
1

Promises and Challenges in Bridging TLA+ Designs
with Implementations

A. Finn Hackett and Ivan Beschastnikh

Design Implementation

2

Context: Who and What

A. Finn Hackett
PhD Student

@ University of British Columbia

2

Context: Who and What

A. Finn Hackett
PhD Student

@ University of British Columbia

◇TLA+

PGo Compiler [ASPLOS'23]

Ivan Beschastnikh
Associate Professor

@ University of British Columbia

2

Context: Who and What

A. Finn Hackett
PhD Student

@ University of British Columbia

◇TLA+

PGo Compiler [ASPLOS'23]

Ivan Beschastnikh
Associate Professor

@ University of British Columbia

Markus Kuppe
Principal Research Software

Development Engineer

@ Microsoft

Understanding Inconsistency in
Azure Cosmos DB with TLA+

[ICSE-SEIP'23]

TLA+

3

Usage of TLA+

TLA+ Specification(s)

Levels of abstraction

Spec' Spec'' ...

Spec'''

Write properties, find logic bugs

Simulate obscure edge cases

Write formal proofs

3

Usage of TLA+

TLA+ Specification(s)

Levels of abstraction

Spec' Spec'' ...

Spec'''

Implementation(s)

Recurring question:
How can we be (more)

sure impl and spec
match?

Write properties, find logic bugs

Simulate obscure edge cases

Write formal proofs

4

If We Were Sure Our Models and Implementations Matched...

4

If We Were Sure Our Models and Implementations Matched...

Only bug possible is wrong correctness properties

4

If We Were Sure Our Models and Implementations Matched...

Only bug possible is wrong correctness properties

Unreasonably precise monitoring for free using
verification tools

4

If We Were Sure Our Models and Implementations Matched...

Only bug possible is wrong correctness properties

Unreasonably precise monitoring for free using
verification tools

If we're really really sure, do we even need different
spec + impl code?

5

Goals of this Talk

5

Goals of this Talk

Preface: notes on logical refinement

5

Goals of this Talk

Preface: notes on logical refinement

Summarize existing spec <-> code linkage work

5

Goals of this Talk

Preface: notes on logical refinement

Summarize existing spec <-> code linkage work

Think aloud about what hasn't been tried and why

5

Goals of this Talk

Preface: notes on logical refinement

Summarize existing spec <-> code linkage work

Think aloud about what hasn't been tried and why

Describe things we are working on

6

Why Are We Talking About Refinement?

Design Implementation

6

Why Are We Talking About Refinement?

Refines

Underlying theory of linking design and impl.

Design Implementation

7

Summary of Refinement

A logical relationship between a "less specific" spec and "more specific" spec

dict["x"] := "y";

> try put(key="x", value="y")
> tcp error
> retry
> timeout
> backoff
...
> retry
> ok

Atomic key-value write

Much more detailed view of "same" op

8

Conditions for Refinement

> try put(key = "x", value="y")
> tcp error
> retry
> timeout
> backoff
...
> retry
> ok

Question: how does that big trace relate to setting that one value on that dict?

8

Conditions for Refinement

> try put(key = "x", value="y")
> tcp error
> retry
> timeout
> backoff
...
> retry
> ok

Question: how does that big trace relate to setting that one value on that dict?

Use INSTANCE in TLA+

8

Conditions for Refinement

> try put(key = "x", value="y")
> tcp error
> retry
> timeout
> backoff
...
> retry
> ok

Question: how does that big trace relate to setting that one value on that dict?

Use INSTANCE in TLA+

How to match data?

e.g. ignore everything except
key-value bindings.

8

Conditions for Refinement

> try put(key = "x", value="y")
> tcp error
> retry
> timeout
> backoff
...
> retry
> ok

Question: how does that big trace relate to setting that one value on that dict?

Use INSTANCE in TLA+

How to match data?

e.g. ignore everything except
key-value bindings.

Choose "when" the write happened.

e.g. when the server said "ok"?

Shouldn't be able to tell anything apart
from high-level model.

