
Validating Traces of Distributed Systems
Against TLA+ Specifications

Stephan Merz
joint work with Horatiu Cirstea, Markus Kuppe, Benjamin Loillier

Inria & LORIA, Nancy, France

TLA+ Community Meeting

Milan, September 2024

Stephan Merz Trace Validation for TLA+ TLA+ 2024 1 / 15

Motivation

Relate TLA+ specifications and distributed programs

▶ TLA+ specifications abstract from implementation details

▶ implementations usually have much finer grain of atomicity

▶ also need to cater for networking semantics, exception handling etc.

▶ formal refinement proofs are tedious

Lightweight approach for finding bugs

▶ instrument (Java) code to record transitions at specification level

▶ log updates of specification variables and/or occurrences of actions

▶ use TLC to check if the trace corresponds to some allowed behavior

Stephan Merz Trace Validation for TLA+ TLA+ 2024 2 / 15

Running Example: Two-Phase Commit from GitHub Examples

TM

RM RM RM. . .

prepared

prepared
prepared

commit / abort

Two possible TM transitions

handle “prepared” message from RM r

TMRcvPrepared(r) ∆
=

∧ tmState = “init”
∧ [type 7→ “prepared”, rm 7→ r] ∈ msgs
∧ tmPrepared′ = tmPrepared ∪ {r}
∧ UNCHANGED ⟨tmState, rmState, msgs⟩

send “commit” order to all RMs

TMCommit ∆
=

∧ tmState = “init”
∧ tmPrepared = RMs
∧ tmState′ = “done”
∧ msgs′ = msgs ∪ {[type 7→ “commit”]}
∧ UNCHANGED rmState

Stephan Merz Trace Validation for TLA+ TLA+ 2024 3 / 15

Running Example: Two-Phase Commit from GitHub Examples

TM

RM RM RM. . .

prepared

prepared
prepared

commit / abort

Two possible TM transitions

handle “prepared” message from RM r

TMRcvPrepared(r) ∆
=

∧ tmState = “init”
∧ [type 7→ “prepared”, rm 7→ r] ∈ msgs
∧ tmPrepared′ = tmPrepared ∪ {r}
∧ UNCHANGED ⟨tmState, rmState, msgs⟩

send “commit” order to all RMs

TMCommit ∆
=

∧ tmState = “init”
∧ tmPrepared = RMs
∧ tmState′ = “done”
∧ msgs′ = msgs ∪ {[type 7→ “commit”]}
∧ UNCHANGED rmState

Stephan Merz Trace Validation for TLA+ TLA+ 2024 3 / 15

Java Implementation of Two-Phase Commit

Classes implementing the algorithm

▶ ResourceManager may send “prepared” message, listens for “abort” / “commit”

▶ TransactionManager listens for “prepared” messages, aborts after timeout

▶ NetworkManager relays messages between processes, based on Java sockets

Harness running the algorithm

▶ read configuration from JSON file and set up processes

▶ simulate system execution, including delays and failures

Structurally quite different from the TLA+ specification

Stephan Merz Trace Validation for TLA+ TLA+ 2024 4 / 15

Instrumenting the Java Implementation for Logging Traces

Two methods from class TransactionManager

protected void receive(Message msg) throws IOException {
if (msg.getContent().equals(TwoPhaseMessage.Prepared)) {

preparedRMs ++; // implementation counts “prepared” messages

}
}

private void commit() throws IOException { // assumes preparedRMs == resourceManagers.size()
for (String rm : resourceManagers) {

networkManager.send(new Message(getName(), rm, TwoPhaseMessage.Commit));
}

}

Stephan Merz Trace Validation for TLA+ TLA+ 2024 5 / 15

Instrumenting the Java Implementation for Logging Traces

Two methods from class TransactionManager with instrumentation

protected void receive(Message msg) throws IOException {
if (msg.getContent().equals(TwoPhaseMessage.Prepared)) {

preparedRMs ++; // implementation counts “prepared” messages
specTmPrepared.add(msg.getFrom()); // record variable update
spec.log(“TMRcvPrepared”, new Vector(msg.getFrom())); // log action occurrence

