
How We Designed and
Model-Checked MongoDB
Reconfiguration Protocol

Siyuan Zhou
Lead Engineer, MongoDB

MongoDB Replication

MongoDB ensures fault tolerance with a Raft-like consensus protocol.

● All nodes in a replica set store the same data.

● A Primary writes into the oplog and secondaries replicate newer oplog entries.

● When no primary exists, a secondary can run an election for a higher term.

● A secondary becomes a primary by collecting votes from a majority of nodes,

so only one can become a primary in a given term.

● An oplog entry is committed when replicated to a majority of nodes within a

primary’s term.

● Safety guarantee: Committed writes will be safe even if some nodes fail

{

 "t": 1, // Term of the primary

 "ts": Timestamp(1615262400, 1), // Timestamp of the write

 "op": "i", // Insert

 "ns": "myblog.posts", // Collection namespace

 "o": { // The document to insert

 "_id": ObjectId("5c1a3b1234567890abcdef12"),

 "title": "Hello TLA+ Conf!",

 "content": "Let's talk about TLA+ and MongoDB reconfig."

 }

 ...

}

Replication Reconfiguration

● A configuration / config defines the membership of a replica set.

● Necessary to add or remove nodes via reconfiguration / reconfig.

● Consensus correctness depends on “majority”, but when adding or

removing nodes, the definition of “majority” is changing!

● Challenge: Ensuring system correctness during reconfiguration.
○ Notoriously hard to design.

○ A critical safety bug in one of Raft reconfig protocols was found after initial publication,

● Gossip protocol via heartbeats
○ Only the primary can run reconfig
○ Each configuration has a user-defined config version
○ A node installs higher config immediately upon learning

● Unsafe in certain cases
○ Need for a new safe reconfig protocol

● Supports “force reconfig”
○ Any node can install a new config even if majority of nodes are offline and no primary

exists
○ Get the application back knowing the risk of losing some most recent data
○ A feature needed by on-prem customers

Legacy MongoDB Reconfig Protocol

● Initial design to adopt Raft’s log-based reconfig protocol
○ Incompatible with "force reconfig"

○ Require both log-based and gossip-based implementations

○ Complex upgrade / downgrade

● Goal: Develop a heartbeat reconfig protocol supporting “force reconfig”

with minimal changes

New Reconfig Protocol

Inspiration from Raft

Can we adopt Raft's simple safety rules for reconfig?

● Only single-node changes are allowed at each time
○ e.g., adding one node is allowed, but adding two at the same time isn’t.

● New config is only accepted when the previous config is committed

How to guarantee the correctness of the new protocol?

● Leverage TLA+ and model checking

● The team had TLA+ experiences on smaller problems in 2019

Day 1 - Initial Attempt on Single Node Change

● Add two reconfig related actions in TLA+ spec:
○ Reconfig: sends the config to the primary and installs it immediately.

○ SendConfig: gossips a new config with a higher config version to another node.

● Model the rule of single node change
○ Any majority of adjacent configs always overlaps with each other.

[X] [X] [] (The majority of 3 is 2)

[] [X] [X] [X] (The majority of 4 is 3)

● Reproduced a known bug with just 150 lines of code change

* A reconfig occurs on node i.

Reconfig(i) ==

 * Pick some arbitrary subset of servers to reconfig to.

 * “Server” is the set of all nodes, e.g., {n1, n2, n3}.

 \E newConfig \in SUBSET Server :

 * The node must currently be a leader.

 /\ state[i] = Primary

 * Add or remove a single node.

 /\ \/ Cardinality(config[i]) + 1 = Cardinality(newConfig)

 \/ Cardinality(config[i]) - 1 = Cardinality(newConfig)

 * Make sure to include this node in the new config.

 /\ i \in newConfig

 * The config on this node takes effect immediately.

 ...

Day 1 - Safety Properties for Model Checking

● ElectionSafety: Never elect two primaries in the same term.

● NeverRollbackCommitted: Never roll back committed oplog entries.

