
Reverse-Engineering with TLA+

Calvin Loncaric
Verification Engineer

4/17/24Copyright © 2024, Oracle and/or its affiliates1

Background: TLA+ at Oracle Cloud Infrastructure (OCI)

4/17/24Copyright © 2024, Oracle and/or its affiliates2

2015

First TLA+ written
at OCI

2017

“Verification Team”
forms

2024

Many critical bugs
discovered/fixed

Like an internal consultancy:
- Design reviews on steroids
- Careful analysis of service code
- Talks/workshops/education
- Pushing adoption of formal methods

>6 years of TLA+ in practice!

- Dozens of different services and teams
- Hundreds of specifications written
- Hundreds more subtle bugs discovered/fixed

3 Copyright © 2024, Oracle and/or its affiliates

How Software is Written

4/17/24

Business need / requirements

Design document

TLA+ blueprint

Executable code

Benchmarks/testing/
customer feedback

4 Copyright © 2024, Oracle and/or its affiliates

What do you do if the formalization step got skipped?

4/17/24

Business need / requirements

Design document

Executable code

Benchmarks/testing/
customer feedback

TLA+ blueprint

😇

😈
This workflow is totally

backwards, but still
effective!

Why is this an effective way to improve software?

4/17/24Copyright © 2024, Oracle and/or its affiliates5

1. Quickly find incorrect assumptions

3. Fills gaps not covered by testing

2. By construction, specs resemble source code

4. Yes, we still have to define correctness

Order
Atomicity

External
services

Environment
Correlated

failures

Easier to
communicate

findings

Easier to find
practical fixes

Power
outages

Drive failures
Obscure

interleavings

Easier to
update later

6 Copyright © 2024, Oracle and/or its affiliates

The Scale of the Problem

4/17/24

>106 LoC
(For a single service!)

😨

* We have a few secret
weapons that can help!

Secret Weapon: we know what we’re looking for

4/17/24Copyright © 2024, Oracle and/or its affiliates7

if (condition) {
 log.info(“begin flush”);
 start = currentTime();
 writer.flush();
 duration = currentTime() – start;
 metrics.emitFlushDuration(duration);
}

Secret Weapon: we don’t have to model order

4/17/24Copyright © 2024, Oracle and/or its affiliates8

Flush ==
 /\ diskState’ = memState
 /\ UNCHANGED <<…>>

(*at least initially)

Implementation will make
decisions about when;

specification only has to
capture what

Secret Weapon: we have access to the authors

4/17/24Copyright © 2024, Oracle and/or its affiliates9

FlushFails(pid) ==
 /\ diskState’ = Havoc
 /\ pc’ = [pc EXCEPT ![pid] = “recover”]
 /\ UNCHANGED <<…>>

”Hey @Developer,

Can you walk me through what happens if the flush fails?”

Environment
Correlated

failures

10 Copyright © 2024, Oracle and/or its affiliates

The Basic Workflow

4/17/24

Gather correctness
properties: what does

the system need to
ensure?

Formalize
properties and

variables in TLA+

How do the relevant
variables change? Read

the source code

Formalize relevant
actions (and

additional variables)
in TLA+

Model checking with TLC

11 Copyright © 2024, Oracle and/or its affiliates

The Key Feedback Loop

4/17/24

Model checking with TLC

“What
prevents this
behavior?”

Error

OK

Nothing

Something
Improve spec

fidelity: back to
modeling the
relevant code

Is it a bug or is
the correctness

property too
strong?

Takeaways: why does
the code work? What
behaviors are critical
to understand and

test?

Recent Example: Automatic Password Rotation

4/17/24Copyright © 2024, Oracle and/or its affiliates12

August 2023:
• Initial design complete
• Short spec showing safety of a few core actions in steady state

January 2024:
• Code complete
• Different from initial design!

