
Introduction
Development processes in B/Event-B and TLA

Predefined properties
TLAPS as a proof environment for B/Event-B

A TLA development process à la B/Event-B (study)
Conclusion

On Proof Support in B/Event-B and TLA

J.P. Bodeveix, M. Filali, A. Grieu
IRIT Université de Toulouse France

TLA+ Community Meeting
September 10, 2024

Co-located with FM 2024 in Milano
Italy

J.P. Bodeveix, M. Filali, A. Grieu 1/29

Introduction
Development processes in B/Event-B and TLA

Predefined properties
TLAPS as a proof environment for B/Event-B

A TLA development process à la B/Event-B (study)
Conclusion

ICSPA project Formal methods based on set theories
B Ma-
chines +
Proofs

Event-B Ma-
chines + Proofs

TLA Modules +
Proofs

B Set Theory TLA Set Theory

Set theories

Dedukti Core / Lambdapi

SMT
Internal
provers

Typed sets
Bool ̸= Prop
Relations

Untyped sets
Bool = Prop
Functions
Temporal logic

J.P. Bodeveix, M. Filali, A. Grieu 2/29

Introduction
Development processes in B/Event-B and TLA

Predefined properties
TLAPS as a proof environment for B/Event-B

A TLA development process à la B/Event-B (study)
Conclusion

O
cam

l

Java

Java

TLA module
P.O

TLA
proofs

TLA
formulas

EVB
machines

EVB-SMT
proofs

EVB Int
proofs

EVB
formulas

TLA
AST

EVB
AST

λπ
formulas

λπ
proofs

λπ
proofs

generates

Rodin platformTLA toolbox (tlapm)

generates

generates

generates

generates

generates

generates

J.P. Bodeveix, M. Filali, A. Grieu 3/29

Introduction
Development processes in B/Event-B and TLA

Predefined properties
TLAPS as a proof environment for B/Event-B

A TLA development process à la B/Event-B (study)
Conclusion

Table of Contents

1 Development processes in B/Event-B and TLA

2 TLAPS as a proof environment for B/Event-B

3 A TLA development process à la B/Event-B (study)

4 Conclusion

J.P. Bodeveix, M. Filali, A. Grieu 4/29

Introduction
Development processes in B/Event-B and TLA

Predefined properties
TLAPS as a proof environment for B/Event-B

A TLA development process à la B/Event-B (study)
Conclusion

TLA
B/Event-B

Plan

1 Development processes in B/Event-B and TLA
TLA
B/Event-B

2 TLAPS as a proof environment for B/Event-B

3 A TLA development process à la B/Event-B (study)

4 Conclusion

J.P. Bodeveix, M. Filali, A. Grieu 5/29

Introduction
Development processes in B/Event-B and TLA

Predefined properties
TLAPS as a proof environment for B/Event-B

A TLA development process à la B/Event-B (study)
Conclusion

TLA
B/Event-B

Model expression (1)
−−−−−−−−−− MODULE SimpleAllocator −−−−−−−−
(**)
(* Specification of an allocator managing a set of resources: *)
(* − Clients can request sets of resources whenever all their previous *)
(* requests have been satisfied. *)
(* − Requests can be partly fulfilled , and resources can be returned *)
(* even before the full request has been satisfied. However, clients *)
(* only have an obligation to return resources after they have *)
(* obtained all resources they requested. *)
(* S. Merz *)
(**)
EXTENDS FiniteSets, TLC
CONSTANTS

Clients, * set of all clients
Resources * set of all resources

ASSUME IsFiniteSet(Resources)
VARIABLES

unsat, * set of all outstanding requests per process
alloc * set of resources allocated to given process

J.P. Bodeveix, M. Filali, A. Grieu 6/29

Introduction
Development processes in B/Event-B and TLA

Predefined properties
TLAPS as a proof environment for B/Event-B

A TLA development process à la B/Event-B (study)
Conclusion

TLA
B/Event-B

Model expression (2)
(* Resources are available iff they have ¬been allocated. *)
available ≜ Resources \ (UNION {alloc[c] : c ∈ Clients})
(* Initially , no resources have been requested or allocated. *)
Init ≜
∧ unsat = [c ∈ Clients 7→ ∅]
∧ alloc = [c ∈ Clients 7→ ∅]

