¢ 0 2 p

1

ORACLE

Reverse-Engineering with TLA*

Calvin Loncaric
Verification Engineer

Copyright © 2024, Oracle and/or its affiliates 4/17/24



Background: TLA* at Oracle Cloud Infrastructure (OCI)

2015 2017 2024

First TLA* written “Verification Team” Many critical bugs
at OCl forms discovered/fixed

Like an internal consultancy:
Design reviews on steroids
Careful analysis of service code
TaIks/workshops/educatlon - Dozens of different services and teams

Pushing adoption of formal methods - Hundreds of specifications written
- Hundreds more subtle bugs discovered/fixed

2 Copyright © 2024, Oracle and/or its affiliates 4/17/24 E

>6 years of TLA* in practice!




How Software is Written

Business need / requirements

T
m Design document

oooo

Benchmarks/testing/
customer feedback

3 Copyright © 2024, Oracle and/or its affiliates 4/17/24 E




What do you do if the formalization step got skipped?

: TLA+ blueprint

Business need / requirements

T
ng!

Design document

This workflow is totally
backwards, but still
effective!

Benchmarks/testin
customer feedback

4 Copyright © 2024, Oracle and/or its affiliates 4/17/24 E



Ord
Why is this an effective way to improve software? " Atomicity

. . : External
1. Quickly find incorrect assumptions - services
Environment
Correlated

Power failures

3. Fills gaps not covered by testing outages

Ob Drive failures Easier _tO
=CUlE communicate

interleavings findings

2. By construction, specs resemble source code Easier to find

practical fixes

Easier to
update later

4. Yes, we still have to define correctness

5 Copyright © 2024, Oracle and/or its affiliates 4/17/24 E




The Scale of the Problem

>10° LoC

(For a single servicel)

* We have a few secret
weapons that can help!

6 Copyright © 2024, Oracle and/or its affiliates 4/17/24



Secret Weapon: we know what we’re looking for

1f (condition) {

log.info (“begin flush”);
St cntTime () ;
du Tl o rrentTime () - start;
metrics.emitFlushDuration (duration) ;

7 Copyright © 2024, Oracle and/or its affiliates 4/17/24 E



Secret Weapon: we don’t have to model order
(*at least initially)

Flush ==
/\ diskState’ = memState
/\ UNCHANGED <<.>>

Implementation will make
decisions about when;

specification only has to
capture what

8 Copyright © 2024, Oracle and/or its affiliates 4/17/24



Secret Weapon: we have access to the authors

"Hey @Developer,

Can you walk me through what happens if the flush fails?”

Environment

FlushFails (pid) == S
/\ diskState’ = Havoc il
/\ pc’ = [pc EXCEPT ! [pid] = “recover”]
/\ UNCHANGED <<..>>

9 Copyright © 2024, Oracle and/or its affiliates 4/17/24 E




The Basic Workflow

Gather correctness
properties: what does
the system need to
ensure?

Formalize
properties and
variables in TLA+

10 Copyright © 2024, Oracle and/or its affiliates

How do the relevant
variables change? Read
the source code

Formalize relevant
actions (and
additional variables)
in TLA+

4/17/24

Model checking with TLC




The Key Feedback Loop

Is it a bug or is

the correctness
“ property too
Q What ‘ strong?
prevents this Nothing

‘ ) behavior?” s

Error

Improve spec

Model checking with TLC SSUBUIER fijelity: back to

modeling the
relevant code

Takeaways: why does
the code work? What

! V behaviors are critical
OK to understand and

test?

11 Copyright © 2024, Oracle and/or its affiliates 4/17/24 E




Recent Example: Automatic Password Rotation

. August 2023:

* Initial design complete
» Short spec showing safety of a few core actions in steady state

Divergence large enough to

justify reverse engineering

‘ January 2024:

» Code complete
» Different from initial design!
* New requirements (e.g. repair so-called “special-case” systems)
* New features (e.g. in-memory cache for certain bits of remote state)

12 Copyright © 2024, Oracle and/or its affiliates 4/17/24



Ultra-High-Level Intuition

Clients connect using Account A

Account A
[»] 7]

Account B

It is safe to change Account
B’s password without
disrupting new connections

13 Copyright © 2024, Oracle and/or its affiliates 4/17/24



Ultra-High-Level Intuition

It is safe to change Account
A’s password without
disrupting new connections

Account A
[»] 7]

Clients connect using Account B

Account B

14 Copyright © 2024, Oracle and/or its affiliates 4/17/24



A Roadmap to the Code

~300k LoC split across 4 repositories

« Common utility library

Only a tiny subset is relevant to

- DB abstraction layer library password rotation!