• New requirements (e.g. repair so-called “special-case” systems)
• New features (e.g. in-memory cache for certain bits of remote state)

Divergence large enough to
justify reverse engineering

Ultra-High-Level Intuition

4/17/24Copyright © 2024, Oracle and/or its affiliates13

Account A

Account B

Clients connect using Account A

It is safe to change Account
B’s password without
disrupting new connections

Ultra-High-Level Intuition

4/17/24Copyright © 2024, Oracle and/or its affiliates14

Account A

Account B
Clients connect using Account B

It is safe to change Account
A’s password without
disrupting new connections

A Roadmap to the Code

4/17/24Copyright © 2024, Oracle and/or its affiliates15

~300k LoC split across 4 repositories

• Common utility library

• DB abstraction layer library

• “Control Plane” service
• Password rotation algorithm lives here

• “Data Plane” service
• Needs to respond to password changes

Only a tiny subset is relevant to
password rotation!

Next: a few observations about the password rotation design

4/17/24Copyright © 2024, Oracle and/or its affiliates16

(These are common things you can look for if you ever find
yourself reverse-engineering some source code!)

17 Copyright © 2024, Oracle and/or its affiliates

Common Pattern 1/3: Single-Threaded != Nonconcurrent

4/17/24

newPassword = secureStorage.getLatestPassword()
db.setPassword(newPassword);

One thread per process
(ensured by lock)

One process per host
(ensured by exclusive

port acquisition)

One host per datacenter
(ensured by deployment

infrastructure)

Tempting to treat
this as a single-
threaded process

--- but even with
all these
protections,
concurrency is still
possible!

18 Copyright © 2024, Oracle and/or its affiliates 4/17/24

Password Rotator

Start doing something (e.g. network call)

Start doing something else

Interleaves with a
previous instance of
itself!

Every process is
multithreaded

Common Pattern 1/3: Single-Threaded != Nonconcurrent

Crash & restart

Reconnect & retry

Middleware retries on
your behalf

19 Copyright © 2024, Oracle and/or its affiliates

Common Pattern 2/3: Unconditional Writes

4/17/24

newPassword = secureStorage.getLatestPassword()
db.setPassword(newPassword);

ReadPassword(pid) ==
 /\ observed_password’ = …
 /\ …

WritePassword(pid) ==
 /\ db_password’ = observed_password[pid]
 /\ …

Unconditional write is like a bullet in the
flight, ready to overwrite your password

at a later date

There is no way to
“fence out” this

action!

20 Copyright © 2024, Oracle and/or its affiliates 4/17/24

Password Rotator Database

Generate new
password

Read password

Read password

Write password

Write password

Crash (or other fault)
Unconditional writes
are (usually) a source

of danger

Common Pattern 2/3: Unconditional Writes

Need a fencing
mechanism to
stop this write

21 Copyright © 2024, Oracle and/or its affiliates 4/17/24

if (check) {
 db.setPassword(newPassword);
}

This is not a conditional write! The check
and the network call are not atomic!

Common Pattern 2/3: Unconditional Writes

22 Copyright © 2024, Oracle and/or its affiliates

Common Pattern 3/3: Reliance on Timestamps

4/17/24

a = secureStorage.get(“a”)
b = secureStorage.get(“b”)

if (a.creationTime < b.creationTime) {
 …
}

Misconfigurations (rare, but
possible!) can cause these to be

off by seconds or decades

This check is essentially a
nondeterministic choice

23 Copyright © 2024, Oracle and/or its affiliates

Common Pattern 3/3: Reliance on Timestamps

4/17/24

Storage

Create ”A”
(creationTime = 01:00:00)

NTP daemon runs
(time moves back by 5s)

Create ”B”
(creationTime = 00:59:55)

Often there is no need to
model real time; it

(usually) won’t be part of
the safety mechanism

24 Copyright © 2024, Oracle and/or its affiliates

Password Rotation: Findings and Outcomes

4/17/24

• ~1 week of reverse-engineering
(spread across ~1 month)

• Timing assumptions revealed

• 1 new bug uncovered

• Safety property revised:
 []Safe
 <>[]Safe

Easy to understand: relates to a
a specific check in the source

code

An unfortunate necessity: some
underlying systems do not support

proper conditional writes

Still a strong result!

25 Copyright © 2024, Oracle and/or its affiliates

Reverse-Engineering with TLA+

4/17/24

Formalize correctness

How do the relevant variables
change? Read the source

code

Model checking
Bug reports

Improve fidelity

On to other activities
(proofs, documentation,
…)

Calvin Loncaric
<calvin.loncaric@oracle.com>

