
Michael Leuschel & Jan Gruteser, University of Düsseldorf, September 2024

ProB for TLA+ and TLC for B

Real Animation of TLA+ Models

A Validation Tool for Formal Models

Arithmetic

AlloyCSPZ
Event-B

Formal
Models &

Mathematics

Animation
Domain-Specific

Visualisation
Data

Validation

TLA+

T2 Certification

Model Checking and
Constraint-Based

Verification

Prolog

Logic &
Set

Theory

B

✓

received Colmerauer Prize
(50 Years of Prolog)

Data Validation

P. 18Seminar Dagstuhl I Integrated Rigorous Analysis in Cyber-Physical Systems Engineering
Attribution 4.0 Unported (CC BY 4.0)

p_over := bool (# (over_track) . ((over_track : seq (t_block * t_direction) & over_track /= {} & first (over_track) = p_X2MBlock |> p_X2MDir & ! ii . (ii : 1 .. size (over_track) - 1 => (
over_track) (ii) : dom (sidb_nextBlock)) & ! ii . (ii : 1 .. size (over_track) => sidb_nextBlock ((over_track) (ii)) = (over_track) (ii + 1))) &(# (over_res) . ((over_res :
sidb_restrictionApplicable & (# ii . (ii : dom (over_track) & ((prj2 (t_block , t_direction) (over_track (ii))) = c_up => over_res : ran (sgd_blockUpRestrictionSeq ((prj1 (t_block , t_direction
) (over_track (ii)))))) & ((prj2 (t_block , t_direction) (over_track (ii))) = c_down => over_res : ran(sgd_blockDownRestrictionSeq ((prj1 (t_block , t_direction) (over_track (ii)))))) & (
ii = 1 => not (over_res <= p_X2MRes)) & p_X2MSSWorst + p_X2MDSS + (SIGMA(jj) . (jj : 1 .. ii | SIGMA (pre_res) . (pre_res : t_restriction & ((prj2 (t_block , t_direction) (over_track (jj)))
= c_up => pre_res : ran (sgd_blockUpRestrictionSeq ((prj1 (t_block, t_direction) (over_track (jj)))))) & ((prj2 (t_block , t_direction) (over_track (jj))) = c_down => pre_res : ran (
sgd_blockDownRestrictionSeq ((prj1 (t_block , t_direction) (over_track (jj)))))) & (jj = 1 => not (pre_res <= p_X2MRes)) & (jj = ii => not (pre_res >= over_res)) |
sgd_restrictionDeltaSqSpeed (pre_res)))) > sgd_restrictionSquareSpeed (over_res) & (over_res : sgd_restrictionFront => p_X2MResDist + ((SIGMA (ti) . (ti : 1 .. ii | sgd_blockLength ((prj1
(t_block , t_direction)((over_track) (ti)))))) ({ c_down |>sgd_blockLength (p_X2MBlock) sgd_restrictionAbs (p_X2MRes) , c_up |>sgd_restrictionAbs (p_X2MRes) } (p_X2MDir)) ({
c_down |>sgd_restrictionAbs (over_res) , c_up |>sgd_blockLength ((prj1 (t_block , t_direction) ((over_track) (ii)))) sgd_restrictionAbs (over_res) } ((prj2 (t_block ,t_direction) ((
over_track) (ii)))))) + sgd_restrictionLength (over_res) > loc_locationUncertainty + c_trainLength))))) or (# (eoa_res , res_after_eoa , ii) . (eoa_res : t_restriction & res_after_eoa :
t_restriction & ii : dom (over_track) & p_EOABlock = (prj1 (t_block , t_direction)(over_track (ii))) & (ii = 1 => p_X2MRes <= eoa_res) & ((prj2 (t_block , t_direction) (over_track (ii))) =