9

Worked Example, from Azure Cosmos DB Modeling

B

1. Load 2 different
specs

A

9

Worked Example, from Azure Cosmos DB Modeling

B

1. Load 2 different
specs

A2. Here all vars match
(see next slide if not)

9

Worked Example, from Azure Cosmos DB Modeling

B

1. Load 2 different
specs

A2. Here all vars match
(see next slide if not)

3. HLSpec is a
"property" of ImplSpec

./TheSpec.cfg

10

Worked Example pt. 2: Mismatched Variables

10

Worked Example pt. 2: Mismatched Variables

Define
High-level vars
using Impl vars

10

Worked Example pt. 2: Mismatched Variables

Define
High-level vars
using Impl vars

High-level
spec uses
defined vars
like normal

10

Worked Example pt. 2: Mismatched Variables

Define
High-level vars
using Impl vars

High-level
spec uses
defined vars
like normal

HL spec works
like a property

11

How Have We Attempted Implementation Linking?

Trace Validation

Test Case Generation

Compile the TLA+

Runtime Monitoring

11

How Have We Attempted Implementation Linking?

Trace Validation

Test Case Generation

Compile the TLA+

Runtime Monitoring

e.g. collect structured logs
+ compare with TLA+

11

How Have We Attempted Implementation Linking?

Trace Validation

Test Case Generation

Compile the TLA+

Runtime Monitoring

e.g. collect structured logs
+ compare with TLA+

e.g. use execution
traces as test scenarios

11

How Have We Attempted Implementation Linking?

Trace Validation

Test Case Generation

Compile the TLA+

Runtime Monitoring

e.g. collect structured logs
+ compare with TLA+

e.g. use execution
traces as test scenarios

e.g. the PGo project,
PlusPy, Elixir

11

How Have We Attempted Implementation Linking?

Trace Validation

Test Case Generation

Compile the TLA+

Runtime Monitoring

e.g. collect structured logs
+ compare with TLA+

e.g. use execution
traces as test scenarios

e.g. the PGo project,
PlusPy, Elixir

e.g. put/compile the
TLA+ assertions in your code

12

Trace Validation: Refinement w/ Implementation Traces

dict["x"] := "y";

> try put(key="x", value="y")
> tcp error
> retry
> timeout
> backoff
...
> retry
> ok

logging impl.
behavior
...

Existing TLA+
Specification

Refinement

13

Trace Validation: the Order Problem

Running system
w/ async messaging

13

Trace Validation: the Order Problem

Running system
w/ async messaging

log A
...

log B
...

log C
...

Need
one execution

trace

... but we have

multiple out of sync
logs...

13

Trace Validation: the Order Problem

Running system
w/ async messaging

log A
...

log B
...

log C
...

Need
one execution

trace

... but we have

multiple out of sync
logs...

Use logical clocks

Sort by timestamp

e.g. vector clocks

14

Trace Validation: Trouble with Levels of Detail

> try put(key="x", value="y")
> tcp error
> retry
> timeout
> backoff
...
> retry
> ok

KVWrite("k1", "v1");

Placeholder values

that don't match

the real system

... or log is incomplete

14

Trace Validation: Trouble with Levels of Detail

> try put(key="x", value="y")
> tcp error
> retry
> timeout
> backoff
...
> retry
> ok

KVWrite("k1", "v1");

Placeholder values

that don't match

the real system

... or log is incomplete

Log info that matches? Inconvenient, often impossible.

14

Trace Validation: Trouble with Levels of Detail

> try put(key="x", value="y")
> tcp error
> retry
> timeout
> backoff
...
> retry
> ok

KVWrite("k1", "v1");

Placeholder values

that don't match

the real system

... or log is incomplete

Log info that matches? Inconvenient, often impossible.

Manually fix gaps in TLA+? Shown to work well, but not automatic.

14

Trace Validation: Trouble with Levels of Detail

> try put(key="x", value="y")
> tcp error
> retry
> timeout
> backoff
...
> retry
> ok

KVWrite("k1", "v1");

Placeholder values

that don't match

the real system

... or log is incomplete

Log info that matches? Inconvenient, often impossible.

Manually fix gaps in TLA+? Shown to work well, but not automatic.

Use symbolic reasoning to lazy-fill spec holes? Potential future work.

15

Trace Validation: In Practice

15

Trace Validation: In Practice

eXtreme Modelling in Practice @ MongoDB [VLDB '20]

Tried matching logs with a spec, ran into trouble relating the 2 in a strict sense.

