
Translating C to PlusCal for Model Checking of
Safety Properties on Source Code

Guillaume DI FATTA, Amira METHNI,
Emmanuel OHAYON
Asterios Technologies
Core Team

May 2025

Context
I Student in final year of MSc at CentraleSupelec/Paris-Saclay University
I Gap year, two internships of 5 months to do.
I Internship Subject : Modelization and formal verification, with TLA+ and TLC,

of real-time synchronous algorithms of Asterios Technologies Micro-Kernel.
I Supervised by Emmanuel OHAYON and Amira METHNI.

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 2 / 42

Summary

1. Introduction and Context.
2. Tool Presentation : C2PlusCal.
3. Implementation Details.
4. How to manage memory.
5. Results, limitations and perspectives.
6. Conclusion

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 3 / 42

Part 1

Introduction and Context

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 4 / 42

Context

I Asterios Technologies : Subsidiary of Safran Electronics and Defense
I Provides software solutions to orchestrate, integrate and certify critical real-time

applications
I These solutions run on embedded systems with a Micro-Kernel developed by

Asterios Technologies
I Idea to use TLA+ to verify multi-core algorithms, which are real-time and critical

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 5 / 42

Context

I Use of TLA+ for multiple purposes and experimentation, such as classical formal
specification but also to write specification from the source code.

I Verification of the Scheduler of the kernel :
I Verify simultaneously various configurations at once
I Avoid manual test, which could not be exhaustive, and long

I The idea is to see what can be achieved and experiment, not to use it directly in
the company verification process

→ Translation directly from the code.
This approach is possible, because the C code is simple and embedded on a
micro-kernel (no libc, no dynamic memory, etc)

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 6 / 42

Motivations

Main motivations :
I Previous work : « C2TLA+ : Automated translation from C code to TLA+ »

(Amira Methni).
I Relatively concise code, with a simple and clear structure.
I First successful small translations by hand

We wanted to revive and rehabilitate this old project, with the main difference to
translate to PlusCal instead of TLA+.

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 7 / 42

Context

Objectives :
I Translation to PlusCal, to use the language paradigms closer to C than TLA+
I Transpilation of the whole Scheduler source code
I Find a known bug in an old version, with TLC Model-Checking
I Describe invariants on the implementation to verify code properties

Automatize the translation of C programs in PlusCal, to facilitate their verification.

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 8 / 42

Part 2

Tool Presentation : C2PlusCal

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 9 / 42

Frama-C
I Frama-C : set of interoperable program analyzers for C programs
I Used to pre-processed C program to CIL representation and retrieve the AST

I OCaml : Functional language, used to make a Frama-C plug-in
I New personalized IR to translate to PlusCal

C code CIL PC IR

.tla

.cfg

TLC

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 10 / 42

Frama-C
I Frama-C : set of interoperable program analyzers for C programs
I Used to pre-processed C program to CIL representation and retrieve the AST
I OCaml : Functional language, used to make a Frama-C plug-in
I New personalized IR to translate to PlusCal

C code CIL PC IR

.tla

.cfg

TLC

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 10 / 42

Frama-C
I Frama-C : set of interoperable program analyzers for C programs
I Used to pre-processed C program to CIL representation and retrieve the AST
I OCaml : Functional language, used to make a Frama-C plug-in
I New personalized IR to translate to PlusCal

C code CIL PC IR

.tla

.cfg

TLC

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 10 / 42

Program Representation

I C Program is a collection of global functions and variables
I We will use sequences to represent memory

I Functions are translated into procedures
I Convenient for arguments and automatic return flow
I Does not support return values

I Different memory locations
I A memory shared between procedures : mem
I A memory used for locals : my stack
I A memory used for return values : ret

We write a naive C interpreter with a stack in PlusCal

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 11 / 42

Program Representation

I C Program is a collection of global functions and variables
I We will use sequences to represent memory
I Functions are translated into procedures

I Convenient for arguments and automatic return flow
I Does not support return values

I Different memory locations
I A memory shared between procedures : mem
I A memory used for locals : my stack
I A memory used for return values : ret

We write a naive C interpreter with a stack in PlusCal

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 11 / 42

Program Representation

I C Program is a collection of global functions and variables
I We will use sequences to represent memory
I Functions are translated into procedures

