients,c2 ∈ Clients: ((c1 ∈ Clients) ∧ (c2 ∈ Clients) ∧ (c1
# c2) ⇒ (c1 ∈ Dom(alloc)) ∧ (alloc ∈ PartialFunctions(Clients,
SUBSET(Resources))) ∧ (c2 ∈ Dom(alloc))))
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THEOREM T_THM_rodin ≜
ASSUME NEW c1 ∈ Int, NEW c2 ∈ Int, (c2 ∈ Nat), (c1 ∈ Nat)
PROVE ((∃ x ∈ Int: (∃ y ∈ Int : (y ∈ Nat) ∧ (c1 > y) ∧ (c2 < x))) ⇔ (c1 >

0))

<0> USE ProdSingleton, FunImageSingleton, OverwritePoint DEF Rel,
TotalFunctions, PartialFunctions, Dom, Ran, PartialInjections, Rev,
Surjections, PartialSurjections, TotalSurjections, Bijections , Overwrite,
AntirestrictDom, FunImage, RImage

<0>0. ((∃ x ∈ Int: (∃ y ∈ Int : (y ∈ Nat) ∧ (c1 > y) ∧ (c2 < x))) ⇒ (c1 >
0))

<1>0. ((∃ x ∈ Int, y ∈ Int : (x ∈ Nat) ∧ (c1 > x) ∧ (c2 < y)) ⇒ (c1 > 0))
<2>0. ASSUME (∃ x ∈ Int,y ∈ Int: (x ∈ Nat) ∧ (c1 > x) ∧ (c2 < y))
PROVE (c1 > 0)
<3>0. (c1 > 0)

BY <2>0
<3>1. QED BY <3>0

<2>1. QED BY <2>0
<1>1. QED BY <1>0

<0>1. ((c1 > 0) ⇒ (∃ x ∈ Int : (∃ y ∈ Int : (y ∈ Nat) ∧ (c1 > y) ∧ (c2 < x)))
)

<1>0. ((c1 > 0) ⇒ (∃ x ∈ Int , y ∈ Int : (x ∈ Nat) ∧ (c1 > x) ∧ (c2 < y)))
<2>0. ASSUME (c1 > 0)
PROVE (∃ x ∈ Int,y ∈ Int: (x ∈ Nat) ∧ (c1 > x) ∧ (c2 < y))

BY <2>0
<2>1. QED BY <2>0

<1>1. QED BY <1>0
<0>2. QED BY <0>0, <0>1
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(first) experiments-Feedback

(On going work)
B/Event-B typed set theory helps.
Many leafs of the proof tree are actually discharged thanks
to SMT solvers.
We have to devise strategies between full expansion of
definitions and dedicated theorems. Instantiations of TLA
theorems with some goal terms could help ?
B/Event-B interactive approach remains appreciated.
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TLA development process à la B/Event-B (1) (study)
Starting point: TLA model with a “configuration” (Init, Next,
Invariants, . . . )
⇝ Generation of proof obligations.
−−−−−−−−−−−−−−−−−−−−− MODULE Allocator_po_1

−−−−−−−−−−−−−−−−−−−−−−−−−−
(* Proof squeletons generated for SimpleAllocator module *)
EXTENDS Allocator

THEOREM InitTypeInvariant ≜
Init ⇒ TypeInvariant
OMITTED

THEOREM RequestTypeInvariant ≜
ASSUME NEW c ∈ Client,

NEW S ∈ SUBSET Resource
PROVE TypeInvariant ∧ Request(c,S) ⇒ TypeInvariant’
OMITTED

THEOREM AllocateTypeInvariant ≜
ASSUME NEW c ∈ Client,

NEW S ∈ SUBSET Resource
PROVE TypeInvariant ∧ Allocate(c,S) ⇒ TypeInvariant’
OMITTED
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TLA development process à la B/Event-B (2)

. . .
⇝ Generation of meta theorems.

THEOREM NextTypeInvariant ≜ (*TypeInvariant ∧ Next ⇒
TypeInvariant’*)

ASSUME TypeInvariant, Next
PROVE TypeInvariant’

<1>1. ASSUME NEW c ∈ Client, NEW S ∈ SUBSET Resource,
TypeInvariant,

Request(c, S) ∨ Allocate(c, S) ∨ Return(c, S)
PROVE TypeInvariant’
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ICSPA project⇝ the study of proofs in B/Event-B and TLA.
B/Event-B and TLA mathematical languages are quasi
compatible at the syntax level.
Study of a synthesis between:

the proof language of TLA.
the assisted development of proofs in B/Event-B

TLAPS as a proof environment for B/Event-B seems
reasonable.
An environment for a TLA development process à la
B/Event-B is to be investigated.
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