
TLA+ Modeling of MongoDB Transactions

Murat Demirbas

Abstract

This talk will present a TLA+ model of MongoDB’s distributed transactions,
focusing on modeling and test case generation for the storage system. I will
discuss the benefits of using TLA+ to validate correctness and isolation
properties, detect subtle bugs, and improve confidence in implementation.
To the best of our knowledge, this modeling effort is the first of its kind
in terms of formal modeling and checking distributed transactions at a level
close to the algorithm while also involving peripheral components at different
system layers.

Motivation

MongoDB implements distributed transactions across shards using a two-
phase commit protocol. These transactions interact with the underlying
WiredTiger storage engine, which handles local concurrency control and per-
sistence. Ensuring the correctness of this layered system is challenging due to
subtle interactions between hybrid logical clocks (HLC) timestamps, trans-
action ordering, and storage engine guarantees.

Distributed systems introduce inherent challenges, such as network de-
lays, node failures, and concurrency anomalies, making formal verification
essential for ensuring correctness. Formal modeling with TLA+ provides a
systematic way to verify the correctness of MongoDB’s distributed transac-
tions. Our TLA+ specifications capture the behavior of transactions, and
enable us to model check for isolation guarantees under all potential execu-
tion paths. This ensures that the system behaves correctly under different
conditions, including failures and concurrent executions.

1



MongoDB’s Distributed Interactive Transactions

MongoDB supports interactive multi-document transactions that allow clients
to execute multiple operations across different shards while maintaining
ACID guarantees. When a transaction begins, MongoDB ensures that all
reads and writes within the transaction see a consistent snapshot of the data.
The system employs a two-phase commit protocol to ensure atomicity across
multiple shards, with a transaction coordinator responsible for orchestrating
the commit process. Transactions can span multiple statements and collec-
tions, making them well-suited for applications requiring complex multi-step
updates. The use of cluster-wide HLC timestamps enables causally consis-
tent reads, which ensures that operations respect dependencies across dis-
tributed shards. Transactions can be committed or aborted depending on
whether all participant shards acknowledge the commit decision.

A significant challenge in MongoDB’s transaction model is handling inter-
actions with the underlying WiredTiger storage engine. The MVCC storage
engine enforces snapshot isolation and manages concurrent access to data,
requiring careful coordination between the transaction layer and the storage
layer. Prepared transactions must be properly handled to ensure consistency,
particularly in cases where transactions involve multiple storage operations
that must be completed before commit.

Talk Content

The talk will begin with an overview of the TLA+ model of MongoDB
transactions, including the specification of distributed transactions, the in-
teraction between the transaction protocol and the storage layer, and the
handling of prepared and pending transactions in WiredTiger. This sec-
tion will highlight the importance of abstracting complex system behaviors
into modular specifications that can be individually verified and composed.
This section will also show how we model check the transaction protocol for
snapshot isolation and read-committed isolation properties.

Next, it will cover the modeling of the storage system by abstracting
sharded storage using a single-log model, explicitly defining the storage en-
gine API and constraints, and addressing edge cases where transactions must
wait for prepared operations.

A detailed discussion on test case generation will follow. The talk will
explain how we utilize the TLC explicit state model checker to generate
a set of test cases that exhaustively cover reachable states of our model,

2



and verify conformance to the behavior of the WiredTiger storage engine
implementation.

Benefits of TLA+ Modeling

TLA+ modeling helps detect protocol bugs by revealing edge cases not eas-
ily covered by unit tests. It improves understanding of system behavior
by providing a precise formal specification for developers. Automated test
generation from the TLA+ model enhances verification coverage. Modu-
lar reasoning separates transaction logic from storage behavior, clarifying
responsibilities and assumptions. By systematically verifying all possible
execution paths, TLA+ ensures that the transaction protocol meets its in-
tended guarantees in every scenario. A major benefit of formal verification
is its ability to uncover subtle concurrency issues that may not be apparent
through empirical testing alone.

The formal specification also serves as documentation for MongoDB’s
transaction semantics, providing a precise reference for developers working on
implementation and optimizations. By maintaining a formal model alongside
the implementation, engineers can more easily evaluate modifications and
verify their correctness before deployment.

Acknowledgment

This is joint work with Will Schultz at MongoDB Research.

3