I Convenient for arguments and automatic return flow
I Does not support return values

I Different memory locations
I A memory shared between procedures : mem
I A memory used for locals : my stack
I A memory used for return values : ret

We write a naive C interpreter with a stack in PlusCal

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 11 / 42

Program Example

Code C
1 int x = 0;
2 int y;
3 int mean(int a, int b)
4 {
5 return a + b / 2;
6 }
7 int main()
8 {
9 y = 2;

10 int m = mean(x, y);
11 return 0;
12 }

mem

UNDEF
0x

y my stack

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 12 / 42

Program Example

Code C
1 int x = 0;
2 int y;
3 int mean(int a, int b)
4 {
5 return a + b / 2;
6 }
7 int main()
8 {
9 y = 2;

10 int m = mean(x, y);
11 return 0;
12 }

mem

2
0x

y

my stack

UNDEFm main

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 13 / 42

Program Example

Code C
1 int x = 0;
2 int y;
3 int mean(int a, int b)
4 {
5 return a + b / 2;
6 }
7 int main()
8 {
9 y = 2;

10 int m = mean(x, y);
11 return 0;
12 }

mem

2
0x

y

my stack

2
0

UNDEF
a mean
b mean

m main
ret

1

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 14 / 42

Program Example

Code C
1 int x = 0;
2 int y;
3 int mean(int a, int b)
4 {
5 return a + b / 2;
6 }
7 int main()
8 {
9 y = 2;

10 int m = mean(x, y);
11 return 0;
12 }

mem

2
0x

y

my stack

1m main
ret

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 15 / 42

Program Representation

I Variables will be represented as pointers
I PlusCal macros are defined to load/store from the memory

A variable is a record with three fields :
I loc : The memory region where it is stored
I fp : Frame pointer in this region
I offs : Offset from frame pointer

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 16 / 42

Program Representation

I Variables will be represented as pointers
I PlusCal macros are defined to load/store from the memory

A variable is a record with three fields :
I loc : The memory region where it is stored
I fp : Frame pointer in this region
I offs : Offset from frame pointer

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 16 / 42

Program Example

Code C
1 int x = 0;
2 int y;
3 int mean(int a, int b)
4 {
5 return a + b / 2;
6 }
7 int main()
8 {
9 y = 2;

10 int m = mean(x, y);
11 return 0;
12 }

mem

2
0x

y

my stack

1m main

y glob ptr = [loc |-> ”mem”, fp |-> 0, offs |-> 1]
m main ptr = [loc |-> ”my stack”, fp |-> 0, offs |->

0]

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 17 / 42

Program Representation

I Variables will be represented as pointers
I PlusCal macros are defined to load/store from the memory

Several macros are defined :
I load : to retrieve a value from a stack, defined as TLA+ operator because it

needs to represent a value
I store : to put a value in a stack
I ret attr : to retrieve the last returned value, used for ”a = f(x)”
I decl : to initialize the pointer at the right value and add it on the stack

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 18 / 42

Program Translation Example

C Code
1 // Function to add 2 to a given number
2 int add_two(int x) {
3 int y = 2;
4 x += y;
5 return x;
6 }

PlusCal
1 procedure add_two(x_add_two)
2 variables
3 x_ptr_add_two = [loc |-> "stack", fp |-> Len(my_stack), offs

|-> 0];
4 y_ptr_add_two = [loc |-> "stack", fp |-> Len(my_stack), offs

|-> 0];
5 begin
6 Line0_add_two:
7 decl(x_add_two,x_ptr_add_two);
8 decl(UNDEF,y_ptr_add_two);
9

10 Line2_add_two:
11 store(2,y_ptr_add_two);
12 store((load(my_stack, x_ptr_add_two)+load(my_stack,

y_ptr_add_two)),x_ptr_add_two);
13 push(ret, load(my_stack, x_ptr_add_two));
14
15 Line5_add_two:
16 pop(my_stack);
17 pop(my_stack);
18 return;
19 end procedure;

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 19 / 42

Program Representation

I C global variables are initialized in a separated process
I A PlusCal global flag is used to prevent the beginning of other processes before

the end of initialization
I For the moment, only one other process, which calls the entry function of C

program

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 20 / 42

Program Representation

1 fair process globalInit \in GLOBAL_INIT
2 variables
3 begin
4 * Initialization of global variables
5 initDone := TRUE;
6
7 end process;
8 fair process proc \in PROCESS
9 variables