(* A client c may request a set of resources provided that all of its *)
(* previous requests have been satisfied and that it doesn’t hold any *)
(* resources. *)
Request(c,S) ≜
∧ unsat[c] = ∅ ∧ alloc [c] = ∅
∧ S # ∅ ∧ unsat’ = [unsat EXCEPT ![c] = S]
∧ UNCHANGED alloc

(* Allocation of a set of available resources to a client that *)
(* requested them (the entire request does ¬have to be filled) . *)
Allocate(c,S) ≜
∧ S # ∅ ∧ S ⊆ available ∩ unsat[c]
∧ alloc ’ = [alloc EXCEPT ![c] = @ ∪ S]
∧ unsat’ = [unsat EXCEPT ![c] = @ \ S]

J.P. Bodeveix, M. Filali, A. Grieu 7/29

Introduction
Development processes in B/Event-B and TLA

Predefined properties
TLAPS as a proof environment for B/Event-B

A TLA development process à la B/Event-B (study)
Conclusion

TLA
B/Event-B

Model expression (4)

(* The next−state relation . *)
Next ≜
∃ c ∈ Clients, S ∈ SUBSET Resources :

Request(c,S) ∨ Allocate(c,S) ∨ Return(c,S)
−−−
(* The complete high−level specification. *)
SimpleAllocator ≜
∧ Init ∧ [□][Next]_vars
∧ ∀ c ∈ Clients: WF_vars(Return(c, alloc[c]))
∧ ∀ c ∈ Clients: SF_vars(∃ S ∈ SUBSET Resources: Allocate(c,S))

J.P. Bodeveix, M. Filali, A. Grieu 8/29

Introduction
Development processes in B/Event-B and TLA

Predefined properties
TLAPS as a proof environment for B/Event-B

A TLA development process à la B/Event-B (study)
Conclusion

TLA
B/Event-B

Properties expression

(* Safety property *)
ResourceMutex ≜
∀ c1,c2 ∈ Clients : c1 # c2 ⇒ alloc [c1] ∩ alloc [c2] = ∅

(* Liveness property *)
ClientsWillReturn ≜
∀ c ∈ Clients : unsat[c]=∅ ⇝ alloc[c]=∅

(* Fairness properties *)
ClientsWillObtain ≜
∀ c ∈ Clients, r ∈ Resources : r ∈ unsat[c] ⇝ r ∈ alloc[c]

InfOftenSatisfied ≜
∀ c ∈ Clients : [□]<>(unsat[c] = ∅)

J.P. Bodeveix, M. Filali, A. Grieu 9/29

Introduction
Development processes in B/Event-B and TLA

Predefined properties
TLAPS as a proof environment for B/Event-B

A TLA development process à la B/Event-B (study)
Conclusion

TLA
B/Event-B

Obligations expression

THEOREM SimpleAllocator ⇒ [□]ResourceMutex
THEOREM SimpleAllocator ⇒ ClientsWillReturn
THEOREM SimpleAllocator2 ⇒ ClientsWillReturn
THEOREM SimpleAllocator ⇒ ClientsWillObtain
THEOREM SimpleAllocator ⇒ InfOftenSatisfied
(** The following do ¬hold: **)

J.P. Bodeveix, M. Filali, A. Grieu 10/29

Introduction
Development processes in B/Event-B and TLA

Predefined properties
TLAPS as a proof environment for B/Event-B

A TLA development process à la B/Event-B (study)
Conclusion

TLA
B/Event-B

Properties proof

TLC model checker for model-checking (finite instances).
TLAPS proofsystem (parameterized instances).

Discuss about the assistance for a TLA proof based
development.