}
}

private void commit() throws IOException { // assumes preparedRMs == resourceManagers.size()
for (String rm : resourceManagers) {

networkManager.send(new Message(getName(), rm, TwoPhaseMessage.Commit));
}
specMessages.add(Map.of(“type”, TwoPhaseMessage.Commit.toString()));
spec.log(“TMCommit”);

}

Stephan Merz Trace Validation for TLA+ TLA+ 2024 5 / 15

Java API and Python Scripts for Collecting Traces

Collect updates of specification variables
▶ programmer maps implementation data to values of TLA+ specification
▶ need not specify updates for all variables
▶ log method assembles updates, adds time stamp, and optionally records action

Class TLATracer facilitates the instrumentation
▶ support for shared (physical) and logical clocks
▶ convenience methods for recording (partial) updates of data structures
▶ record log as sequence of JSON entries

Merge traces of individual processes and sort them by timestamps
▶ centralized clock: easy to use for simulation, e.g. continuous integration
▶ logical clocks when running on separate nodes

Stephan Merz Trace Validation for TLA+ TLA+ 2024 6 / 15

Validating the Trace

Trace of implementation State space of TLA+ specification

Does the trace correspond to some execution allowed by the TLA+ specification?

Can be reduced to a model checking problem, using the trace as a constraint

Stephan Merz Trace Validation for TLA+ TLA+ 2024 7 / 15

Validating the Trace

Trace of implementation State space of TLA+ specification

Does the trace correspond to some execution allowed by the TLA+ specification?

Can be reduced to a model checking problem, using the trace as a constraint

Stephan Merz Trace Validation for TLA+ TLA+ 2024 7 / 15

Validating the Trace

Trace of implementation State space of TLA+ specification

Does the trace correspond to some execution allowed by the TLA+ specification?

Can be reduced to a model checking problem, using the trace as a constraint

Stephan Merz Trace Validation for TLA+ TLA+ 2024 7 / 15

Validating the Trace

Trace of implementation State space of TLA+ specification

Does the trace correspond to some execution allowed by the TLA+ specification?

Can be reduced to a model checking problem, using the trace as a constraint

Stephan Merz Trace Validation for TLA+ TLA+ 2024 7 / 15

Validating the Trace

Trace of implementation State space of TLA+ specification

Does the trace correspond to some execution allowed by the TLA+ specification?

Can be reduced to a model checking problem, using the trace as a constraint

Stephan Merz Trace Validation for TLA+ TLA+ 2024 7 / 15

Validating the Trace

Trace of implementation State space of TLA+ specification

Does the trace correspond to some execution allowed by the TLA+ specification?

Can be reduced to a model checking problem, using the trace as a constraint

Stephan Merz Trace Validation for TLA+ TLA+ 2024 7 / 15

Validating the Trace

Trace of implementation State space of TLA+ specification

Does the trace correspond to some execution allowed by the TLA+ specification?
Can be reduced to a model checking problem, using the trace as a constraint

Stephan Merz Trace Validation for TLA+ TLA+ 2024 7 / 15

Generic Setup of Trace Checking Using TLC

MODULE TraceSpec
EXTENDS TLC, Integers, Sequences, Json, IOUtils
Trace ∆

= ndJsonDeserialize(IOEnv.TRACE PATH)

VARIABLE l * current line in trace
IsEvent(e) ∆

= ∧ l ∈ 1 .. Len(Trace)
∧ “event” ∈ DOMAIN Trace[l] ⇒ Trace[l].event = e
∧ l′ = l + 1
∧ UpdateVariables(Trace[l])

TraceAccepted ∆
= Len(Trace) = TLCGet(“stats”).diameter − 1

load trace produced by system run as a TLA+ value

action IsEvent tracks progress through the trace

post-condition TraceAccepted ensures that at least one matching behavior was found

Stephan Merz Trace Validation for TLA+ TLA+ 2024 8 / 15

Trace Checking for Two-Phase Commit

MODULE TwoPhaseTrace
EXTENDS TwoPhase, TVOperators, TraceSpec
UpdateVariables(ll) ∆

=
∧ IF “rmState” ∈ DOMAIN ll

THEN rmState′ = UpdateVariable(rmState, ll.rmState)
ELSE TRUE

∧ . . .

