On Proof Support in B/Event-B and TLA

J.P. Bodeveix, M. Filali, A. Grieu
IRIT Université de Toulouse France

TLA+ Community Meeting
September 10, 2024
Co-located with FM 2024 in Milano
ltaly

J.P. Bodeveix, M. Filali, A. Grieu 1/29

Introduction

ICSPA project Formal methods based on set theories

B Ma- Event-B Ma- hasnannsp-/ T A Modules +

chines + chines + Proofs I Proofs

Proofs
Internal / \ /
provers SMT

}
B Set Theory |«

> TLA Set Theory
Typed sets Untyped sets
Bool # Prop] Set theories \ Bool = Prop
Relations Functions

‘ Dedukti Core / Lambdapi ~ Temporal logic

J

J.P. Bodeveix, M. Filali, A. Grieu 2/29

Introduction

')_—— machines
TLA module +— |
PO
EVB-SMT
genet hie proofs
TA — o]
gengrat,
fs — " |
[Pl —t+——— EVBInt
o proofs
8
3
TLA gengratds
formulas $——————— =2z
formulas
[
5
TLA e
AST I

TLA toolbox (tlapm)

Rodin platform

gendrates T
proofs
[
2
Q0
gendates i«
proofs
genefates AT

Introduction

Table of Contents

e Development processes in B/Event-B and TLA
e TLAPS as a proof environment for B/Event-B
e A TLA development process a la B/Event-B (study)

e Conclusion

J.P. Bodeveix, M. Filali, A. Grieu 4/29

Development processes in B/Event-B and TLA

TLA
B/Event-B

o Development processes in B/Event-B and TLA

J.P. Bodeveix,

Development processes in B/Event-B and TLA
TLA

B/Event-B

Model expression (1)

(

(» Specification of an allocator managing a set of resources: *
(» — Clients can request sets of resources whenever all their previous *
(~ requests have been satisfied.

(» — Requests can be partly fulfilled , and resources can be returned =
(

(

(

(

*
O — — — —

= even before the full request has been satisfied. However, clients «
= only have an obligation to return resources after they have
= obtained all resources they requested.

« S. Merz

* k%
—_— — — —

*
*
~

EXTENDS FiniteSets, TLC
CONSTANTS
Clients, \+ set of all clients
Resources \|* set of all resources
ASSUME IsFiniteSet(Resources)

ARIAR

J.P. Bodeveix, M

Development processes in B/Event-B and TLA
TLA

B/Event-B

Model expression (2)

(» Resources are available iff they have —been allocated.)
available £ Resources \ (UNION {alloc[c] : ¢ € Clients})
(= Initially , no resources have been requested or allocated. »)
Init £

A unsat = [¢ € Clients — 0]

Aalloc =[c € Clients +— (]
(= Aclient ¢ may request a set of resources provided that all of its
(» previous requests have been satisfied and that it doesn’t hold any
(» resources. *
Request(c,S) £

A unsat[c] = 0 A alloc[c] =0

A S #(Aunsat = [unsat EXCEPT ![c] = S]

A UNCHANGED alloc
(= Allocation of a set of available resources to a client that *)
(» requested them (the entire request does —have to be filled). *)
Allocate(c,S) £

* %
~— — —

Development processes in B/Event-B and TLA
TLA

B/Event-B

Model expression (4)

(» The next-state relation.)
Next £
3 ¢ € Clients, S € SUBSET Resources :
Request(c,S) Vv Allocate(c,S) V Return(c,S)

(» The complete high-level specification. =)
SimpleAllocator £
A Init A [O][Next]_vars
A Y ¢ € Clients: WF_vars(Return(c, alloc[c]))
AV c € Clients: SF_vars(3 S € SUBSET Resources: Allocate(c,S))

J.P. Bodeveix, M

Development processes in B/Event-B and TLA
TLA

B/Event-B

Properties expression

(» Safety property)
ResourceMutex £
v ¢1,c2 € Clients : ¢1 #c2 = alloc[c1] nalloc[c2] =0
(Liveness property «)
ClientsWillReturn £
V ¢ € Clients : unsat[c]=0 ~ alloc[c]=0
(» Fairness properties =)
ClientsWillObtain £
Vv ¢ € Clients, r € Resources : r € unsat[c] ~ r € alloc[c]
InfOftenSatisfied =
vV ¢ € Clients : [d)<>(unsatc] = ()

J.P. Bodeveix, M

Development processes in B/Event-B and TLA
TLA

B/Event-B

Obligations expression

THEOREM SimpleAllocator = [OJ]ResourceMutex
THEOREM SimpleAllocator = ClientsWillReturn
THEOREM SimpleAllocator2 = ClientsWillReturn
THEOREM SimpleAllocator = ClientsWillObtain
THEOREM SimpleAllocator = InfOftenSatisfied

(»» The following do —hold: *x)

J.P. Bodeveix, M

Development processes in B/Event-B and TLA
TLA

B/Event-B

Properties proof

@ TLC model checker for model-checking (finite instances).
@ TLAPS proofsystem (parameterized instances).