c_up => eoa_res : ran (sgd_blockUpRestrictionSeq (p_EOABlock)) & res_after_eoa : ran (sgd_blockUpRestrictionSeq (p_EOABlock)) & sgd_restrictionAbs (eoa_res) <= p_EOAAbs &
p_EOAAbs < sgd_restrictionAbs (res_after_eoa) & ! ri . (ri : ran (sgd_blockUpRestrictionSeq (p_EOABlock)) => ri <= eoa_res or res_after_eoa <= ri)) & ((prj2 (t_block , t_direction) (
over_track (ii))) = c_down => eoa_res : ran (sgd_blockDownRestrictionSeq (p_EOABlock)) & res_after_eoa : ran (sgd_blockDownRestrictionSeq (p_EOABlock)) & sgd_restrictionAbs (
eoa_res) >= p_EOAAbs & p_EOAAbs > sgd_restrictionAbs (res_after_eoa) & ! ri . (ri : ran (sgd_blockDownRestrictionSeq (p_EOABlock)) => ri <= eoa_res or res_after_eoa <= ri)) &
p_X2MSSWorst + p_X2MDSS + (SIGMA (jj) . (jj : 1 .. ii | SIGMA (pre_res) . (pre_res : t_restriction & ((prj2 (t_block , t_direction) (over_track (jj))) = c_up => pre_res : ran (
sgd_blockUpRestrictionSeq ((prj1 (t_block , t_direction) (over_track (jj)))))) & ((prj2 (t_block , t_direction) (over_track (jj))) = c_down => pre_res : ran(sgd_blockDownRestrictionSeq (
(prj1 (t_block , t_direction) (over_track (jj)))))) & (jj = 1 => not (pre_res <= p_X2MRes)) & (jj = ii => pre_res <= eoa_res) | sgd_restrictionDeltaSqSpeed (pre_res)))) ({ c_up |>(
sgd_restrictionAccel (eoa_res) * ((sgd_restrictionAbs (res_after_eoa) p_EOAAbs) / 1024)) / 2 , c_down |>(sgd_restrictionAccel (eoa_res) * ((p_EOAAbs sgd_restrictionAbs (
res_after_eoa)) / 1024)) / 2 } ((prj2 (t_block , t_direction) (over_track (ii))))) > 0)) or (# (eoa_res , ii) . (eoa_res : t_restriction & ii : dom (over_track) & (ii = 1 => not (eoa_res <=
p_X2MRes)) & p_EOABlock = (prj1 (t_block , t_direction) (over_track (ii))) & ((prj2 (t_block , t_direction) (over_track (ii))) = c_up => eoa_res : ran (sgd_blockUpRestrictionSeq (
p_EOABlock)) & eoa_res = last(sgd_blockUpRestrictionSeq (p_EOABlock)) & sgd_restrictionAbs (eoa_res) <= p_EOAAbs) & ((prj2 (t_block , t_direction) (over_track (ii))) = c_down =>
eoa_res : ran(sgd_blockDownRestrictionSeq (p_EOABlock)) & eoa_res = last (sgd_blockDownRestrictionSeq (p_EOABlock)) & sgd_restrictionAbs (eoa_res) >= p_EOAAbs) & p_X2MSSWorst
+ p_X2MDSS + (SIGMA (jj) . (jj : 1 .. ii | SIGMA (pre_res) . (pre_res : t_restriction & ((prj2 (t_block , t_direction) (over_track (jj))) = c_up => pre_res : ran(sgd_blockUpRestrictionSeq ((
prj1 (t_block , t_direction) (over_track (jj)))))) & ((prj2 (t_block , t_direction) (over_track (jj))) = c_down => pre_res : ran(sgd_blockDownRestrictionSeq ((prj1 (t_block , t_direction) (
over_track (jj)))))) & (jj = 1 => not (pre_res <= p_X2MRes)) & (jj = ii => not (pre_res >= eoa_res)) | sgd_restrictionDeltaSqSpeed (pre_res)))) + ({ c_up |> (sgd_restrictionAccel (
eoa_res) * ((p_EOAAbs sgd_restrictionAbs (eoa_res)) / 1024)) / 2 , c_down |> (sgd_restrictionAccel (eoa_res) * ((sgd_restrictionAbs (eoa_res) p_EOAAbs) / 1024)) / 2 } ((prj2 (t_block
, t_direction) (over_track (ii))))) > 0))

