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Building and Running 
Distributed Systems is 
Notoriously Error-prone

🤯 Concurrency

🤯 Partial Failure

🤯 Networks👉 TLA+ helps with this

2



3

Implementation vs Abstraction in TLA+

The Helpful

✅ Summarize complex behavior into 
a few state variables and actions

✅ Abstraction helps simplify state 
space for model checking

The Problematic

❌ Error-prone relationship with 
implementation

❌ Easy to assume subtly untrue 
things during modeling

❌ Verified models, compiled 
systematically into 
implementations, can still fail!

👉 Can address with trace validation



Trace Validation in a Nutshell
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TLA+ Spec
Impl log

Hand-written
spec <-> log 
mapping in TLA+

Check w/ TLC: do they match?



Related Work: Specification Compilers, Trace Validation
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TLA+ Spec Compilers
Erla+ [Erlang’24], PGo [ASPLOS’23]

Trace Validation (manual)
Confidential Consortium Framework [NSDI’25], etcd [Github’24],
Validating Traces of Distributed Programs [SEFM‘24],
eXtreme Modelling [VLDB’20]

Specification-guided Validation
Multi-grained Specifications / Conformance Checking [EuroSys’25],
SandTable [EuroSys’25], Mocket [EuroSys’23]



Beyond Manual Trace Validation
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All existing trace validation implementations involve significant manual work.
Want trace validation to be more accessible.

🤔 How much of the action semantics in related work can we automate?

🤔 Can we help auto-instrument the implementation too?

💡 We have the PGo compiler, can that help?



Automating Trace Validation with TraceLink
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PGo and How it Helps
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https://github.com/distCompiler/pgo

Compiler from Modular PlusCal (MPCal) 
to TLA+ and Go.

🎉 Full introspection of source model

🎉 Customizable runtime library for 
generated implementations

https://github.com/distCompiler/pgo


TraceLink: Push-button Validation of PGo Systems
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Demo Time
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PGo Implementation Control Flow Primer
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initial state

critical section 
evaluation

ReadValue or 
WriteValue

ReadValue or 
WriteValue

PreCommit

End of critical 
section statements

Abort
(at least one 
resource not 
ok)

Abort
(read/write 
failed)

Commit

Success

All resources ok

Happy path
1. Initial state
2. Read/WriteValue
3. PreCommit
4. Commit



PGo Control Flow, Logged
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Left: Modular PlusCal example, 1 critical section Right: Possible TraceLink implementation log

✅

■ Semantics are in terms of environment read/write

■ Environment includes local vars, globals, network

■ Entry ends in commit / abort: log first, then decide if it happened

■ Aborted entries: check reads, ignore writes



A Brief Look at the Generated TLA+
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Three Steps Toward Practicality 
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1. The log is going to be huge
Naive approach could generate >500,000 lines of TLA+, intractable.
👉 How to generate compact TLA+?

2. A distributed system has no total order on events
👉 TLA+ does, need to reconcile

3. Can’t validate what you can’t see
👉 Need to capture interesting traces



1. Why the Generated TLA+ is not >500,000 Lines Long
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log1 ==
  /\ x = 1
  /\ x’ = 2

log2 ==
  /\ x = 2
  /\ x’ = 3
\* ...

500,000 lines

log(i) ==
  LET __elems ==
        __data[i]
  IN  /\ x = __elems[1]
      /\ x’ = __elems[2]

<1,000 lines

Key insight: same structure, different concrete values.
Put values in .bin file, keep TLA+ tractable.



2. Asynchronous Logging vs TLA+ Total Order
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👉 Track causality with vector clocks, get partial order

💡 Could look at timestamps (see future work)



2. Multi Critical Section Example
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Vector clocks map process id to logical clock (int), increase locally and 
merge during communication.

Init: x = 1

2 total orderings
X ⮚ Y ⮚ Z
X ⮚ Z ⮚ Y



2. Strategies for Validating Possible Orderings
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🤔 Pick one order (TLC depth-first mode, possible w/ extra flag)
🤔 Pick all orders (TLC breadth-first mode, default)

Both work, but significant tradeoff between performance and coverage.