10 begin
11 Line0_proc:
12 await initDone = TRUE;
13 Line1_proc:
14 call main();
15 end process;

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 21 / 42

Part 3

Implementation Details

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 22 / 42

CIL Representation

I Pre-processes C program
I Transforms any loop in while(1) with break labels and goto
I Expressions that contain side-effects are separated into statements

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 23 / 42

CIL Representation
This helps us to make direct translation from C to PlusCal :

Code C
1 for (int j = 0; j < 10; j++) {
2 d += i;
3 }

Code PlusCal
1 Line54_main:
2 while(TRUE) do
3 Line54_main0:
4 if((load(my_stack, j_ptr_main)<10)) then
5 Line54_main00:
6 skip;
7 else
8 Line54_main01:
9 goto while_1_break;

10 end if;
11 Line54_main1:
12 store((load(my_stack, d_ptr_main)+load(my_stack,

i_ptr_main)),d_ptr_main);
13 Line54_main2:
14 store((load(my_stack, j_ptr_main)+1),j_ptr_main);
15 end while;
16 while_1_break:
17 skip;

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 24 / 42

Complex Data Structures

We translate directly complex data structures :
I Arrays are represented as sequences
I Structures are represented as records

Code C
1 struct Error {
2 char* name;
3 int id;
4 };
5
6 struct Error global_error = {"test global

error", 1};

Code PlusCal
1 global_error := [name |-> "test global error",

id |-> 1];

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 25 / 42

Complex Data Structures

We translate directly complex data structures :
I Arrays are represented as sequences
I Structures are represented as records

Code C
1 struct Error {
2 char* name;
3 int id;
4 };
5
6 struct Error global_error = {"test global

error", 1};

Code PlusCal
1 global_error := [name |-> "test global error",

id |-> 1];

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 25 / 42

Complex Data Structures

I Static context, thus arrays are already allocated with a fixed size
I Uninitialized arrays are filled with UNDEF

Code PlusCal
1 procedure init_array(size, arr_ptr) begin
2 InitArray:
3 tmpArrayFill := 0;
4 store(<<>>, arr_ptr);
5
6 WhileInitArray:
7 while(tmpArrayFill < size) do
8 store(Append(load(my_stack, arr_ptr), UNDEF), arr_ptr);
9 tmpArrayFill := tmpArrayFill + 1;

10 end while;
11
12 return;
13 end procedure;

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 26 / 42

Complex Data Structures

I Static context, thus arrays are already allocated with a fixed size
I Uninitialized arrays are filled with UNDEF

Code PlusCal
1 procedure init_array(size, arr_ptr) begin
2 InitArray:
3 tmpArrayFill := 0;
4 store(<<>>, arr_ptr);
5
6 WhileInitArray:
7 while(tmpArrayFill < size) do
8 store(Append(load(my_stack, arr_ptr), UNDEF), arr_ptr);
9 tmpArrayFill := tmpArrayFill + 1;

10 end while;
11
12 return;
13 end procedure;

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 26 / 42

Pointer Arithmetic
I Our pointer representation allows pointer arithmetic
I All data types have size 1
I We can add int to pointers
I We can add two pointers

Code C
1 int x = 1;
2 int* x_ptr = &x;
3 x_ptr += 1;

Code PlusCal
1 store(1,x);
2 store(x,x_ptr);
3 store([x_ptr EXCEPT !.offs = @+1], x_ptr);;

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 27 / 42

Pointer Arithmetic
I Our pointer representation allows pointer arithmetic
I All data types have size 1
I We can add int to pointers
I We can add two pointers

Code C
1 int x = 1;
2 int* x_ptr = &x;
3 x_ptr += 1;

Code PlusCal
1 store(1,x);
2 store(x,x_ptr);
3 store([x_ptr EXCEPT !.offs = @+1], x_ptr);;

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 27 / 42

Part 4

How to manage memory

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 28 / 42

Current issues

The representation of complex types as sequences/records :
I Simplifies translations
I Allows all data types to have size 1