IsTMCommit ∆
= IsEvent(“Commit”) ∧ TMCommit

IsTMRcvPrepared ∆
=

∧ IsEvent(“TMRcvPrepared”)
∧ IF “event args” ∈ DOMAIN Trace[l]

THEN TMRcvPrepared(Trace[l].event args[1])
ELSE ∃r ∈ RM : TMRcvPrepared(r)

. . .

TraceInit ∆
= TPInit ∧ l = 1

TraceNext ∆
= IsTMCommit ∨ IsTMRcvPrepared ∨ . . .

UpdateVariable(old, upd)
predefined operator, applies the
update from the JSON entry

TMCommit, TMRcvPrepared, TPInit
operators from original two-phase
commit specification

Overall trace specification
schematic operator definitions,
could largely be mechanized

Stephan Merz Trace Validation for TLA+ TLA+ 2024 9 / 15

Extending the Implementation for Supporting Failures

Take into account potential message loss

TM

RM RM RM. . .

prepared

pr
ep

ar
ed

prepared
commit / abort

▶ RM resends message after a timeout if no order from TM has arrived

▶ resending corresponds to stuttering in TLA+ since messages are stored in a set

However, counting messages is no longer correct

▶ TM cannot distinguish between original and resent messages

▶ trace validation quickly reveals the problem: commit may be sent prematurely

▶ modify implementation to store identities of RMs instead of counting

Stephan Merz Trace Validation for TLA+ TLA+ 2024 10 / 15

Extending the Implementation for Supporting Failures

Take into account potential message loss

TM

RM RM RM. . .

prepared

pr
ep

ar
ed

prepared
commit / abort

▶ RM resends message after a timeout if no order from TM has arrived

▶ resending corresponds to stuttering in TLA+ since messages are stored in a set

However, counting messages is no longer correct

▶ TM cannot distinguish between original and resent messages

▶ trace validation quickly reveals the problem: commit may be sent prematurely

▶ modify implementation to store identities of RMs instead of counting

Stephan Merz Trace Validation for TLA+ TLA+ 2024 10 / 15

Experience with Trace Validation

Considered several algorithms

▶ two-phase commit protocol
▶ distributed key-value store, implemented according to existing TLA+ specification
▶ distributed termination detection (EWD998)
▶ two open-source implementations of Raft consensus protocol
▶ Microsoft Confidential Consortium Framework: reverse-engineered TLA+ specification
▶ instrumenting the implementations was quite easy

Trace validation quickly found discrepancies in every case

▶ problems may indicate implementation errors or overly strict specification
▶ identified serious bugs in CCF implementation
▶ spurious discrepancies due to mismatch in “grain of atomicity”

Stephan Merz Trace Validation for TLA+ TLA+ 2024 11 / 15

Experience with Trace Validation

Considered several algorithms

▶ two-phase commit protocol
▶ distributed key-value store, implemented according to existing TLA+ specification
▶ distributed termination detection (EWD998)
▶ two open-source implementations of Raft consensus protocol
▶ Microsoft Confidential Consortium Framework: reverse-engineered TLA+ specification
▶ instrumenting the implementations was quite easy

Trace validation quickly found discrepancies in every case

▶ problems may indicate implementation errors or overly strict specification
▶ identified serious bugs in CCF implementation
▶ spurious discrepancies due to mismatch in “grain of atomicity”

Stephan Merz Trace Validation for TLA+ TLA+ 2024 11 / 15

Accommodating different grains of atomicity

Implementation steps may be invisible for the specification

▶ essentially harmless: stuttering transitions
▶ avoid indicating action name, e.g. message resending from wrong sender state

Implementation step may correspond to several abstract transitions

▶ e.g., combine UpdateTerm and AppendEntries actions in Raft
▶ must decide if this acceptable or not
▶ provide explicit disjunct in trace specification using action composition

Decide when and what to log

▶ programming languages do not provide atomic transitions
▶ typically: log when shared state is updated (network, locks, data bases etc.)

