TLA™ for All: Model Checking in a Python Notebook

Proposal for a short presentation at the 2025 TLAT Community Event

Submission Categories: Innovative use of existing tools; use of TLA™ in education

K. Laufer and G. K. Thiruvathukal, Loyola U. Chicago, {laufer,gkt}@cs.luc.edu

Motivation TLAT is widely recognized for its ef-
fectiveness in specifying and verifying concurrent
and distributed systems. However, for educators
and practitioners, barriers to adoption include in-
stallation complexity and tooling setup. In the pro-
posed presentation, we demonstrate a lightweight,
easily shareable, and fully reproducible approach
to running TLA™T in a Python notebook hosted on
Google Colab without requiring new tools or cus-
tom Jupyter kernel developmentﬂ By creating an
environment where attendees can experiment with
TLA™ models instantly during the presentation, we
lower these barriers and demonstrate the suitability
for education and outreach.

Background and Related Work A presenta-
tion at the 2021 TLA+ conference called for greater
support for the interactive use of TLA™ [1]. While
focusing on building advanced tools for better trac-
ing, visualization, and other features for under-
standing complex models, this presentation recog-
nizes the importance of interactivity and user expe-
rience, including a REPL (read-eval-print loop) for
evaluating portions of a model.

Furthermore, there have been specific efforts to
integrate TLAT with interactive computing envi-
ronments, particularly Jupyter notebooks, though
recent development has been limited or possibly
abandoned. [2], [3]. More recently, tla-web/TLAJS
has resulted in an interactive TLA™ interpreter run-
ning in a web browser [4]; the author has acknowl-
edged the challenges of achieving feature parity with
the TLC model checker.

Pedagogical Goals In our upper-division
undergraduate/first-year graduate courseﬂ on For-

1Google Colab uses the same foundation as Jupyter note-
books and JupyterHub. Our demo will show that Colab is
not required for those wanting to work on their own resources.

2In addition, we hope to introduce formal methods to first
and second year students. Notebooks already have strong
traction in introductory Python-based courses.

mal Methods in Software Engineering, we dedicate
approximately 40% of the course to TLAT. We are
offering this course for the third time this spring
2025 semester and have shared our preliminary
experiences with the community [5], [6].

By using Python notebooks, we can lower the bar-
rier to engaging and experimenting with TLA™T; spe-
cific goals include:

e Fasy to share and reproduce: Students can run
the notebook in a web browser without in-
stalling anything. This removes a common fric-
tion point and makes the examples accessible to
a wide audience.

e FEncouraging interactive experimentation: By
hosting models on GitHub, students can mod-
ify and test different configurations quickly.

e Supports teaching/training formal methods to a
wider audience: Easy sharing and zero instal-
lation makes it easier to teach formal methods
examples to a wider audience.

e Bridging formal methods with software engi-
neering: By integrating model checking in a
widely used environment (Python notebooks),
students see TLAY in a familiar setting.

e Low cost and easy to maintain: We can invoke
the required TLA' command-line tools within
a notebook, with minimal Python scripting for
additional enhancements.

Method Our setup consists of these steps within
a standard, publicly available Python notebook [7].
1. Dynamically install the TLAT Toolbox
command-line tools and its dependencies, such
as a Java SDK.
2. Download the TLA™ model to be analyzed from
a GitHub repository.
3. Perform model checking with tools such as TLC
or alternative checkers like Apalache.
4. Display results within the notebook, leveraging
standard command-line utilities (see Figure|1]).
5. Evaluate constant expressions in the TLA™T



REPL (see Figure [2)).
Unlike traditional cloud-based IDEs (e.g., VS Code
with the TLA™ extension), our approach offers im-
mediate execution with no additional setup, making
it ideal for presentations, group activities, and self-
paced learning.

In addition, the notebook approach makes it very
easy to gain a detailed understanding of the required
steps, supports collaborative work, and allows for
additional customization.

< © !./tlc.sh Microwave.tla Microwave2.cfg

3> TLC2 Version 2.20 of Day Month 2077 (re
Running breadth-first search Model-Checl
Starting SANY...
SANY finished.
Starting... (2025-82-87 28:39:23)
Computing initial states...
Finished computing initial states: 2 di.
Invariant DoorSafety is violated.
The behavior up to this point is:
1: <Initial predicate>
/\ door = "open"
/\ timeRemaining = @
/\ radiation = "off"

2: <IncTime line 44, col 3 to line 47, {
/\ door = "open"
/\ timeRemain

radiation = "off"

: <Start line 51, col 3 to line 55, co
door = "open"
timeRemaining = 1
radiation = "on"

Figure 1: TLC output showing a violation of a safety
invariant. A simple filter makes the output concise
and readable without requiring tool-specific plugins.