The current pointer representation for variables has several limitations :
I It prevents taking the address of struct fields or array elements
I It does not always correctly handle expressions like **x

These issues become particularly problematic when dealing with nested structures or
arrays involving pointers

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 29 / 42

Current issues

The representation of complex types as sequences/records :
I Simplifies translations
I Allows all data types to have size 1

The current pointer representation for variables has several limitations :
I It prevents taking the address of struct fields or array elements
I It does not always correctly handle expressions like **x

These issues become particularly problematic when dealing with nested structures or
arrays involving pointers

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 29 / 42

New approach

An other representation for pointer representation can be used :
I New fields

I ptr : pointer that points where the element is stored
I ref : a reference to the target element, such as a field name or an array index

Code C
1 int** ptr_field = &(error_ptr->id);

Code PlusCal
1 store([ptr |-> load(my_stack,error_ptr), ref |->

"id"], ptr_field);

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 30 / 42

New approach

An other representation for pointer representation can be used :
I New fields

I ptr : pointer that points where the element is stored
I ref : a reference to the target element, such as a field name or an array index

Code C
1 int** ptr_field = &(error_ptr->id);

Code PlusCal
1 store([ptr |-> load(my_stack,error_ptr), ref |->

"id"], ptr_field);

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 30 / 42

Advantages

I Allows to take addresses from new elements
I Simplifies and homogenizes access to arrays elements

Code C
1 array[x] = 3;

Code PlusCal
1 load(my_stack, array_ptr)[x] := 3;

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 31 / 42

Advantages

I Allows to take addresses from new elements
I Simplifies and homogenizes access to arrays elements

Code C
1 array[x] = 3;

Code PlusCal
1 load(my_stack, array_ptr)[x] := 3;

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 31 / 42

Advantages

I Allows to take addresses from new elements
I Simplifies and homogenizes access to arrays elements

Code C
1 array[x] = 3;

Code PlusCal
1 store(3, [ptr |-> array_ptr, ref |-> x]);

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 32 / 42

New approach

Macros are defined to support both pointer representations :
1 RECURSIVE load(_,_)
2 load(stk, base) == IF "ptr" \in DOMAIN base THEN
3 load(stk, base.ptr)[base.ref]
4 ELSE
5 IF base.loc = "stack"
6 THEN stk[Len(stk) - (base.fp + base.offs)]
7 ELSE mem[Len(mem) - base.offs]

I Recursive definition to trace back to the base pointer of an expression

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 33 / 42

New approach

Macros are defined to support both pointer representations :
1 RECURSIVE load(_,_)
2 load(stk, base) == IF "ptr" \in DOMAIN base THEN
3 load(stk, base.ptr)[base.ref]
4 ELSE
5 IF base.loc = "stack"
6 THEN stk[Len(stk) - (base.fp + base.offs)]
7 ELSE mem[Len(mem) - base.offs]

I Recursive definition to trace back to the base pointer of an expression

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 33 / 42

New approach
Store macro is redefined as well :

1 RECURSIVE idx_seq(_,_)
2 idx_seq(stk, base) == IF "ptr" \in DOMAIN base THEN
3 idx_seq(stk, base.ptr) \o <<base.ref>>
4 ELSE
5 IF base.loc = "stack"
6 THEN <<"stack", Len(stk) - (base.fp + base.offs)>>
7 ELSE <<"mem", Len(mem) - base.offs>>
8 RECURSIVE update_stack(_,_,_)
9 update_stack(stk, val, seq) == IF seq = <<>>

10 THEN val
11 ELSE [stk EXCEPT ![seq[1]] = update_stack(stk[seq[1]], val, Tail(seq))]

1 macro store(val, ptr) begin
2 with seq = idx_seq(my_stack, ptr) do
3 if seq[1] = "stack"
4 then my_stack := update_stack(my_stack, val, Tail(seq));
5 else mem := update_stack(mem, val, Tail(seq));
6 end if;
7 end with;
8 end macro;

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 34 / 42

New approach

1 macro store(val, ptr) begin
2 with seq = idx_seq(my_stack, ptr) do
3 if seq[1] = "stack"
4 then my_stack := update_stack(my_stack, val, Tail(seq));
5 else mem := update_stack(mem, val, Tail(seq));
6 end if;
7 end with;
8 end macro;