Both n1 and n2 are primaries, but in different terms

state config current

term

config

version

n1 :> Primary

n2 :> Primary

n3 :> Secondary

n1 :> {n1, n2, n3}

n2 :> {n1, n2, n3}

n3 :> {n1, n2, n3}

n1 :> 1

n2 :> 2

n3 :> 2

n1 :> 0

n2 :> 0

n3 :> 0

n1 removes one node

state config current

term

config

version

n1 :> Primary

n2 :> Primary

n3 :> Secondary

n1 :> {n1, n2}

n2 :> {n1, n2, n3}

n3 :> {n1, n2, n3}

n1 :> 1

n2 :> 2

n3 :> 2

n1 :> 1

n2 :> 0

n3 :> 0

n1 removes one more node

state config current

term

config

version

n1 :> Primary

n2 :> Primary

n3 :> Secondary

n1 :> {n1}

n2 :> {n1, n2, n3}

n3 :> {n1, n2, n3}

n1 :> 1

n2 :> 2

n3 :> 2

n1 :> 2

n2 :> 0

n3 :> 0

Inspiration from Raft

Can we adopt Raft's simple safety rules for reconfig?

● Only single-node changes is allowed
○ e.g., adding one node is allowed, but adding two isn’t.

● New config is only accepted when the previous config is committed

Day 2 / Day 3 - Efforts on Config Commitment

After a few iterations, we added the following rules for the Reconfig action:

● (TermQuorumCheck) Check the primary is still valid by comparing its

term with a majority of nodes.

● (ConfigQuorumCheck) Check a majority of nodes have the same config

version as the primary.

* Am I talking to a quorum as primary?

TermQuorumCheck(self, s) == currentTerm[self] >= currentTerm[s]

* Have a quorum of nodes received my config?

ConfigQuorumCheck(self, s) == configVersion[self] = configVersion[s]

ConfigIsSafe(i) == /\ \E q \in Quorums(config[i]):

 \A s \in q : /\ TermQuorumCheck(i, s)

 /\ ConfigQuorumCheck(i, s)

* A reconfig occurs on node i.

Reconfig(i) ==

 \E newConfig \in SUBSET Server :

 /\ state[i] = Primary

 * Only allow a new config to be installed if the current config is "safe".

 /\ ConfigIsSafe(i)

 * Add or remove a single node.

 /\ \/ \E n \in newConfig : newConfig \ {n} = config[i] * add 1.

 \/ \E n \in config[i] : config[i] \ {n} = newConfig * remove 1.

 /\ i \in newConfig

 ...

Day 4 - Oplog and Config Dependencies

● We found a counterexample around the dependency between log and

config.

● Raft orders configs and log entries implicitly.

● The heartbeat reconfig protocol lost this implicit dependency.

● Reproduced with model checking.

Primary commits a write with config {n1, n2, n3}

log state config

n1 :> <<[term |-> 1]>>

n2 :> <<[term |-> 1]>>

n3 :> <<>>

n4 :> <<>>

n5 :> <<>>

n1 :> Primary

n2 :> Secondary

n3 :> Secondary

n4 :> Secondary

n5 :> Secondary

n1 :> {n1, n2, n3}

n2 :> {n1, n2, n3}

n3 :> {n1, n2, n3}

n4 :> {n1, n2, n3}

n5 :> {n1, n2, n3}

Primary adds n4 to the config and propagates the config

log state config

n1 :> <<[term |-> 1]>>

n2 :> <<[term |-> 1]>>

n3 :> <<>>

n4 :> <<>>

n5 :> <<>>

n1 :> Primary

n2 :> Secondary

n3 :> Secondary

n4 :> Secondary

n5 :> Secondary

n1 :> {n1, n2, n3, n4}

n2 :> {n1, n2, n3, n4}

n3 :> {n1, n2, n3, n4}

n4 :> {n1, n2, n3, n4}

n5 :> {n1, n2, n3}

Primary adds n5 to the config and propagates the config.

log state config

n1 :> <<[term |-> 1]>>

n2 :> <<[term |-> 1]>>

n3 :> <<>>

n4 :> <<>>

n5 :> <<>>

n1 :> Primary

n2 :> Secondary

n3 :> Secondary

n4 :> Secondary

n5 :> Secondary

n1 :> {n1, n2, n3, n4, n5}

n2 :> {n1, n2, n3, n4, n5}

n3 :> {n1, n2, n3, n4, n5}

n4 :> {n1, n2, n3, n4, n5}

n5 :> {n1, n2, n3, n4, n5}

n3 becomes the primary and commits a new write.

n1 and n2 will rollback.