Towards the limits

EN50128
Certification as T2 tool

models with up to
10 million lines of B

from Talk of Thierry Lecomte

supported by ProB

Languages and Backends

TLA+

Event-B

ZB

ProB

Kodkod
⤳SAT

TLC

iFM'07

First-order
constraint solving only

iFM'12

ABZ'14

FM'12

ASM VDM

ABZ'10

FM'03

Alloy

LTSmin

ABZ’16

ABZ'18

iFM’16

SMT
(Z3,CVC4)

iFM’16

ProB’s User Interfaces

ProB Rodin (Eclipse) PluginProB2-UI

probcli
(Command-Line Interface) ProB Jupyter Kernel

(Notebook interface)

including Disprover

all share the same Prolog core

ProB Tcl/Tk

ProB embedded @ runtime

ProB running in real-time animating a
formal B model of the Hybrid-Level 3 principles

developed by a team from the University of Düsseldorf and Thales with support from ClearSy

Train 2 following Train 1 (Lucy)
on the same occupied track section
but on different virtual subsections

Simple Set and Arithmetic Expressions
ProB’s Solver in Action

ProB running in SICStus Prolog in real-time
executing a formal B model of the Hybrid-Level 3 principles

Train 2 following Train 1 (Lucy) on the same occupied track section, but on different virtual subsections

Source: https://www.youtube.com/watch?v=FjKnugbmrP4

https://www.youtube.com/watch?v=FjKnugbmrP4

B Logical Foundations

• Typed first-order predicate logic with equality
• Well-Definedness Conditions to stay in two-valued logic

• Arithmetic over mathematical integers and implementable integers
• Set theory

• Sets, Relations, Functions, Sequences
• including higher-order functions

• B is simpler than its predecessor Z
• and provides structuring and refinement for proving and code generation

p∈dom(a)↣dom(a) ∧ ∀i·(i∈1‥(size(a)−1) ⇒ p(a(i)) < p(a(i+1)))

related state-based formal methods:
Z, TLA+, Alloy, VDM, ASM

TLA+ vs B

ProB and TLA+

This talk

TLA+

Event-B

ZB

ProBTLC

iFM'07

iFM'12

ABZ'14

ABZ'10

FM'03

Part 2

Part 1

TLC for B/ProB
Part 1 of Talk

TLC for B

• Based on a translation of B to TLA+ with some special modules for relations and functions

• Functions in B are sets of tuples and we can apply set and relation operators on them

• Motivation of TLC4B: for low-level models TLC is much faster than ProB:

• no constraint solving overhead

• Java vs Prolog?

• ignoring hash collisions in TLC

• parallel

B Model ProB
B Parser

Abstract
Syntax
Tree

Semantic
Verifier

(functionality
 inference,...)

TLC
Optimizer

(subtype
 inference,...)

B to TLA+
Translator

TLA +
Model

TLC
Model

Checker

Counter
Example

Trace
ProB

Replay

TLC4B
Libraries TLC4B

Benchmark

Signalling Example

• Benchmark from Mars 2018 (Models for Formal Analysis of Real Systems)

• Using TLC4B required extension to handle limited sequential composition used

Communications-based Train Control (CBTC) systems are metro signalling platforms, which coordinate and protect the
movements of trains within the tracks of a station, and between different stations. In CBTC platforms, a prominent role is
played by the Automatic Train Supervision (ATS) system, which automatically dispatches and routes trains within the
metro network. Among the various functions, an ATS needs to avoid deadlock situations, i.e., cases in which a group of
trains block each other. In the context of a technology transfer study, we designed an algorithm for deadlock avoidance in
train scheduling. In this paper, we present a case study in which the algorithm has been applied. The case study has been
encoded using ten different formal verification environments, namely UMC, SPIN, NuSMV/nuXmv, mCRL2, CPN Tools,
FDR4, CADP, TLA+, UPPAAL and ProB. Based on our experience, we observe commonalities and differences among the
modelling languages consid- ered, and we highlight the impact of the specific characteristics of each language on the
presented models.

http://mars-workshop.org/repository/020-CBTC.html https://arxiv.org/pdf/1803.10324

Recap: TLC for B

• Improved TLC support for B models

• Latest version of TLC

• More options (disable coverage, inspect TLA+ translation), support in ProB2-UI

• Limited support for sequential composition (but not full support, no refinement support, no WHILE, …)

• For MARS 18 model: combined ProB+TLC faster than either alone

• ProB generates solutions for constants / initial state (via solver)

• TLC checks large state space of simple B operations

• Performance similar to Spin!