J.P. Bodeveix, M. Filali, A. Grieu 11/29

Introduction
Development processes in B/Event-B and TLA

Predefined properties
TLAPS as a proof environment for B/Event-B

A TLA development process à la B/Event-B (study)
Conclusion

TLA
B/Event-B

Specification in B/Event-B

context cSimpleAllocator
sets Clients Resources
axioms

@f_Resources finite(Resources)
end

J.P. Bodeveix, M. Filali, A. Grieu 12/29

Introduction
Development processes in B/Event-B and TLA

Predefined properties
TLAPS as a proof environment for B/Event-B

A TLA development process à la B/Event-B (study)
Conclusion

TLA
B/Event-B

Specification in B/Event-B

machine mSimpleAllocator
sees cSimpleAllocator
variables unsat alloc
invariants
@unsat_ty unsat ∈ Clients → P(Resources)
@alloc_ty alloc ∈ Clients → P(Resources)
@ResourceMutex
∀ c1, c2· (c1 ∈ Clients ∧ c2 ∈ Clients ∧ c1 ̸= c2)

⇒ ((alloc (c1) ∩ alloc (c2)) = ∅)
events

event INITIALISATION then
@unsat_init unsat := Clients × {∅}
@alloc_init alloc := Clients × {∅}
end

J.P. Bodeveix, M. Filali, A. Grieu 13/29

Introduction
Development processes in B/Event-B and TLA

Predefined properties
TLAPS as a proof environment for B/Event-B

A TLA development process à la B/Event-B (study)
Conclusion

TLA
B/Event-B

Specification in B/Event-B

event Request
any c S where
@c_ty c ∈ Clients
@S_ty S ∈ P(Resources)
@u_empty unsat(c) = ∅
@a_empty alloc(c) = ∅
@S_ne S ̸= ∅
then

@upd unsat(c) := unsat(c) ∪ S
end

J.P. Bodeveix, M. Filali, A. Grieu 14/29

Introduction
Development processes in B/Event-B and TLA

Predefined properties
TLAPS as a proof environment for B/Event-B

A TLA development process à la B/Event-B (study)
Conclusion

TLA
B/Event-B

Development in B/Event-B

Predefined properties.
Automatic generation of proof obligations.
Automatic proof and Interactive proof development.
Support for model checking (ProB).

J.P. Bodeveix, M. Filali, A. Grieu 15/29

Introduction
Development processes in B/Event-B and TLA

Predefined properties
TLAPS as a proof environment for B/Event-B

A TLA development process à la B/Event-B (study)
Conclusion

Development in B/Event-B (II)

Well definedness (wrt. B type theory).
Invariance.
Well foundedness.
Refinement.

J.P. Bodeveix, M. Filali, A. Grieu 16/29

Introduction
Development processes in B/Event-B and TLA

Predefined properties
TLAPS as a proof environment for B/Event-B

A TLA development process à la B/Event-B (study)
Conclusion

J.P. Bodeveix, M. Filali, A. Grieu 17/29

Introduction
Development processes in B/Event-B and TLA

Predefined properties
TLAPS as a proof environment for B/Event-B

A TLA development process à la B/Event-B (study)
Conclusion

Plan

1 Development processes in B/Event-B and TLA
TLA
B/Event-B

2 TLAPS as a proof environment for B/Event-B

3 A TLA development process à la B/Event-B (study)

4 Conclusion

J.P. Bodeveix, M. Filali, A. Grieu 18/29

Introduction
Development processes in B/Event-B and TLA

Predefined properties
TLAPS as a proof environment for B/Event-B

A TLA development process à la B/Event-B (study)
Conclusion

TLAPS as a proof environment for B/Event-B

B/Event-B and TLA+ are both based on set theory.
B/Event-B and TLA+ expressions are almost the same.
Both proof languages adopt a ML approach (sequent
based).

J.P. Bodeveix, M. Filali, A. Grieu 19/29

Introduction
Development processes in B/Event-B and TLA

Predefined properties
TLAPS as a proof environment for B/Event-B

A TLA development process à la B/Event-B (study)
Conclusion

EB2TLA

Event-B proof obligations are translated to TLA+ theorems
to be proved.
The Rodin generated Event-B proofs (proof tree) are
translated to TLAPS proofs to discharge the TLA+
generated theorems (sequent + proof).