Discuss about the assistance for a TLA proof based
development.

J.P. Bodeveix, M. Filali, A. Grieu 11/29

Development processes in B/Event-B and TLA
TLA

B/Event-B

Specification in B/Event-B

context cSimpleAllocator
sets Clients Resources
axioms
@f_Resources finite(Resources)
end

Development processes in B/Event-B and TLA
TLA

B/Event-B

Specification in B/Event-B

machine mSimpleAllocator
sees cSimpleAllocator
variables unsat alloc
invariants
@unsat_ty unsat € Clients — P(Resources)
@alloc_ty alloc € Clients — P(Resources)
@ResourceMutex
Vv c1, c2- (c1 € Clients A c2 € Clients A c1 # c2)
= ((alloc(c1) Nalloc(c2)) = 0)
events
event INITIALISATION then
@unsat_init unsat := Clients x {}
@alloc_init alloc := Clients x {0}
end

J.P. Bodeveix, M.

Development processes in B/Event-B and TLA
TLA

B/Event-B

Specification in B/Event-B

event Request
any c S where
@c_ty c € Clients
@S_ty S € P(Resources)
@u_empty unsat(c) = 0
@a_empty alloc(c) = 0
@S neS#0
then

@upd unsat(c) := unsat(c) U S
end

J.P. Bodeveix, M. Filali, A. Grieu 14/29

Development processes in B/Event-B and TLA
TLA

B/Event-B

Development in B/Event-B

@ Predefined properties.

@ Automatic generation of proof obligations.

@ Automatic proof and Interactive proof development.
@ Support for model checking (ProB).

J.P. Bodeveix, M. Filali, A. Grieu

Predefined properties

Development in B/Event-B (ll)

@ Well definedness (wrt. B type theory).
@ Invariance.

@ Well foundedness.

@ Refinement.

J.P. Bodeveix, M. Filali, A. Grieu 16/29

Predefined properties

RODIN_EBRP - Allocator/msimpleAllocator.bum - Rodin Platform

Qi F P

e @ x @
machine mSimpleAllocator

sees cSimpleAllocator

variables unsat alloc

invariants

@unsat_ty unsat € Clients - P(Resources)
@alloc_ty alloc € Clients - P(Resources)
@ResourceMutex

V c1, c2+ (cl1 € Clients A c2 € Clients A cI # c2) = ((alloc(cl) n alloc(c2)

events
event INITIALISATION
then
@unsat_init unsat = Clients x {o}
@alloc_init alloc = Clients x {o}
end

event Request
any ¢ S where
@c_ty ¢ € Clients
@_ty S € P(Resources)
@u_empty unsat(c) = @
@a_empty alloc(c) = @
@_ne S =@
then
@upd unsat(c) = unsat(c) u S
end

£ Event-8 Explorer X

% Goal x

9
5 ac.so10n.evento.emrnciusion generator
BALOC
& Allocator

@ esimpleAllocator

@changeMe
~ @msimpleAliocator

€ INITIALISATION unsat_tyINV
€ INITIALISATION alloc_tyINV

€ Retur/alloc_tyINV
€ Return/ResourceMutex/INV
& Return/a_upd/WD

@ Axtist
© AxMath
© AxMath
3 BasicTheory
¥i Symbols X
P s un e g e e
ER
e e\ x e e b - e
- sl
MNP P ZOU Vo~ oT o

SO eBE

wsr i<

TLAPS as a proof environment for B/Event-B

9 TLAPS as a proof environment for B/Event-B

J.P. Bodeveix,

TLAPS as a proof environment for B/Event-B

TLAPS as a proof environment for B/Event-B

@ B/Event-B and TLA+ are both based on set theory.
@ B/Event-B and TLA+ expressions are almost the same.

@ Both proof languages adopt a ML approach (sequent
based).

J.P. Bodeveix, M. Filali, A. Grieu 19/29

TLAPS as a proof environment for B/Event-B

EB2TLA

@ Event-B proof obligations are translated to TLA+ theorems
to be proved.

@ The Rodin generated Event-B proofs (proof tree) are
translated to TLAPS proofs to discharge the TLA+
generated theorems (sequent + proof).

