
Automating Trace
Validation with

PGo
Finn Hackett and Ivan Beschastnikh

University of British Columbia

1

Building and Running
Distributed Systems is
Notoriously Error-prone

🤯 Concurrency

🤯 Partial Failure

🤯 Networks👉 TLA+ helps with this

2

3

Implementation vs Abstraction in TLA+

The Helpful

✅ Summarize complex behavior into
a few state variables and actions

✅ Abstraction helps simplify state
space for model checking

The Problematic

❌ Error-prone relationship with
implementation

❌ Easy to assume subtly untrue
things during modeling

❌ Verified models, compiled
systematically into
implementations, can still fail!

👉 Can address with trace validation

Trace Validation in a Nutshell

4

TLA+ Spec
Impl log

Hand-written
spec <-> log
mapping in TLA+

Check w/ TLC: do they match?

Related Work: Specification Compilers, Trace Validation

5

TLA+ Spec Compilers
Erla+ [Erlang’24], PGo [ASPLOS’23]

Trace Validation (manual)
Confidential Consortium Framework [NSDI’25], etcd [Github’24],
Validating Traces of Distributed Programs [SEFM‘24],
eXtreme Modelling [VLDB’20]

Specification-guided Validation
Multi-grained Specifications / Conformance Checking [EuroSys’25],
SandTable [EuroSys’25], Mocket [EuroSys’23]

Beyond Manual Trace Validation

6

All existing trace validation implementations involve significant manual work.
Want trace validation to be more accessible.

🤔 How much of the action semantics in related work can we automate?

🤔 Can we help auto-instrument the implementation too?

💡 We have the PGo compiler, can that help?

Automating Trace Validation with TraceLink

7

PGo and How it Helps

8

https://github.com/distCompiler/pgo

Compiler from Modular PlusCal (MPCal)
to TLA+ and Go.

🎉 Full introspection of source model

🎉 Customizable runtime library for
generated implementations

https://github.com/distCompiler/pgo

TraceLink: Push-button Validation of PGo Systems

9

Demo Time

10

PGo Implementation Control Flow Primer

11

initial state

critical section
evaluation

ReadValue or
WriteValue

ReadValue or
WriteValue

PreCommit

End of critical
section statements

Abort
(at least one
resource not
ok)

Abort
(read/write
failed)

Commit

Success

All resources ok

Happy path
1. Initial state
2. Read/WriteValue
3. PreCommit
4. Commit

PGo Control Flow, Logged

12

Left: Modular PlusCal example, 1 critical section Right: Possible TraceLink implementation log

✅

■ Semantics are in terms of environment read/write

■ Environment includes local vars, globals, network

■ Entry ends in commit / abort: log first, then decide if it happened

■ Aborted entries: check reads, ignore writes

A Brief Look at the Generated TLA+

13

Three Steps Toward Practicality

14

1. The log is going to be huge
Naive approach could generate >500,000 lines of TLA+, intractable.
👉 How to generate compact TLA+?

2. A distributed system has no total order on events
👉 TLA+ does, need to reconcile

3. Can’t validate what you can’t see
👉 Need to capture interesting traces

1. Why the Generated TLA+ is not >500,000 Lines Long

15

log1 ==
 /\ x = 1
 /\ x’ = 2

log2 ==
 /\ x = 2
 /\ x’ = 3
* ...

500,000 lines

log(i) ==
 LET __elems ==
 __data[i]
 IN /\ x = __elems[1]
 /\ x’ = __elems[2]

<1,000 lines

Key insight: same structure, different concrete values.
Put values in .bin file, keep TLA+ tractable.

2. Asynchronous Logging vs TLA+ Total Order

16

👉 Track causality with vector clocks, get partial order

💡 Could look at timestamps (see future work)

2. Multi Critical Section Example

17

Vector clocks map process id to logical clock (int), increase locally and
merge during communication.

Init: x = 1

2 total orderings
X ⮚ Y ⮚ Z
X ⮚ Z ⮚ Y

2. Strategies for Validating Possible Orderings

18

🤔 Pick one order (TLC depth-first mode, possible w/ extra flag)
🤔 Pick all orders (TLC breadth-first mode, default)

Both work, but significant tradeoff between performance and coverage.