I Use of idx seq operator to retrieve the sequence of indexes to access the element
I Use of update stack operator to update the corresponding stack

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 35 / 42

Part 5

Results, limitations and perspectives

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 36 / 42

Experimental Results

Experimental results on the scheduler source code :
I The bug was found with a handwritten translation
I ≈ 45min of verification with TLC on 10 cores of an Intel Core Ultra 9 185H
I The proposed invariant is intuitive and could have been written without prior

knowledge of the bug

There are still several limitations :
I Difficulty of reading and properties writing
I We wrote arbitrary abstractions, that lack proximity to the original source code

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 37 / 42

Experimental Results

Experimental results on the scheduler source code :
I The bug was found with a handwritten translation
I ≈ 45min of verification with TLC on 10 cores of an Intel Core Ultra 9 185H
I The proposed invariant is intuitive and could have been written without prior

knowledge of the bug
There are still several limitations :
I Difficulty of reading and properties writing
I We wrote arbitrary abstractions, that lack proximity to the original source code

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 37 / 42

Limitations and perspectives
Current limitations :
I Explosion of the state space, because each line has a PlusCal label
I Labels used by Frama-C may have duplicated names in the presence of multiple

loops or nested if/else statements
I Incomplete management of certain pointer operations
I Syntactical construction not handled :

I Keywords : typeof, sizeof, switch, etc.

Possible Evolutions :
I Handle different threads in different PlusCal processes
I Open-source project <3

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 38 / 42

Limitations and perspectives
Current limitations :
I Explosion of the state space, because each line has a PlusCal label
I Labels used by Frama-C may have duplicated names in the presence of multiple

loops or nested if/else statements
I Incomplete management of certain pointer operations
I Syntactical construction not handled :

I Keywords : typeof, sizeof, switch, etc.

Possible Evolutions :
I Handle different threads in different PlusCal processes
I Open-source project <3

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 38 / 42

To Conclude

Conclusion :
I The initial goal was to play with PlusCal/TLA+ and see what can be done
I Automated translation is still an experimental approach but shows promising

results

Perspectives :
I Exploration of TLAPS
I Use of Apalache instead of TLC to compare performance
I Show that the translated specification refines an abstract specification

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 39 / 42

To Conclude

Conclusion :
I The initial goal was to play with PlusCal/TLA+ and see what can be done
I Automated translation is still an experimental approach but shows promising

results
Perspectives :
I Exploration of TLAPS
I Use of Apalache instead of TLC to compare performance
I Show that the translated specification refines an abstract specification

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 39 / 42

To Conclude

I A big thank you to Asterios Technologies for their warm welcome and support
throughout this internship

I Special thanks to Emmanuel Ohayon and Amira Methni for their guidance,
availability, and advice

I If you’d like to stay in touch or check out some of my projects : LinkedIn
(Guillaume DI FATTA) / GitHub (Atafid)

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 40 / 42

https://www.linkedin.com/in/ton-lien-linkedin
https://www.linkedin.com/in/ton-lien-linkedin
https://github.com/ton-github

Thank you !

Thanks for your attention ! :)
Do you have any question ?

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 41 / 42

Références

Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Available on :
https://lamport.azurewebsites.net/tla/book-21-07-04.pdf Microsoft
Research, 2002.
Amira Methni, Matthieu Lemerre, Belgacem Ben Hedia, Kamel Barkaoui, Serge
Haddad. Specifying and Verifying Concurrent C Programs with TLA+. In: Artho,
C., Ölveczky, P. (eds) Formal Techniques for Safety-Critical Systems. FTSCS
2014. Communications in Computer and Information Science, vol 476. Springer,
Cham. Available on : https://doi.org/10.1007/978-3-319-17581-2_14

Guilaume Di Fatta, Amira Methni, Emmanuel Ohayon. Github of C2PlusCal.
Available on : https://github.com/asterios-technologies/c2pluscal

Translating C to PlusCal for Model Checking of Safety Properties on Source Code May 5, 2025 42 / 42

https://lamport.azurewebsites.net/tla/book-21-07-04.pdf
https://doi.org/10.1007/978-3-319-17581-2_14
https://github.com/asterios-technologies/c2pluscal

