Automating Trace
Validation with
PGo

Finn Hackett and Ivan Beschastnikh
University of British Columbia

Building and Running => Concurrency

Distributed Systems is . _ |
Notoriously Error-prone %% Partial Failure

¢~ TLA+ helps with this 32 Networks

Implementation vs Abstraction in TLA+

The Helpful The Problematic

Summarize complex behavior into X Error-prone relationship with
a few state variables and actions implementation

Abstraction helps simplify state X Easy to assume subtly untrue
space for model checking things during modeling

X Verified models, compiled
systematically into
implementations, can still fail!

¢~ Can address with trace validation

Trace Validation in a Nutshell

TLA+ Spec Hand-written
spec <-> log Impl log

mapping in TLA+))
readMsg" « read(.pc)

[type +— "B"] « read(network, 1)

write(msg) <« [type — "B"]

— T T [type — "B"] « read(msg)

write(.pc) « "processB"

commit ()

Check w/ TLC: do they match?

Related Work: Specification Compilers, Trace Validation

TLA+ Spec Compilers
Erla+ [Erlang’24], PGo [ASPLOS’23]

Trace Validation (manual)

Confidential Consortium Framework [NSDI’'25], etcd [Github’24],
Validating Traces of Distributed Programs [SEFM24],

eXtreme Modelling [VLDB20]

Specification-guided Validation
Multi-grained Specifications / Conformance Checking [EuroSys’25],
SandTable [EuroSys’25], Mocket [EuroSys’'23]

Beyond Manual Trace Validation

All existing trace validation implementations involve significant manual work.
Want trace validation to be more accessible.

& How much of the action semantics in related work can we automate?

¥ Can we help auto-instrument the implementation too?

(1=

We have the PGo compiler, can that help?

Automating Trace Validation with TraceLink

PGo and How it Helps

Abstract model

Modular
PlusCal

PlusCal

Correctness

Properties
Model Checker (TLC)

' '
v %

Concrete realization

Compiled | | distsys
Go libraries

Main
(program setup)

\

Go runtime

Distributed deployment

[0 =]
[0 =]
¥ vie == v
" Afo)
O R >0 =]
=]

https://github.com/distCompiler/pgo

Compiler from Modular PlusCal (MPCal)
to TLA+ and Go.

7 Full introspection of source model

& Customizable runtime library for

generated implementations

https://github.com/distCompiler/pgo

TracelLink: Push-button Validation of PGo Systems

Model Implementation
Modular ; Compiled distsys
[PlusCal Fido.compiler Go libraries
I (Go instrumentation)
PGo compiler N
4 3 N
* Main
. | (program setup)
Trace validation |
TLA+ *
Trace TLA+ i B
Correctness Interpretation TraceLink —\ Trace)
Properties

Model Checker (TLC)

! '
v %

Demo Time

10

PGo Implementation Control Flow Primer

Happy path
1. Initial state

2. Read/WriteValue
3. PreCommit
4 Commit

Success

initial state

WriteValue

|

critical section
evaluation

End of critical
section statements

(

[Commit Jd
All resources ok

L

PreCommit

ReadValue or

Abort
(read/write
failed)

ReadValue or
WriteValue

Abort

(at least one
resource not
ok)

11

PGo Control Flow, Logged

1

readMsg:

6

7

msg :=“network[self]; * receive msg

if (msgl type = "A") {
goto processA;

} else {

goto processB;

}

Left: Modular PlusCal example, 1 critical section

m Semantics are in terms of environment read/write

m Environment includes local vars, globals, network

1 "readMsg" <« read(.pc)

> [type — "B"] « read(network,

1)

5 write(msg) « Ltype — "B"]

4 |type — "B"] read (msg)

5 write(.pc) « "processB"

6« commit()

Right: Possible TraceLink implementation log

m Entry ends in commit / abort: log first, then decide if it happened

m Aborted entries: check reads, ignore writes

12

A Brief Look at the Generated TLA+

/\ pcl[self] ="

/\ record.pc = "p2"

/\ Len(elems) = 4

/\ \lnot record.isAbort

N elems[1l].name = "AProducer.s"

/\ AProducer s read(state0O, self, elems[1l].value, LAMBDA statel:
/\ elems[2].name = "AProducer.requester"

VA statel.requester[self] = elems[2].value
/\ elems[3].name = "AProducer.net"
/\ AProducer net write(statel, self, elems[3].indices|[1], elems[3].value,

/\ elems[4].name = ".pc"
/\ LET state3 __state2 EXCEPT !.pc[self] = "p"
IN /\ commit state3, record)))

state2:

13

Three Steps Toward Practicality

1. The log is going to be huge
Naive approach could generate >500,000 lines of TLA+, intractable.
¢~ How to generate compact TLA+?

2. Adistributed system has no total order on events
¢~ TLA+ does, need to reconcile

3. Can’t validate what you can’t see
¢~ Need to capture interesting traces

14

1. Why the Generated TLA+ is not >500,000 Lines Long

500,000 lines

<1,000 lines

log(i) ==
LET __elems ==
__data[i]

IN /\ x = __elems[1]
/\ x> = __elems[2]

Key insight: same structure, different concrete values.
Put values in .bin file, keep TLA+ tractable.

15

2. Asynchronous Logging vs TLA+ Total Order
Need

Rm _
w/ async messaging . one execution
| &

log B .. but we have
multiple out of sync
logs...