« “Control Plane” service

Password rotation algorithm lives here

« “Data Plane” service

Needs to respond to password changes

15 Copyright © 2024, Oracle and/or its affiliates 4/17/24



Next: a few observations about the password rotation design

(These are common things you can look for if you ever find
yourself reverse-engineering some source code!)

16 Copyright © 2024, Oracle and/or its affiliates 4/17/24



Common Pattern 1/3: Single-Threaded != Nonconcurrent

Tempting to treat
this as a single-

newPassword = secureStorage.getlLatestPassword() threaded process

db.setPassword (newPassword) ;

--- but even with
all these
protections,

One process per host
(ensured by exclusive
port acquisition)

One thread per process
(ensured by lock)

One host per datacenter - -
(ensured by deployment Concurrency 1S St]"

infrastructure) possible!

17 Copyright © 2024, Oracle and/or its affiliates 4/17/24 E



Common Pattern 1/3: Single-Threaded != Nonconcurrent

Every process is

multithreaded
Password Rotator

D, Crash & restart

‘ Reconnect & retry

Start doing something (e.g. network call)

Middleware retries on
your behalf
Start doing something else

Interleaves with a
previous instance of
itself!

18 Copyright © 2024, Oracle and/or its affiliates 4/17/24 E



Common Pattern 2/3: Unconditional Writes

newPassword = secureStorage.getlLatestPassword()
db.setPassword (newPassword) ;

Unconditional write is like a bullet in the

flight, ready to overwrite your password
at a later date

ReadPassword (pid) ==
/\ observed password’ = ..

/\ ..
There is no way to
WritePassword (pid) == “fence out” this
/\ db password’ = observed password[pid] action!

/\ .

19 Copyright © 2024, Oracle and/or its affiliates 4/17/24



Common Pattern 2/3: Unconditional Writes

Password Rotator Database

Read password
Need a fencing

Crash (or other fault) mechanism to
stop this write Unconditional writes

Generate new are (usually) a source
password of danger

Read password

Write password

Write password

20 Copyright © 2024, Oracle and/or its affiliates 4/17/24 E



Common Pattern 2/3: Unconditional Writes

This is not a conditional write! The check

and the network call are not atomic!

1f (check) {
db.setPassword (newPassword) ;

21 Copyright © 2024, Oracle and/or its affiliates 4/17/24



Common Pattern 3/3: Reliance on Timestamps

a = secureStorage.get(ta”)
b = secureStorage.get (“b”)

1f (a.creationTime < b.creationTime) {

. : _ Misconfigurations (rare, but
This check is essentially a

nondeterministic choice

possible!) can cause these to be
off by seconds or decades

22 Copyright © 2024, Oracle and/or its affiliates 4/17/24 E



Common Pattern 3/3: Reliance on Timestamps

23

Storage

Copyright © 2024, Oracle and/or its affiliates

Create "A”
(creationTime = 01:00:00)

NTP daemon runs
(time moves back by 5s)

Create "B”
(creationTime = 00:59:55)

4/17/24

Often there is no need to
model real time; it
(usually) won't be part of
the safety mechanism




Password Rotation: Findings and Outcomes

An unfortunate necessity: some
underlying systems do not support
proper conditional writes

« ~71 week of reverse-engineering

(spread across ~1 month)

* Timing assumptions revealed

Easy to understand: relates to a
a specific check in the source

* 1 new bug uncovered code
« Safety property revised:

_ﬁ.%.[.e_ Still a strong result!
<>[]Safe

24 Copyright © 2024, Oracle and/or its affiliates 4/17/24 E




Calvin Loncaric
Reverse-Engineering with TLA* <calvin.loncaric@oracle.com>

Formalize correctness

How do the relevant variables Improve fidelity
change? Read the source
code

Bug reports

— On to other activities

(proofs, documentation,

)

25 Copyright © 2024, Oracle and/or its affiliates 4/17/24 E

Model checking