J.P. Bodeveix, M. Filali, A. Grieu 20/29

LAPS as a proof environment for B/Event-B

EB2TLA

component_po.tia

Rodin Rodin expr TLA expr -7
by lugi ml Rodin pred
CETANCIEESD pugin Rodin proof tree TLA sequent
f2tca) TlAproof

component_prf.tla

TLAPS as a proof environment for B/Event-B

Proof obligations in TLA (SimpleAllocator_po)

————————————— MODULE SimpleAllocator_po
EXTENDS Naturals, Integers, FiniteSets, TLC, TLAPS
, Relations, Partitions

THEOREM SimpleAllocator_ResourceMutex_WD_po £

ASSUME NEW Clients, NEW Resources, NEW alloc € SUBSET((Clients x
SUBSET(Resources))), (alloc € TotalFunctions(Clients, SUBSET(
Resources)))

PROVE (V c1 € Clients,c2 € Clients: ((c1 € Clients) A (c2 € Clients) A (c1
c2) = (c1 € Dom(alloc)) A (alloc € PartialFunctions(Clients,
SUBSET(Resources))) A (c2 € Dom(alloc))))

J.P. Bodeveix, M. Filali, A. Grieu 22/29

TLAPS as a proof environment for B/Event-B

THEOREM T_THM_rodin £

ASSUME NEW c1 € Int, NEW c2 € Int, (c2 € Nat), (c1 € Nat)

PROVE (IxelInt: (3y €Int: (y € Nat) A (c1 >y) A (c2 <Xx))) < (c1 >
0))

<0> USE ProdSingleton, FunimageSingleton, OverwritePoint DEF Rel,
TotalFunctions, PartialFunctions, Dom, Ran, Partiallnjections, Rev,
Surjections, PartialSurjections, TotalSurjections, Bijections, Overwrite,
AntirestrictDom, Funlmage, RlImage
<0>0.((FxelInt: (Iy €lInt: (y € Nat) A (c1 >y) A(c2 <Xx))) = (c1 >
0))
<1>0. ((IxelInt,y €Int: (x € Nat) A (c1 >Xx) A (c2 <Yy)) = (c1 >0))
<2>0. ASSUME (3 x € Int,y € Int: (x € Nat) A (c1 > x) A (c2 <))
PROVE (c1 > 0)
<3>0. (c1 > 0)
BY <2>0
<3>1.QED BY <3>0
<2>1.QED BY <2>0

J.P. Bodeveix, M. Filali, A. Grieu 23/29

TLAPS as a proof environment for B/Event-B

(first) experiments-Feedback

(On going work)
@ B/Event-B typed set theory helps.
@ Many leafs of the proof tree are actually discharged thanks
to SMT solvers.

@ We have to devise strategies between full expansion of
definitions and dedicated theorems. Instantiations of TLA

theorems with some goal terms could help ?
@ B/Event-B interactive approach remains appreciated.

J.P. Bodeveix, M. Filali, A. Grieu 24/29

A TLA development process a la B/Event-B (study)

Plan

Q A TLA development process a la B/Event-B (study)

J.P. Bodeveix, M.

A TLA development process a la B/Event-B (study)

TLA development process a la B/Event-B (1) (study)

@ Starting point: TLA model with a “configuration” (Init, Next,
Invariants, . ..)
@ ~ Generation of proof obligations.

MODULE Allocator_po_1

(» Proof squeletons generated for SimpleAllocator module *)
EXTENDS Allocator

THEOREM InitTypelnvariant £
Init = Typelnvariant
OMITTED
THEOREM RequestTypelnvariant £
ASSUME NEW c € Client,
NEW S € SUBSET Resource
PROVE Typelnvariant A Request(c,S) = Typelnvariant
OM »

J.P. Bodeveix, M. Filali, A. Grieu

A TLA development process a la B/Event-B (study)

TLA development process a la B/Event-B (2)

o ...
@ ~ Generation of meta theorems.

THEOREM NextTypelnvariant £ (sTypelnvariant A Next =
Typelnvariant’«)

ASSUME Typelnvariant, Next
PROVE Typelnvariant’

<1>1. ASSUME NEW c ¢ Client, NEW S ¢ SUBSET Resource,
Typelnvariant,
Request(c, S) Vv Allocate(c, S) V Return(c, S)
PROVE Typelnvariant’

J.P. Bodeveix, M. Filali, A. Grieu 27/29

Conclusion

e Conclusion

J.P. Bodeveix,

Conclusion

@ ICSPA project ~ the study of proofs in B/Event-B and TLA.

@ B/Event-B and TLA mathematical languages are quasi
compatible at the syntax level.

@ Study of a synthesis between:

e the proof language of TLA.
o the assisted development of proofs in B/Event-B

@ TLAPS as a proof environment for B/Event-B seems
reasonable.

@ An environment for a TLA development process a la
B/Event-B is to be investigated.

J.P. Bodeveix, M. Filali, A. Grieu 29/29

	Introduction
	Development processes in B/Event-B and TLA
	TLA
	B/Event-B

	Predefined properties
	TLAPS as a proof environment for B/Event-B
	A TLA development process à la B/Event-B (study)
	Conclusion