INSIGHT: strict, direct comparison works poorly for complex systems.

15

Trace Validation: In Practice

eXtreme Modelling in Practice @ MongoDB [VLDB '20]

Tried matching logs with a spec, ran into trouble relating the 2 in a strict sense.

INSIGHT: strict, direct comparison works poorly for complex systems.

Bridging the Verifiability Gap @ Open Networking Foundation [TLA+Conf '20]

Used TLA+ properties (not the whole spec) as assertions over captured traces.

INSIGHT: for some cases, you don't need the whole spec or refinement.

15

Trace Validation: In Practice

eXtreme Modelling in Practice @ MongoDB [VLDB '20]

Tried matching logs with a spec, ran into trouble relating the 2 in a strict sense.

INSIGHT: strict, direct comparison works poorly for complex systems.

Bridging the Verifiability Gap @ Open Networking Foundation [TLA+Conf '20]

Used TLA+ properties (not the whole spec) as assertions over captured traces.

INSIGHT: for some cases, you don't need the whole spec or refinement.

Validating System Executions* with the TLA+ Tools @ Microsoft [TLA+Conf '24]

Developed state-based logging discipline and method for indirect spec-trace relationship.

INSIGHT: you can patch "holes" in the trace with more TLA+ if you're careful.

16

Tradeoffs in Trace Validation

16

Tradeoffs in Trace Validation

Directly observes the implementation, could catch wide range of errors

e.g. misconfiguration, wrong assumption in TLA+

Strictly beyond spec verification

16

Tradeoffs in Trace Validation

Directly observes the implementation, could catch wide range of errors

e.g. misconfiguration, wrong assumption in TLA+

Strictly beyond spec verification

Manual effort needed to instrument + handle logs

... how much effort can we automate?

16

Tradeoffs in Trace Validation

Directly observes the implementation, could catch wide range of errors

e.g. misconfiguration, wrong assumption in TLA+

Strictly beyond spec verification

Manual effort needed to instrument + handle logs

... how much effort can we automate?

Incomplete: if you don't see the implementation do it, you don't check it

Better than nothing to use it in your integration tests

17

Generating Test Cases

Trace Validation

17

Generating Test Cases

Incomplete: if you don't see the implementation do it, you don't check it

Trace Validation

17

Generating Test Cases

Incomplete: if you don't see the implementation do it, you don't check it

Trace Validation

Let the spec drive implementation testing
Spec

Impl

18

Generating Test Cases: In Practice

18

Generating Test Cases: In Practice

Kayfabe, Model-based testing with TLA+ and Apalache [TLA+Conf '20]

For systems co-written with specs, control and trace evaluation w/ Apalache.

INSIGHT: can build systems w/ a control interface for testing; manual but effective

18

Generating Test Cases: In Practice

Kayfabe, Model-based testing with TLA+ and Apalache [TLA+Conf '20]

For systems co-written with specs, control and trace evaluation w/ Apalache.

INSIGHT: can build systems w/ a control interface for testing; manual but effective

Using Lightweight Formal Methods to Validate a KV Storage Node in Amazon S3 [SOSP '21]

Wrote Rust programs that acted like TLA+ specs, compared running spec- and real-programs..

INSIGHT: concrete programs can act like specs, though without direct TLA+ link

18

Generating Test Cases: In Practice

Kayfabe, Model-based testing with TLA+ and Apalache [TLA+Conf '20]

For systems co-written with specs, control and trace evaluation w/ Apalache.

INSIGHT: can build systems w/ a control interface for testing; manual but effective

Using Lightweight Formal Methods to Validate a KV Storage Node in Amazon S3 [SOSP '21]

Wrote Rust programs that acted like TLA+ specs, compared running spec- and real-programs..

INSIGHT: concrete programs can act like specs, though without direct TLA+ link

Model Checking Guided Testing for Distributed Systems [EuroSys '23]

Read TLC state graph, generate synthetic test sequences for auto-instrumented real systems.