J.P. Bodeveix, M. Filali, A. Grieu 20/29

Introduction
Development processes in B/Event-B and TLA

Predefined properties
TLAPS as a proof environment for B/Event-B

A TLA development process à la B/Event-B (study)
Conclusion

EB2TLA

component.bps
Rodin
plugin

R20caml
component.ml

Rodin expr TLA expr
Rodin pred

Rodin proof tree TLA sequent
TLA proof

component_po.tla

component_prf.tla

J.P. Bodeveix, M. Filali, A. Grieu 21/29

Introduction
Development processes in B/Event-B and TLA

Predefined properties
TLAPS as a proof environment for B/Event-B

A TLA development process à la B/Event-B (study)
Conclusion

Proof obligations in TLA (SimpleAllocator_po)

−−−−−−−−−−−−− MODULE SimpleAllocator_po−−−−−−−−−−−−−−−−−
EXTENDS Naturals, Integers, FiniteSets, TLC, TLAPS

, Relations, Partitions
THEOREM SimpleAllocator_ResourceMutex_WD_po ≜
ASSUME NEW Clients, NEW Resources, NEW alloc ∈ SUBSET((Clients ×

SUBSET(Resources))), (alloc ∈ TotalFunctions(Clients, SUBSET(
Resources)))

PROVE (∀ c1 ∈ Clients,c2 ∈ Clients: ((c1 ∈ Clients) ∧ (c2 ∈ Clients) ∧ (c1
c2) ⇒ (c1 ∈ Dom(alloc)) ∧ (alloc ∈ PartialFunctions(Clients,
SUBSET(Resources))) ∧ (c2 ∈ Dom(alloc))))

J.P. Bodeveix, M. Filali, A. Grieu 22/29

Introduction
Development processes in B/Event-B and TLA

Predefined properties
TLAPS as a proof environment for B/Event-B

A TLA development process à la B/Event-B (study)
Conclusion

THEOREM T_THM_rodin ≜
ASSUME NEW c1 ∈ Int, NEW c2 ∈ Int, (c2 ∈ Nat), (c1 ∈ Nat)
PROVE ((∃ x ∈ Int: (∃ y ∈ Int : (y ∈ Nat) ∧ (c1 > y) ∧ (c2 < x))) ⇔ (c1 >

0))

<0> USE ProdSingleton, FunImageSingleton, OverwritePoint DEF Rel,
TotalFunctions, PartialFunctions, Dom, Ran, PartialInjections, Rev,
Surjections, PartialSurjections, TotalSurjections, Bijections , Overwrite,
AntirestrictDom, FunImage, RImage

<0>0. ((∃ x ∈ Int: (∃ y ∈ Int : (y ∈ Nat) ∧ (c1 > y) ∧ (c2 < x))) ⇒ (c1 >
0))

<1>0. ((∃ x ∈ Int, y ∈ Int : (x ∈ Nat) ∧ (c1 > x) ∧ (c2 < y)) ⇒ (c1 > 0))
<2>0. ASSUME (∃ x ∈ Int,y ∈ Int: (x ∈ Nat) ∧ (c1 > x) ∧ (c2 < y))
PROVE (c1 > 0)
<3>0. (c1 > 0)

BY <2>0
<3>1. QED BY <3>0

<2>1. QED BY <2>0
<1>1. QED BY <1>0

<0>1. ((c1 > 0) ⇒ (∃ x ∈ Int : (∃ y ∈ Int : (y ∈ Nat) ∧ (c1 > y) ∧ (c2 < x)))
)

<1>0. ((c1 > 0) ⇒ (∃ x ∈ Int , y ∈ Int : (x ∈ Nat) ∧ (c1 > x) ∧ (c2 < y)))
<2>0. ASSUME (c1 > 0)
PROVE (∃ x ∈ Int,y ∈ Int: (x ∈ Nat) ∧ (c1 > x) ∧ (c2 < y))

BY <2>0
<2>1. QED BY <2>0

<1>1. QED BY <1>0
<0>2. QED BY <0>0, <0>1

J.P. Bodeveix, M. Filali, A. Grieu 23/29

Introduction
Development processes in B/Event-B and TLA

Predefined properties
TLAPS as a proof environment for B/Event-B

A TLA development process à la B/Event-B (study)
Conclusion

(first) experiments-Feedback

(On going work)
B/Event-B typed set theory helps.
Many leafs of the proof tree are actually discharged thanks
to SMT solvers.
We have to devise strategies between full expansion of
definitions and dedicated theorems. Instantiations of TLA
theorems with some goal terms could help ?
B/Event-B interactive approach remains appreciated.