New 🎉 helpful medium
Pick one order but check that every diverging order could work.

Uses depth-first mode with special generated action property.



3. Diverse Trace Generation
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Trace validation can only see what the implementation did. Make sure the 
implementation does different things.

Theory: many classes of concurrency bug require a small number of changes to a 
concurrency schedule [ASPLOS ‘10]

Our practice: exponentially distributed sleeps between every MPCal operation.

Other options: Antithesis, Trace Aware Random Testing [OOPSLA’19],
Systematic Schedule Exploration [OSDI’14],
Systematic Testing of Multithreaded Programs [PLDI’07]



Selected Issues we Found
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Systems we Tested
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All test systems compiled with PGo (current limitation)

■ dqueue: basic producer-consumer model. Good smoke test.
■ locksvc: distributed lock service. Has concurrency + invariants.
■ raftkvs: full-scale Raft-based key-value store, PGo’s main evaluation target.

Most bugs found at scale in raftkvs.

Log sizes up to 100k events, across up to 26 processes.

Some counter-examples >10ks states deep, needed special debug tech.



List of Bugs

🐛 2x network assumption

🐛 1x PGo miscompilation

🐛 2x instrumentation error

🐛 2x timeout model

🐛 1x failure detector model

🐛 1x model abstraction
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🐛 2x network assumption 👈
🐛 1x PGo miscompilation 👈
🐛 2x instrumentation error 👈
🐛 2x timeout model

🐛 1x failure detector model

🐛 1x model abstraction



Modular PlusCal Environment Assumptions
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TCP send-receive order between different connections

■ Send 2 messages to same recipient over different connections

■ We assume receive order ⇔ send order, which is incorrect

■ True for same connection, accidentally assumed it for all messages to same 
recipient

■ Subtle modeling error, can affect correctness

Credit to Horatiu Cirstea for initially showing this possibility.



PGo Miscompilation
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[a |-> 1] @@ [a |-> 2] = ???

■ @@ allows combination of functions / records with different domains, 
TLC-specific.

■ PGo compiled ??? = [a |-> 2] (keep right)
■ TLC evaluated ??? = [a |-> 1] (keep left, correct per manual)

Accidentally never cross-checked in properties.

Wrong spec + PGo miscompilation → correct implementation 🤯



TraceLink Instrumentation Bugs (2 instances found)
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Init: x = 1

Wrong instrumentation 
here.
Must have seen X, but 
clock has A:0
It should be A:1

Wrong path identified

No need to trust TraceLink 
instrumentation.



Going Forward
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Considering Plain TLA+ Models
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Can we port TraceLink to non-PGo systems and have it be useful?

TraceLink relies on:

■ MPCal concepts like mapping macros

■ Specific implementation log structure

🤔 Imitate TraceLink’s log structure in hand-written implementation

🤔 Extend to industry logging, like spans?

🤔 Hand-adapting TLA+ to MPCal may be viable, or could be automated?



Causality and Real Time
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When recording critical section start + end, we could recover partial order.

tStart = 1
tEnd = 3 tStart = 2

tEnd = 3

Time t 
🕑 tStart = 1

tEnd = 2

tStart = 3
tEnd = 4

Overlapping spans, 
sequence not clear.
Solve for linearizable 
order.

Non-overlapping spans.
Clear order, assume 
precise sequence.

Note: can account for 
clock drift by adding 
error factor to time 
span.

🎉 only overlapping 
spans need solving, 
order is otherwise 
clear.



Contributions
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Goal: make trace validation easier to apply.

■ Implemented push-button validation for PGo systems
➢ Automatically instrument PGo-generated systems with vector clocks

➢ TraceLink uses MPCal specs and trace data to generate trace 
validation setup

■ Found interesting bugs in PGo context, ideas to extend 
beyond PGo

■ Will use this summer @  

■ Try it yourself!

github.com/distCompiler/pgo

https://github.com/DistCompiler/pgo


A Brief Look at the Generated TLA+
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p2 <- read(.pc)

read(s)

read(requester)

write(net)

find log entry

causality check

Note: __records is a binary data file 
loaded by TLC (for perf reasons)