ProB for TLA+
Part 2 of Talk

TLA+

Event-B

ZB

ProB

Kodkod
⤳SAT

TLC

iFM'07

First-order
constraint solving only

iFM'12

ABZ'14

FM'12

ASM VDM

ABZ'10

FM'03

Alloy

LTSmin

ABZ’16

ABZ'18

iFM’16

SMT
(Z3,CVC4)

iFM’16

Translation of TLA+ to B AST

ProB for TLA+

• Several values exist in both B and TLA+: strings, integers, records, sets, sequences,…

• B is typed (with type inference)

• Some slight differences
(modulo, division)

•

Why ProB for TLA+

• Interactive animation

• Constraint solving capabilities

• Visualisation: state space projection, individual states using GraphViz, SVG-based interactive
visualisation

• Storing & replaying traces, VO manager

• Model checking: other algorithms available: symmetry, operation caching, POR, …

Why not ProB for TLA+

• Model checking can be much slower

• Only typed specifications are accepted

• Not all features of TLA+ supported

• Tool may show B formulas (even though use of Unicode overcomes part of the hurdle)

ProB2-UI

Project View
for models
and preferences

Console (REPL)
for interactive exploration

Operations View
for interactive
animation

State View
to inspect current
and preceding state

History View
to inspect and
navigating current
animation trace

Replay View
for automatic
trace replay

VisB View
SVG-based visualization
of current state

https://prob.hhu.de

N-Queens

Constraint Solving Example

---- MODULE queens_20 ----

EXTENDS Naturals, FiniteSets

VARIABLE queens, n, solved

Init == /\ queens=[i \in 1..2 |-> 0]
 /\ n=20
 /\ solved = 0

Solve == /\ solved=0
 /\ queens' \in [1..n -> 1..n]
 /\ \A i \in 1..n : (\A j \in 2..n : i<j => queens'[i] # queens'[j] /\
 queens'[i]+i-j # queens'[j] /\ queens'[i]-i+j # queens'[j])
 /\ solved'=1
 /\ n'=n
Spec == Init /\ [] [Solve]_<<n,queens>>

MacBook Air M2

n
ProB 1.13.1
(MC Time)

TLC 2.19
 Toolbox 1.7.4

(MC Time)

6 0.003 2.408

7 0.003 5.953

8 0.003 77.590

9 0.004 35min 23 sec

20 0.018 ?

---- MODULE queens_20 ----
EXTENDS Naturals, FiniteSets
VARIABLE queens, n, solved

Init == /\ queens=[i \in 1..2 |-> 0]
 /\ n=20
 /\ solved = 0
Solve == /\ solved=0
 /\ queens' \in [1..n -> 1..n]
 /\ \A i \in 1..n : (\A j \in 2..n : i<j => queens'[i] #
queens'[j] /\
 queens'[i]+i-j # queens'[j] /\
queens'[i]-i+j # queens'[j])
 /\ solved'=1
 /\ n'=n
Spec == Init /\ [] [Solve]_<<n,queens>>

How to visualise formal models

VisB Architecture

VisB
JSON
Glue
File

Formal
Model

SVG
Graphics

File

ProB2
Animator

UI
VisB

Modified
SVG

Graphics

Evaluation
of Formulas
from Glue

File

Setting Attributes
and On-click Callbacks

object ids
and attributes

expressions over
variables, constants

and events

+ add new objects

Die Hard Jugs Puzzle

Another Example

• Interactive visualisation

• Note: instead of putting VisB
infos in JSON file, one can now
also provide definitions in TLA+
syntax in the .tla file

• VISB_SVG_OBJECTS == …

------------------------------ MODULE DieHard -------------------------------
(* File from TLC distribution; minor changes for ProB and VisB *)
(***)
(* In the movie Die Hard 3, the heroes must obtain exactly 4 gallons of*)
(* water using a 5 gallon jug, a 3 gallon jug, and a water faucet. Our *)
(* goal: to get TLC to solve the problem for us. *)
(* *)
(* First, we write a spec that describes all allowable behaviors of our *)
(* heros. *)
(***)
…
TypeOK == /\ small \in 0..3
 /\ big \in 0..5
…
(***)
Next == \/ FillSmallJug
 \/ FillBigJug
 \/ EmptySmallJug
 \/ EmptyBigJug
 \/ SmallToBig
 \/ BigToSmall
…