INSIGHT: given additional manual TLA+ work, can test-drive concrete system with TLC

19

Tradeoffs in Test Case Generation

19

Tradeoffs in Test Case Generation

Ensures implementation state space is actually explored

Different from implementation model checking, but similar effect

19

Tradeoffs in Test Case Generation

Ensures implementation state space is actually explored

Different from implementation model checking, but similar effect

Extracting implementation behavior and state is still non-trivial

... can be partly automated, but fundamental refinement job remains

19

Tradeoffs in Test Case Generation

Ensures implementation state space is actually explored

Different from implementation model checking, but similar effect

Extracting implementation behavior and state is still non-trivial

... can be partly automated, but fundamental refinement job remains

For existing implementation, need to retrofit deterministic exploration

e.g. get a custom scheduler, or otherwise control all system actions

20

Other Direction: Compile the Design

Design Implementation

20

Other Direction: Compile the Design

Design Implementation
Compilation

21

Tradeoffs in Specification Compilation

Directly generates link between spec and implementation

... so that's it, problem solved right?

21

Tradeoffs in Specification Compilation

Directly generates link between spec and implementation

... so that's it, problem solved right?

Design Implementation

Hidden control flowTranslating data structures right What if compiler has a bug?

???

22

Specification Compilation: Translating Data Structures

Record == [term: Nat, cmd: String, client: Nat]

Log == Seq(Record)

Abstract definition of a log structure (from e.g. Raft spec)

What data structure should the implementation use?

"Good enough" general structure?

!! must persist to disk

... needs fast append, access to tail...

23

Specification Compilation: Hidden Control Flow

MyCriticalSection:
 msg := read from A;
 msg2 := Process(msg);
 send msg2 to C;

A

B

C

msg

msg2

Thanks to Markus for finding
a real example of this in a

hand-translated impl.

Consider: critical section
receives msg from node A,
then sends msg2 to node C.

23

Specification Compilation: Hidden Control Flow

MyCriticalSection:
 msg := read from A;
 msg2 := Process(msg);
 send msg2 to C;

A

B

C

msg

msg2

Thanks to Markus for finding
a real example of this in a

hand-translated impl.

Consider: critical section
receives msg from node A,
then sends msg2 to node C.

Even if we don't model it,
this can fail in impl.

23

Specification Compilation: Hidden Control Flow

MyCriticalSection:
 msg := read from A;
 msg2 := Process(msg);
 send msg2 to C;

A

B

C

msg

msg2

Thanks to Markus for finding
a real example of this in a

hand-translated impl.

Consider: critical section
receives msg from node A,
then sends msg2 to node C.

Even if we don't model it,
this can fail in impl.

If we run these 3 lines as-is,
failing send to C means we

"forget" the first msg.
Unsound!

23

Specification Compilation: Hidden Control Flow

MyCriticalSection:
 msg := read from A;
 msg2 := Process(msg);
 send msg2 to C;

A

B

C

msg

msg2

Thanks to Markus for finding
a real example of this in a

hand-translated impl.

Consider: critical section
receives msg from node A,
then sends msg2 to node C.

Even if we don't model it,
this can fail in impl.

If we run these 3 lines as-is,
failing send to C means we

"forget" the first msg.
Unsound!

A correct implementation
must "remember" msg
until it can send msg2!

24

Specification Compilation: What if it Goes Wrong?

24

Specification Compilation: What if it Goes Wrong?

Entirely correct system could be misconfigured

24

Specification Compilation: What if it Goes Wrong?

Entirely correct system could be misconfigured

Model could make unrealistic assumptions (assume lossless net, get lossy)

24

Specification Compilation: What if it Goes Wrong?

Entirely correct system could be misconfigured

Model could make unrealistic assumptions (assume lossless net, get lossy)

Compiler could output wrong code

24

Specification Compilation: What if it Goes Wrong?

Entirely correct system could be misconfigured

Model could make unrealistic assumptions (assume lossless net, get lossy)

Compiler could output wrong code

For pt. 3, could formally verify compiler, e.g. CompCert [ERST '16]

24

Specification Compilation: What if it Goes Wrong?

Entirely correct system could be misconfigured

Model could make unrealistic assumptions (assume lossless net, get lossy)

Compiler could output wrong code

For pt. 3, could formally verify compiler, e.g. CompCert [ERST '16]

Can do trace validation on compiled system. Might be easier to automate?

25

Specification Compilation: In Practice

25

Specification Compilation: In Practice

tlaplus/PlusPy: evaluates TLA+ actions and expressions. Ignores hidden control flow.