Stephan Merz Trace Validation for TLA+ TLA+ 2024 12 / 15

Accommodating different grains of atomicity

Implementation steps may be invisible for the specification

▶ essentially harmless: stuttering transitions
▶ avoid indicating action name, e.g. message resending from wrong sender state

Implementation step may correspond to several abstract transitions

▶ e.g., combine UpdateTerm and AppendEntries actions in Raft
▶ must decide if this acceptable or not
▶ provide explicit disjunct in trace specification using action composition

Decide when and what to log

▶ programming languages do not provide atomic transitions
▶ typically: log when shared state is updated (network, locks, data bases etc.)

Stephan Merz Trace Validation for TLA+ TLA+ 2024 12 / 15

Accommodating different grains of atomicity

Implementation steps may be invisible for the specification

▶ essentially harmless: stuttering transitions
▶ avoid indicating action name, e.g. message resending from wrong sender state

Implementation step may correspond to several abstract transitions

▶ e.g., combine UpdateTerm and AppendEntries actions in Raft
▶ must decide if this acceptable or not
▶ provide explicit disjunct in trace specification using action composition

Decide when and what to log

▶ programming languages do not provide atomic transitions
▶ typically: log when shared state is updated (network, locks, data bases etc.)

Stephan Merz Trace Validation for TLA+ TLA+ 2024 12 / 15

Technical Aspects

Tradeoff between precision and efficiency

▶ track only some specification variables, indicate TLA+ actions or not

▶ less information in the trace may lead to state explosion during validation

▶ consider using constrained depth-first rather than breadth-first search

Explaining failures

▶ counter-example: longest prefix of execution that cannot be extended

▶ it would be desirable to also show other failures to complete

▶ TLC debugger can be used to explore the constrained state graph

Stephan Merz Trace Validation for TLA+ TLA+ 2024 13 / 15

Technical Aspects

Tradeoff between precision and efficiency

▶ track only some specification variables, indicate TLA+ actions or not

▶ less information in the trace may lead to state explosion during validation

▶ consider using constrained depth-first rather than breadth-first search

Explaining failures

▶ counter-example: longest prefix of execution that cannot be extended

▶ it would be desirable to also show other failures to complete

▶ TLC debugger can be used to explore the constrained state graph

Stephan Merz Trace Validation for TLA+ TLA+ 2024 13 / 15

Precision vs. Numbers of Explored States (Valid Traces)

Instance length VEA V VpEA EA E
TP, 4 RMs 17 19 211/35 19 48/22 246/58
TP, 8 RMs 33 35 8k/73 35 640/42 22k/695
TP, 12 RMs 73 74 ∞/209 74 11k/86 2.5M/27k
TP, 16 RMs 90 91 ∞/270 91 205k/107 ∞/557k
KV, 4a, 10k, 20v 109 111 ∞/158 13k/149 111 ∞/35k
KV, 8a, 10k, 20v 229 231 ∞/317 18k/307 231 ∞/176k
KV, 12a, 10k, 20v 295 297 ∞/423 678k/411 297 ∞/300k
KV, 4a, 20k, 40v 131 133 ∞/298 ∞/285 133 ∞/9.9M
KV, 8a, 20k, 40v 249 251 ∞/1164 ∞/1146 251 ∞
KV, 12a, 20k, 40v 308 310 ∞/552 ∞/538 310 ∞

VEA variables and actions with arguments EA only actions with arguments
V only variables E only action names
VpEA some variables and actions bfs / dfs exploration

Stephan Merz Trace Validation for TLA+ TLA+ 2024 14 / 15

Conclusions and Perspectives

Lightweight approach to validating implementations

▶ easy to apply when the TLA+ specification is known to the programmer

▶ generic, reusable framework mixing Java, TLA+, and scripts for running the tools

▶ model checker can fill in values for specification variables left open

▶ surprisingly effective for finding implementation errors

Future / ongoing work

▶ streamline the toolchain, aim for (even) more genericity

▶ improve analysis and visualization of counter-examples

▶ leverage model checker for steering the implementation?

▶ explore online monitoring instead of off-line trace validation

Stephan Merz Trace Validation for TLA+ TLA+ 2024 15 / 15