VISB_JSON_FILE == "DieHard_tla.json" * addition for ProB-VisB
GOAL == (big=4) * for ProB; not really required; config file has invariant

sometimes beautiful, but seldom informative

Full State Space Visualisation

Projection Diagrams

State Space Visualisation

• Provide an expression, like

• big

• (big mod 2, small mod 2)

• {0|->"empty",1|->"low", 2|->"low", 3|->"low",
4|->"goal", 5|->"high",6|->"high", 7|->”high"}(big)

• and state space will be projected onto
possible values of the expression

cf talk at FM’24 tomorrow

New B2SAT backend of ProB

• ProB has various constraint solvers

• default Prolog solver based on CLP(FD) solver and custom boolean, set, relation solvers

• Kodkod: translation to SAT via Kodkod relational logic API (cf Alloy)

• SMT: CVC4/Z3 translations (axiomatic and constructive)

• new B2SAT direct translation to SAT

• All solvers also in principle available for TLA+ models

n3

n4

edge

n5

edge

n7

edge

edge

n8

n10

edge

n13

edge

n11

n12

edge

n14

edge

n19

n21

edgen20

edge

n22

edge

n23

edge

n24

edge

n1

edge

n2

edge

edge

n6

edge

n9

edge

edge

edge

edge

edge

edge

edge

edge

n16

edge

n15

edge

n17

edge

edge

edge edge

n18

edge

edge

edge

edge

edge

edge

edge

edge

edge

edge

edge

TLC: -

Apalache: 47 secs

ProB: 0.015 secs

Custom graph visualisation

…
VARIABLES
 board, * board[1..3][1..3] A 3x3 tic-tac-toe board
 nextTurn * who goes next
Pieces == {"X", "O", "_"} * "_" represents a blank square
Init ==
 /\ nextTurn = "X" * X always goes first
 * Every space in the board states blank
 /\ board = [i \in 1..3 |-> [j \in 1..3 |-> "_"]]
MoveO ==
 \E i \in 1..3: \E j \in 1..3: * There exists a position on the board
 /\ nextTurn = "O" * Only enabled on player's turn
 /\ nextTurn' = "X" * The future state of next turn is other player
 /\ board[i][j] = "_" * Where the board is currently empty
 (**)
 (* The future state of board is the same, except a piece is in that *)
 (* spot *)
 (**)
 /\ board' = [board EXCEPT
 ![i][j] = "O"]
…

Tic-Tac-Toe TLA+ model

Playing Games

• VisB interactive visualisation

• MCTS Auto-Play

* additions for ProB:
VISB_JSON_FILE == "tictactoe_visb.json"
GOAL == Won("O")
* the following Invariant is violated by this model
INVARIANT == ~Won("O") \/ ~Won("X")
* additions for ProB so that we can apply MCTS auto play:
GAME_MCTS_RUNS == 400
GAME_PLAYER == IF nextTurn = "X" THEN "max" ELSE "min"
GAME_OVER == IF Won("X") \/ Won("O") THEN TRUE ELSE FALSE
GAME_VALUE == IF Won("X") THEN 1 ELSE 0

From:
 https://elliotswart.github.io/pragmaticformalmodeling/

https://elliotswart.github.io/pragmaticformalmodeling/

Monte-Carlo Tree Search

MCTS Game Play

• You can ask ProB to choose next action based on MCTS

• GAME_MCTS_RUNS == 100

• GAME_PLAYER == IF nextTurn = "X" THEN "max" ELSE "min"

• GAME_OVER == IF Won("X") \/ Won("O") THEN TRUE ELSE FALSE

• GAME_VALUE == IF Won("X") THEN 1 ELSE 0

TLA+ model

Syntax in B

Reals/Floats in ProB

• New classical B keywords:

• ℝ → ℤ: ceiling(.), floor(.)

• ℤ → ℝ: real(.)