[72] ss%tla_repl
2+3
4+5
y\in {1, 2, 3} : yxy =4
({1, 2, 3, 4, 5})

18

5
9

2
{{}, {1}, {2}, {3}, {4}, {5}, {1, 2

Figure 2: By defining a custom directive (about 30
lines of Python), we can evaluate TLA" constant
expressions in a Python notebook cell, again with
no tool-specific plugins required.

Evaluation One might argue that notebooks are
not ideal for large scale software development. How-
ever, when it comes to model checking, notebooks
can be a useful first step toward developing a com-
plex application that will later continue outside of
a notebook environment. We believe that simpler,
early-stage models can be ideal candidates for being
developed within a notebook. We also show how to

maintain source artifacts in an external repository,
thereby supporting workflows based on full, non-
notebook TLA™ environments, such as the TLAT
Toolbox or the VSCode extension.

In addition, we are planning to deploy this
notebook-based approach in our formal methods
course this semester and evaluate it with respect
to these attributes: a) Student engagement: Stu-
dents are more willing to explore TLAT by running
models instantly. b) Reproducibility: Every student,
regardless of local development setup, sees identical
results. ¢) Ease of maintenance: We avoid the need
for a custom Jupyter kernel, reducing long-term
maintenance costs.

Future Work Several enhancements are planned
for further improving this workflow: a) Support for
pretty-printing of the TLAY code using tlatex; this
works but currently requires a full LaTeX environ-
ment. b) State graph visualization using Graphviz
to make TLAT execution results more interpretable.
¢) Broader tool integration, such as Alloy, to extend
the notebook-based approach to other formal veri-
fication environments.

Conclusion By running TLA™ in a Python note-
book, we offer a practical, zero-install, reproducible,
and maintainable solution for teaching and experi-
mentation. This approach reduces barriers to entry,
removes friction in learning TLA™, and serves as a
practical and maintainable tool for education and
research. Our workshop presentation could be de-
livered from the motebook itself, reinforcing its effec-
tiveness as a lightweight alternative to traditional
IDEs and custom Jupyter kernels.

We look forward to discussing our approach with
the audience and obtaining valuable feedback.

References

[1] A.J.J.Davisand S. Lanka, Current and future tools for
interactive TLA+, Presented at the TLA+ Conf. 2021,
Available at https://conf.tlapl.us/2021/JesseSamy-
talk.pdf, 2021.

[2] PlusPy, Available at https://github. com/tlaplus/
PlusPy.

[38] Tlaplus_jupyter, Available at https://github . com/
kelvich/tlaplus_jupypter.

[4] W. Schultz, Towards better interactive formal specifi-
cations, Presented at the TLA+4 Conf. 2024, Available
at https : // conf . tlapl . us / 2024 / WillSchultz -
TowardsBetterInteractiveFormalSpecifications
pdf}, 2024.


https://conf.tlapl.us/2021/JesseSamy-talk.pdf
https://conf.tlapl.us/2021/JesseSamy-talk.pdf
https://github.com/tlaplus/PlusPy
https://github.com/tlaplus/PlusPy
https://github.com/kelvich/tlaplus_jupypter
https://github.com/kelvich/tlaplus_jupypter
https://conf.tlapl.us/2024/WillSchultz-TowardsBetterInteractiveFormalSpecifications.pdf
https://conf.tlapl.us/2024/WillSchultz-TowardsBetterInteractiveFormalSpecifications.pdf
https://conf.tlapl.us/2024/WillSchultz-TowardsBetterInteractiveFormalSpecifications.pdf

(5]

[6]

(7]

K. Laufer, G. Mertin, and G. K. Thiruvathukal, Wip:
An engaging undergraduate intro to model checking in
software engineering using TLA+, Available at https:
//arxiv.org/abs/2407.21152, 2024.

K. Laufer, G. Mertin, and G. K. Thiruvathukal, “Engag-
ing more students in formal methods education: A prac-
tical approach using temporal logic of actions,” Com-
puter, vol. 57, no. 12, pp. 118-123, 2024, Available at
https://www.computer.org/csdl/magazine/co/2024/
12/10754605.

K. Laufer, G. Mertin, and G. K. Thiruvathukal, TLA+
Model Checking in Colab: Microwave Oven (WIP),
Available at https : / / figshare . com / articles /
software/TLA_Model _Checking_in_Colab_Microwave_
Oven_WIP_/27122916, Sep. 2024.


https://arxiv.org/abs/2407.21152
https://arxiv.org/abs/2407.21152
https://www.computer.org/csdl/magazine/co/2024/12/10754605
https://www.computer.org/csdl/magazine/co/2024/12/10754605
https://figshare.com/articles/software/TLA_Model_Checking_in_Colab_Microwave_Oven_WIP_/27122916
https://figshare.com/articles/software/TLA_Model_Checking_in_Colab_Microwave_Oven_WIP_/27122916
https://figshare.com/articles/software/TLA_Model_Checking_in_Colab_Microwave_Oven_WIP_/27122916