)

&~ Track causality with vector clocks, get partial order

¢ Could look at timestamps (see future work)

16

2. Multi Critical Section Example

Init: x = 1
Node A Node B

1«read(x) ~~-__
write(s) « 2 @ e ,
il (A1,B:00 |- P ' 2 total orderings |
@/ 2+-read(y) 'X Y 11Z :
*~_VClock: [A:1,B:A] 'XZ0OY |
e o ____ I

2+read(x) @
VClock: [A:2,B:0] -~~~

Vector clocks map process id to logical clock (int), increase locally and

merge during communication.
17

2. Strategies for Validating Possible Orderings

%) Pick one order (TLC depth-first mode, possible w/ extra flag)
¥ Pick all orders (TLC breadth-first mode, default)

Both work, but significant tradeoff between performance and coverage.

New €: helpful medium
Pick one order but check that every diverging order could work.

Uses depth-first mode with special generated action property.

18

3. Diverse Trace Generation

Trace validation can only see what the implementation did. Make sure the
implementation does different things.

Theory: many classes of concurrency bug require a small number of changes to a
concurrency schedule [ASPLOS ‘10]

Our practice: exponentially distributed sleeps between every MPCal operation.

Other options: Antithesis, Trace Aware Random Testing [OOPSLA'19],
Systematic Schedule Exploration [OSDI'14],
Systematic Testing of Multithreaded Programs [PLDI'07]

19

Selected Issues we Found

20

Systems we Tested

All test systems compiled with PGo (current limitation)

m dqueue: basic producer-consumer model. Good smoke test.
m locksvc: distributed lock service. Has concurrency + invariants.
m raftkvs: full-scale Raft-based key-value store, PGo’s main evaluation target.

Most bugs found at scale in raftkvs.
Log sizes up to 100k events, across up to 26 processes.

Some counter-examples >10ks states deep, needed special debug tech.

21

List of Bugs

2l

=
‘3?{’-5!1

D

=
‘3’!’{#

D

=
1
‘@!’fh

D
=

1
‘@!’{Il

0\)

=
S,

peR

42

2x network assumption <&
1x PGo miscompilation <©
2x instrumentation error <O
2x timeout model

1x failure detector model

1x model abstraction

22

Modular PlusCal Environment Assumptions

TCP send-receive order between different connections

m Send 2 messages to same recipient over different connections

m We assume receive order < send order, which is incorrect

m [rue for same connection, accidentally assumed it for all messages to same

recipient
m Subtle modeling error, can affect correctness

Credit to Horatiu Cirstea for initially showing this possibility.

23

PGo Miscompilation

[a |-> 1] @@ [a |-> 2] = ?22?

m (@@ allows combination of functions / records with different domains,

TLC-specific.
PGo compiled 22?2 = [a |-> 2] (keep right)
m TLC evaluated 22? = [a |-> 1] (keep left, correct per manual)

Accidentally never cross-checked in properties.

Wrong spec + PGo miscompilation — correct implementation %3

24

TracelLink Instrumentation Bugs (2 instances found)

1+read(x)
write(x) « 2

2+read(x)

Init: x
Node A

~
~
~
~,
A
-
-

VClock: [A:1,B:0] .-

~
~
~
~
~
-

VClock: [A:2,B:0] LT

=1
Node B
@ 2+read(x)
~~._VClock: [A:0,B:1]
}
Wrong instrumentation
here.
Must have seen X, but
clock has A:0©
It should be A:1

No need to trust TracelLink

instrumentation.

Wrong path identified

Init state Init state

\VClock: [A:0,B:0] x=1

* \VClock: [A:0,B:0]

° e Invalid
transition:

2+read(x)

impossible

25

Going Forward

Considering Plain TLA+ Models

Can we port TraceLink to non-PGo systems and have it be useful?
TracelLink relies on:

m MPCal concepts like mapping macros

m Specific implementation log structure

&) Imitate TraceLink’s log structure in hand-written implementation
& Extend to industry logging, like spans?
& Hand-adapting TLA+ to MPCal may be viable, or could be automated?

27

Causality and Real Time

When recording critical section start + end, we could recover partial order.

Time t |

: . Note: can account for
. ; tStart = 1 clock drift by adding
tStart = 1 i tEnd = 2 \ error factor to time
tEnd = 3 tStart=2 | | span.

tEnd =3

. & only overlapping
| spans need solving,

tStart = 3
tEnd =4

Overlapping spans, Non-overlapping spans.

. order is otherwise
sequence not clear. . Clear order, assume , clear.
Solve for linearizable | precise sequence.
order.

28

Contributions

Goal: make trace validation easier to apply.

m Implemented push-button validation for PGo systems
> Automatically instrument PGo-generated systems with vector clocks

> TracelLink uses MPCal specs and trace data to generate trace
validation setup

m Found interesting bugs in PGo context, ideas to extend
beyond PGo

= Will use this summer @) MongoDB.

m Tryit yourself!

github.com/distCompiler/pgo

29

https://github.com/DistCompiler/pgo

A Brief Look at the Generated TLA+
AProducer p2 0(self, commit(,)
(_ clock at(clock, self) + 1) \in DOMAIN records[self] /\

LET state@ == state get
record == records[self][clock at(clock, self) + 1] find log entry
elems == record.elems

pclself] = "p2" Note: __records is a binary data file
Gecorc-pe =Jhz loaded by TLC (for perf reasons)

Len(elems) = 4
\lnot record.isAbort

elems[1l].name = "AProducer.s"
AProducer s read(state0®, self, elems[1].value, LAMBDA statel:
VAN elems[2].name = "AProducer.requester"
VA statel.requester(self] = elems[2].value
/\ elems[3].name = "AProducer.net"
/\ AProducer net write(statel, self, elems[3].indices[1], elems[3].value, LAMBDA state2:

/\ elems[4].name = ".pc"
/\ LET state3 == state2 EXCEPT !.pc[self] = "p" write(net)

/\ __ commit state3, record)))

30