log state config

n1 :> <<[term |-> 1]>>

n2 :> <<[term |-> 1]>>

n3 :> <<[term |-> 2]>>

n4 :> <<[term |-> 2]>>

n5 :> <<[term |-> 2]>>

n1 :> Secondary

n2 :> Secondary

n3 :> Primary

n4 :> Secondary

n5 :> Secondary

n1 :> {n1, n2, n3, n4, n5}

n2 :> {n1, n2, n3, n4, n5}

n3 :> {n1, n2, n3, n4, n5}

n4 :> {n1, n2, n3, n4, n5}

n5 :> {n1, n2, n3, n4, n5}

n3 becomes the primary and commits a new write.

n1 and n2 will rollback.

log state config

n1 :> <<[term |-> 1]>>

n2 :> <<[term |-> 1]>>

n3 :> <<[term |-> 2]>>

n4 :> <<[term |-> 2]>>

n5 :> <<[term |-> 2]>>

n1 :> Secondary

n2 :> Secondary

n3 :> Primary

n4 :> Secondary

n5 :> Secondary

n1 :> {n1, n2, n3, n4, n5}

n2 :> {n1, n2, n3, n4, n5}

n3 :> {n1, n2, n3, n4, n5}

n4 :> {n1, n2, n3, n4, n5}

n5 :> {n1, n2, n3, n4, n5}

When adding n5, the oplog entry committed in 3-node config, hasn’t

been committed in 4-node config.

log state config

n1 :> <<[term |-> 1]>>

n2 :> <<[term |-> 1]>>

n3 :> <<>>

n4 :> <<>>

n5 :> <<>>

n1 :> Primary

n2 :> Secondary

n3 :> Secondary

n4 :> Secondary

n5 :> Secondary

n1 :> {n1, n2, n3, n4}

n2 :> {n1, n2, n3, n4}

n3 :> {n1, n2, n3, n4}

n4 :> {n1, n2, n3, n4}

n5 :> {n1, n2, n3}

* Can the last op be committed in the current config of node i?

*

* CommitEntry() is to commit the last log entry on a primary when the entry is

* replicated to a majority of nodes in its term, according to its current config.

OpCommittedInConfig(primary) == ENABLED CommitEntry(primary)

* Is the config on node i currently "safe"?

ConfigIsSafe(i) ==

 /\ \E q \in Quorums(config[i]):

 \A s \in q : /\ TermQuorumCheck(i, s)

 /\ ConfigQuorumCheck(i, s)

 /\ OpCommittedInConfig(i)

Day 5 - Config Consensus Counterexample

● Model checker found another counterexample after running for about

one day

N1 is the primary and removes a node.

state config current

term

config

version

n1 :> Primary

n2 :> Secondary

n3 :> Secondary

n4 :> Secondary

n1 :> {n1, n2, n3}

n2 :> {n1, n2, n3, n4}

n3 :> {n1, n2, n3, n4}

n4 :> {n1, n2, n3, n4}

n1 :> 1

n2 :> 1

n3 :> 1

n4 :> 0

n1 :> 1

n2 :> 0

n3 :> 0

n4 :> 0

N2 becomes the primary and removes a different node.

state config current

term

config

version

n1 :> Primary

n2 :> Primary

n3 :> Secondary

n4 :> Secondary

n1 :> {n1, n2, n3}

n2 :> {n1, n2, n4}

n3 :> {n1, n2, n3, n4}

n4 :> {n1, n2, n3, n4}

n1 :> 1

n2 :> 2

n3 :> 2

n4 :> 2

n1 :> 1

n2 :> 1

n3 :> 0

n4 :> 0

N1 propagates its config but steps down on seeing higher term.

state config current

term

config

version

n1 :> Secondary

n2 :> Primary

n3 :> Secondary

n4 :> Secondary

n1 :> {n1, n2, n3}

n2 :> {n1, n2, n4}

n3 :> {n1, n2, n3}

n4 :> {n1, n2, n3, n4}

n1 :> 2

n2 :> 2

n3 :> 2

n4 :> 2

n1 :> 1

n2 :> 1

n3 :> 1

n4 :> 0

N1 becomes primary again in term 3

state config current

term

config

version

n1 :> Primary

n2 :> Primary

n3 :> Secondary

n4 :> Secondary

n1 :> {n1, n2, n3}

n2 :> {n1, n2, n4}

n3 :> {n1, n2, n3}

n4 :> {n1, n2, n3, n4}

n1 :> 3

n2 :> 2

n3 :> 3

n4 :> 2

n1 :> 1

n2 :> 1

n3 :> 1

n4 :> 0

N2 propagates its config.