25

Specification Compilation: In Practice

tlaplus/PlusPy: evaluates TLA+ actions and expressions. Ignores hidden control flow.

Elixir Translator [SAST, TLA+Conf '22]: translates TLA+ actions into Elixir code.

Translation is literal, primarily for monitoring.

25

Specification Compilation: In Practice

tlaplus/PlusPy: evaluates TLA+ actions and expressions. Ignores hidden control flow.

Elixir Translator [SAST, TLA+Conf '22]: translates TLA+ actions into Elixir code.

Translation is literal, primarily for monitoring.

Uses special protocol to auto-implement hidden control flow; evaluated on full-scale systems.

PGo [ASPLOS '23, TLA+Conf '22 '19]: compiles Modular PlusCal into Go w/ custom IO options.

Currently, only full Spec2Code attempt.

25

Specification Compilation: In Practice

tlaplus/PlusPy: evaluates TLA+ actions and expressions. Ignores hidden control flow.

Elixir Translator [SAST, TLA+Conf '22]: translates TLA+ actions into Elixir code.

Translation is literal, primarily for monitoring.

Uses special protocol to auto-implement hidden control flow; evaluated on full-scale systems.

PGo [ASPLOS '23, TLA+Conf '22 '19]: compiles Modular PlusCal into Go w/ custom IO options.

Currently, only full Spec2Code attempt.

Choreographic PlusCal [TASE '23]: compiles TLA+ actions into Go monitors.

25

Specification Compilation: In Practice

tlaplus/PlusPy: evaluates TLA+ actions and expressions. Ignores hidden control flow.

Elixir Translator [SAST, TLA+Conf '22]: translates TLA+ actions into Elixir code.

Translation is literal, primarily for monitoring.

Uses special protocol to auto-implement hidden control flow; evaluated on full-scale systems.

PGo [ASPLOS '23, TLA+Conf '22 '19]: compiles Modular PlusCal into Go w/ custom IO options.

Currently, only full Spec2Code attempt.

Choreographic PlusCal [TASE '23]: compiles TLA+ actions into Go monitors.

... compilation seems popular for monitoring implementations ...

26

Ongoing Work...

27

Ongoing Work: DCal, a More Customizable PGo

Design Implementation

Hidden control flowTranslating data structures right What if compiler has a bug?

???

 Move impl-oriented
changes away from spec.

27

Ongoing Work: DCal, a More Customizable PGo

Design Implementation

Hidden control flowTranslating data structures right What if compiler has a bug?

???

 Move impl-oriented
changes away from spec.

 PGo uses fixed data
structures.
General-purpose, but can
be inappropriate.

e.g. log structures: often

specialized in practice,

but PGo forces general

purpose sequence type.

27

Ongoing Work: DCal, a More Customizable PGo

Design Implementation

Hidden control flowTranslating data structures right What if compiler has a bug?

???

 Move impl-oriented
changes away from spec.

 PGo uses fixed data
structures.
General-purpose, but can
be inappropriate.

e.g. log structures: often

specialized in practice,

but PGo forces general

purpose sequence type.

e.g. can't compile disjunction to I/O select primitive.

28

Ongoing Work: TraceCheck, Compiler-assisted Trace Validation

Design Implementation

Hidden control flowTranslating data structures right What if compiler has a bug?

???

Manual effort needed to instrument + handle logs

... how much effort can we automate?
Trace Validation

28

Ongoing Work: TraceCheck, Compiler-assisted Trace Validation

Design Implementation

Hidden control flowTranslating data structures right What if compiler has a bug?

???

 How to find problems
in the compiled system?

 Do trace validation on
on the compiled system.

 Use the compiler to

automate trace validation
workflow.

Manual effort needed to instrument + handle logs

... how much effort can we automate?
Trace Validation

29

Any Questions?

Trace Validation

Test Case Generation

Compile the TLA+

Runtime Monitoring

e.g. collect structured logs

+ compare with TLA+

e.g. use execution

traces as test scenarios

e.g. the PGo project,

PlusPy, Erlang

e.g. put/compile the

TLA+ assertions in your code

distcompiler.github.io

Promises and Challenges in Bridging TLA+ Designs
with Implementations