New 🎉 helpful medium
Pick one order but check that every diverging order could work.

Uses depth-first mode with special generated action property.

3. Diverse Trace Generation

19

Trace validation can only see what the implementation did. Make sure the
implementation does different things.

Theory: many classes of concurrency bug require a small number of changes to a
concurrency schedule [ASPLOS ‘10]

Our practice: exponentially distributed sleeps between every MPCal operation.

Other options: Antithesis, Trace Aware Random Testing [OOPSLA’19],
Systematic Schedule Exploration [OSDI’14],
Systematic Testing of Multithreaded Programs [PLDI’07]

Selected Issues we Found

20

Systems we Tested

21

All test systems compiled with PGo (current limitation)

■ dqueue: basic producer-consumer model. Good smoke test.
■ locksvc: distributed lock service. Has concurrency + invariants.
■ raftkvs: full-scale Raft-based key-value store, PGo’s main evaluation target.

Most bugs found at scale in raftkvs.

Log sizes up to 100k events, across up to 26 processes.

Some counter-examples >10ks states deep, needed special debug tech.

List of Bugs

🐛 2x network assumption

🐛 1x PGo miscompilation

🐛 2x instrumentation error

🐛 2x timeout model

🐛 1x failure detector model

🐛 1x model abstraction

22

🐛 2x network assumption 👈
🐛 1x PGo miscompilation 👈
🐛 2x instrumentation error 👈
🐛 2x timeout model

🐛 1x failure detector model

🐛 1x model abstraction

Modular PlusCal Environment Assumptions

23

TCP send-receive order between different connections

■ Send 2 messages to same recipient over different connections

■ We assume receive order ⇔ send order, which is incorrect

■ True for same connection, accidentally assumed it for all messages to same
recipient

■ Subtle modeling error, can affect correctness

Credit to Horatiu Cirstea for initially showing this possibility.

PGo Miscompilation

24

[a |-> 1] @@ [a |-> 2] = ???

■ @@ allows combination of functions / records with different domains,
TLC-specific.

■ PGo compiled ??? = [a |-> 2] (keep right)
■ TLC evaluated ??? = [a |-> 1] (keep left, correct per manual)

Accidentally never cross-checked in properties.

Wrong spec + PGo miscompilation → correct implementation 🤯

TraceLink Instrumentation Bugs (2 instances found)

25

Init: x = 1

Wrong instrumentation
here.
Must have seen X, but
clock has A:0
It should be A:1

Wrong path identified

No need to trust TraceLink
instrumentation.

Going Forward

26

Considering Plain TLA+ Models

27

Can we port TraceLink to non-PGo systems and have it be useful?

TraceLink relies on:

■ MPCal concepts like mapping macros

■ Specific implementation log structure

🤔 Imitate TraceLink’s log structure in hand-written implementation

🤔 Extend to industry logging, like spans?

🤔 Hand-adapting TLA+ to MPCal may be viable, or could be automated?

Causality and Real Time

28

When recording critical section start + end, we could recover partial order.

tStart = 1
tEnd = 3 tStart = 2

tEnd = 3

Time t
🕑 tStart = 1

tEnd = 2

tStart = 3
tEnd = 4

Overlapping spans,
sequence not clear.
Solve for linearizable
order.

Non-overlapping spans.
Clear order, assume
precise sequence.

Note: can account for
clock drift by adding
error factor to time
span.

🎉 only overlapping
spans need solving,
order is otherwise
clear.

Contributions

29

Goal: make trace validation easier to apply.

■ Implemented push-button validation for PGo systems
➢ Automatically instrument PGo-generated systems with vector clocks

➢ TraceLink uses MPCal specs and trace data to generate trace
validation setup

■ Found interesting bugs in PGo context, ideas to extend
beyond PGo

■ Will use this summer @

■ Try it yourself!

github.com/distCompiler/pgo

https://github.com/DistCompiler/pgo

A Brief Look at the Generated TLA+

30

p2 <- read(.pc)

read(s)

read(requester)

write(net)

find log entry

causality check

Note: __records is a binary data file
loaded by TLC (for perf reasons)