state config current

term

config

version

n1 :> Primary

n2 :> Primary

n3 :> Secondary

n4 :> Secondary

n1 :> {n1, n2, n3}

n2 :> {n1, n2, n4}

n3 :> {n1, n2, n3}

n4 :> {n1, n2, n4}

n1 :> 3

n2 :> 2

n3 :> 3

n4 :> 2

n1 :> 1

n2 :> 1

n3 :> 1

n4 :> 1

Day 5 - Config Consensus

● On a new reconfig, we need to ensure in the future, no primaries would

ever be elected in earlier configs, so that earlier configs are

“deactivated”.

● This means that if two configs "compete", they differ by at most one

server.

● Agreeing on the config among the nodes is a consensus problem!
○ Separate from the oplog consensus

Day 5 - Config Consensus

● Config consensus and oplog consensus share similarities.
○ ClientRequest => Reconfig

○ GetEntry & RollbackEntries => SendConfig

● Identify and order configs with <config term, config version>
○ Like an oplog entry is defined and ordered by <entry term, entry timestamp>.

● Merge both elections by adding a rule of comparing configs’ terms and

versions.

● Borrow the definition of “commitment” from the oplog consensus.

● Rewrite the current config with the latest term on winning elections.

● Removed unnecessary states, like the voting states.

● Fine-tuned initial configuration to focus on interesting states.

● Aligned with implementation, e.g., term propagation.

● Only focus on ensuring the Election Safety property.
○ No two primaries can be elected in the same term.

● Faster model checking with larger models.

● Added an action to simulate a shutdown at any time
○ Significantly expanding the state space.

Optimizing the Spec

Checking Liveness

● Combining the elections restricts the behavior

● Shall we allow config propagation without a primary?
○ Raft cannot propagate oplog withtout a primary, but MongoDB date replication can.

○ Allowed in reconfig protocol.

● Attempted to avoid seemingly unnecessary complexity, but found

liveness issues.

● We designed and model checked a new reconfig protocol with TLA+.
○ 4+ iterations in the first few hours.

○ Got a draft protocol in one week.

○ Within two weeks, we finalized the protocol for safety and liveness.

● The scope of the implementation change became much smaller.
○ Delivered the project in three months with three to four developers

● "Force reconfig" is implemented using the same mechanism with relaxed rules.

● Simpler upgrade / downgrade.

● Correctness proof and formal verification were done by William Schultz.

● Reliable in production since MongoDB 4.4 released in 2019.

Conclusions

Takeaways

● Model checking is a great tool to answer "what if" questions for fast iteration.

● Model checking helped us to reason about the system critically and quickly.

● No bugs found in the protocol, but found bugs in the implementation.
○ E.g. atomic step-down action in spec requires multiple lock acquisitions and database writes.

○ Covered by unit tests and integration tests

● Safety isn’t guaranteed beyond the TLA+ spec.
○ “Force reconfig” isn’t modeled and is still unsafe, but it’s only for on-prem customers and never

used on MongoDB Atlas - our hosted MongoDB as a service.

References & Credits

● Design and Analysis of a Logless Dynamic Reconfiguration Protocol
○ William Schultz, Siyuan Zhou, Ian Dardik, Stavros Tripakis

● Formal Verification of a Distributed Dynamic Reconfiguration Protocol
○ William Schultz, Ian Dardik, Stavros Tripakis

● The TLA+ spec and its Git history can be found on Github

● The latest version of the TLA+ spec is in the MongoDB repository

● Collaborated with William Schultz and Tess Avitabile on the design

● Credits to the MongoDB Replication team for the implementation

https://will62794.github.io/assets/papers/LIPIcs-OPODIS-2021-26.pdf
https://will62794.github.io/assets/papers/cpp22-formal-verification-reconfig.pdf
https://github.com/visualzhou/mongo-repl-reconfig
https://github.com/mongodb/mongo/tree/master/src/mongo/tla_plus

Thanks!

Model Checking Stats
ElectionSafety NeverRollbackCommitted

Number of servers 5 4

Max oplog length - 2

Max config versions 4 3

Max terms 4 3

Distinct states 812,587,401 345,587,274

Duration 19h 28min 8h 06min