• and real literals

• Existing B operators work for ℝ:

• +, -, *, /, max, min, ∑, ∏

• LibraryReals.def provides many functions:

• RADD, RMINUS, …, RSIN, RCOS, …., RSQRT, RPOW, RLOG,

• RPI, REULER, RONE, RZERO

>>>> SIGMA(x).(x:1..100|1.0/real(x))

 5.187377517639621

>>>> RSIN(RADIANS(90.0))

 1.0

ProB Float Support

• Currently internally only floats supported

• Useful for VisB, Simulation, Controllers with floats and
for “approximate” validation of models with reals

• preference REAL_SOLVER:

• aggressive_float_solver,float_solver,none,precise_float_solver

• precise_float_solver: default, tries to find exact solutions for 64-bit floats

• aggressive_float_solver: does not check that solution is exact or the only one
 (similar to how CLP(Real) works in Prolog)

• Future: CLP(Q), Z3 support, real interval solver, …

Jupyter
Notebook

Demo

TLA+ Example with Reals

• From NFM’24 article “Real Arithmetic in TLAPM” by Gunasekera et al.
…
VARIABLES x, y
vars == << x, y >>

TypeInvariant == /\ x \in Real
 /\ y \in Real

* Initialise variables: x(0)^2 + y(0)^2 <= 1
Init == /\ x = 0.0
 /\ y = 1.0

Next == /\ x' = (2.0 / 3.0) * x + 0.5 * y
 /\ y' = 0.5 * x - (1.0 / 3.0) * y

Spec == Init /\ [][Next]_vars* /\ WF_vars(Next)
…

Adapted Water Tank

Another Example

• Using reals instead of integers

• With inlined VisB visualisation
(no JSON file)

---------------------- MODULE WaterTankReals ----------------------
EXTENDS Naturals, Reals
CONSTANTS
 low_threshold,
 high_threshold,
 (*@ unit s *) step_size,
 (*@ unit m**3 / s *) outflow,
 inflow
ASSUME
 /\ low_threshold = 20.0
 /\ high_threshold = 60.0
 /\ outflow = 10.0
 /\ inflow = 15.0
 /\ step_size = 0.5
VARIABLES
 pump,
 level
Init == level \in {50.0} /\ pump=FALSE
SwitchPump == pump' = IF level < low_threshold THEN TRUE ELSE
 IF level > high_threshold THEN FALSE ELSE pump
UpdateLevel == level' = IF pump THEN level + inflow * step_size - outflow * step_size
 ELSE level - outflow * step_size
Next == SwitchPump /\ UpdateLevel
WaterTank == Init /\ [][Next]_{pump}

lft == 10.0 * left offset
wid == 30.0 * width of water tank
bot == 120.0 * bottom of water tank display
maxw == high_threshold+inflow * maximum capacity
Invariant == level > 0.0 /\ level <= maxw
convy(lvl) == bot-lvl
VISB_SVG_BOX == [width |-> wid+4.0*lft, height |-> bot+lft]
VISB_SVG_OBJECTS0 == [svg_class |-> "rect", x|->lft,
 y |-> convy(level), height |-> level, width |-> wid,
 fill |-> “lightsteelblue"]
…

stand-alone HTML file, can be opened without ProB in browser

HTML Export of Trace

ProB and TLA+

Conclusion

• TLC available as improved backend for B models

• TLA+ support in ProB

• improvements: new SANY version, REAL, add CUSTOM_GRAPH/VISB definitions

• Interactive Animation

• Visualisation

• Constraint Solving

• Looking for ways to extend support for larger subset of TLA+

https://prob.hhu.de/w/index.php?title=TLA
Download Snapshot version for all

of today’s features

Jens Bendisposto
Carl Friedrich Bolz
Michael Butler
Joy Clark
Ivo Dobrikov
Jannik Dunkelau
Nadine Elbeshausen
Fabian Fritz
Marc Fontaine
Marc Frappier
David Geleßus
Jan Gruteser
Stefan Hallerstede
Dominik Hansen
Christoph Heinzen
Yumiko Jansing
Michael Jastram
Philipp Körner
Sebastian Krings

Lukas Ladenberger
Li Luo
Thierry Massart
Daniel Plagge
Antonia Pütz
Jan Roßbach
Mireille Samia
Joshua Schmidt
David Schneider
Sherin Schneider
Corinna Spermann
Sebastian Stock
Yumiko Takahashi
Edd Turner
Miles Vella
Fabian Vu
Michelle Werth
Dennis Winter

Thanks for the Support
Alstom (F. Mejia,…)
ClearSy (T Lecomte, R. Lapostelle, E. Mottin,…)
Siemens
Systerel
Thales/Hitachi (N. Nayeri, G. Hemzal,…)

DFG (Gepavas I+II, IVOIRE)
EU (Rodin, Deploy, Advance)

SICStus Prolog (Mats Carlsson, Per Mildner)

STUPS Team & Friends