J.P. Bodeveix, M. Filali, A. Grieu 24/29

Introduction
Development processes in B/Event-B and TLA

Predefined properties
TLAPS as a proof environment for B/Event-B

A TLA development process à la B/Event-B (study)
Conclusion

Plan

1 Development processes in B/Event-B and TLA
TLA
B/Event-B

2 TLAPS as a proof environment for B/Event-B

3 A TLA development process à la B/Event-B (study)

4 Conclusion

J.P. Bodeveix, M. Filali, A. Grieu 25/29

Introduction
Development processes in B/Event-B and TLA

Predefined properties
TLAPS as a proof environment for B/Event-B

A TLA development process à la B/Event-B (study)
Conclusion

TLA development process à la B/Event-B (1) (study)
Starting point: TLA model with a “configuration” (Init, Next,
Invariants, . . .)
⇝ Generation of proof obligations.
−−−−−−−−−−−−−−−−−−−−− MODULE Allocator_po_1

−−−−−−−−−−−−−−−−−−−−−−−−−−
(* Proof squeletons generated for SimpleAllocator module *)
EXTENDS Allocator

THEOREM InitTypeInvariant ≜
Init ⇒ TypeInvariant
OMITTED

THEOREM RequestTypeInvariant ≜
ASSUME NEW c ∈ Client,

NEW S ∈ SUBSET Resource
PROVE TypeInvariant ∧ Request(c,S) ⇒ TypeInvariant’
OMITTED

THEOREM AllocateTypeInvariant ≜
ASSUME NEW c ∈ Client,

NEW S ∈ SUBSET Resource
PROVE TypeInvariant ∧ Allocate(c,S) ⇒ TypeInvariant’
OMITTED

J.P. Bodeveix, M. Filali, A. Grieu 26/29

Introduction
Development processes in B/Event-B and TLA

Predefined properties
TLAPS as a proof environment for B/Event-B

A TLA development process à la B/Event-B (study)
Conclusion

TLA development process à la B/Event-B (2)

. . .
⇝ Generation of meta theorems.

THEOREM NextTypeInvariant ≜ (*TypeInvariant ∧ Next ⇒
TypeInvariant’*)

ASSUME TypeInvariant, Next
PROVE TypeInvariant’

<1>1. ASSUME NEW c ∈ Client, NEW S ∈ SUBSET Resource,
TypeInvariant,

Request(c, S) ∨ Allocate(c, S) ∨ Return(c, S)
PROVE TypeInvariant’

J.P. Bodeveix, M. Filali, A. Grieu 27/29

Introduction
Development processes in B/Event-B and TLA

Predefined properties
TLAPS as a proof environment for B/Event-B

A TLA development process à la B/Event-B (study)
Conclusion

Plan

1 Development processes in B/Event-B and TLA
TLA
B/Event-B

2 TLAPS as a proof environment for B/Event-B

3 A TLA development process à la B/Event-B (study)

4 Conclusion

J.P. Bodeveix, M. Filali, A. Grieu 28/29

Introduction
Development processes in B/Event-B and TLA

Predefined properties
TLAPS as a proof environment for B/Event-B

A TLA development process à la B/Event-B (study)
Conclusion

ICSPA project⇝ the study of proofs in B/Event-B and TLA.
B/Event-B and TLA mathematical languages are quasi
compatible at the syntax level.
Study of a synthesis between:

the proof language of TLA.
the assisted development of proofs in B/Event-B

TLAPS as a proof environment for B/Event-B seems
reasonable.
An environment for a TLA development process à la
B/Event-B is to be investigated.

J.P. Bodeveix, M. Filali, A. Grieu 29/29

	Introduction
	Development processes in B/Event-B and TLA
	TLA
	B/Event-B

	Predefined properties
	TLAPS as a proof environment for B/Event-B
	A TLA development process à la B/Event-B (study)
	Conclusion

