
ModelFuzz: Model guided fuzzing of distributed

systems.

Srinidhi Nagendra∗

Max Planck Institute for Software Systems

February 12, 2025

Large-scale distributed systems form the core infrastructure for many soft-
ware applications. It is well-known that designing such systems is difficult due
to interactions between concurrency and faults, and subtle bugs often show up
in production. Thus, designing testing techniques that cover diverse and inter-
esting program behaviors to find subtle bugs has been an important research
challenge.

Coverage-guided fuzzing, which guides test generation toward more cover-
age, has been effective in exploring diverse executions, mainly in the sequential
setting, using structural coverage criteria as a feedback mechanism [1, 2]. How-
ever, adopting coverage-guided fuzzing for testing distributed system implemen-
tations is nontrivial since there is no common notion of coverage for distributed
system executions. Unfortunately, structural code coverage criteria such as line
coverage can ignore the orderings of message interactions in a system, thus
missing interesting schedules. On the other hand, more detailed criteria, such
as traces of messages, may provide too many coverage goals and thus consider
each random trace a new behavior, giving up the advantages of coverage-guided
exploration.

In this talk, I will present a new approach to use the state coverage in an
abstract formal model of the system as a coverage criterion and present model-
guided fuzzing of distributed systems. Abstract formal models are often devel-
oped in the design phase of distributed systems to model and formally analyze
the underlying protocols [3, 4, 5, 6, 7, 8]. We show that these artifacts are also
beneficial in the continuous testing infrastructure of the implementations them-
selves. Our experiments show that a formal model can serve as a good “guide”
for a random testing engine—this is because the formal model often captures
the important scenarios of the protocol, and coverage of states in the model
correlates well with coverage of interesting behaviors in the implementation.

At a high level, the abstract models recognize semantically interesting behav-
ior; the use of abstract states is a way to provide coverage criteria that capture

∗Joint work with Ege Berkay Gulcan, Burcu Kulahcioglu Ozkan, Rupak Majumdar

1



program semantics. Of course, the use of abstract models is not a panacea:
the abstraction may not cover certain implementation details where bugs may
lurk. However, lack of structural coverage after model-guided exploration can
indicate where additional testing effort should focus, as well as point out aspects
of implementation behavior that are not covered by the model.

We have implemented our algorithm for testing distributed systems imple-
mentations using TLA+ models [3] of protocols. In a nutshell, our testing
algorithm proceeds as follows. We start by exploring random schedules of mes-
sages, but feed the same sequence of messages to the TLA+ model. We modify
the TLC model checker [9] to obtain the set of reachable model states corre-
sponding to the explored schedule. We mark a schedule as “interesting” if it
covers a new state of the abstract model. We perform, as in coverage-guided
fuzzing, a mutation of an interesting schedule by swapping the receipt order of
two randomly chosen messages or changing the processes to crash. Applying a
mutation to an event schedule gives a new schedule to explore that is similar to
the original schedule but likely to exercise new system behavior.

We applied our algorithm to test the implementations Etcd-raft and Redis-
Raft. Our evaluation shows that model-guided fuzzing leads to higher coverage
and can detect bugs faster than pure (unguided) random testing, structural
code-coverage guided fuzzing, and trace-based coverage-guided fuzzing. Besides
reproducing known bugs, we discovered 13 previously unknown bugs in the im-
plementations of Etcd-raft and RedisRaft. Moreover, four of the new bugs could
only be detected by model-guided fuzzing.

2



References

[1] Marc Heuse, Heiko Eißfeldt, Andrea Fioraldi, and Dominik Maier. AFL++,
January 2022.

[2] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Chris-
tian Holler. The fuzzing book, 2019.

[3] Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley, 2002.

[4] Ankush Desai, Vivek Gupta, Ethan K. Jackson, Shaz Qadeer, Sriram K.
Rajamani, and Damien Zufferey. P: safe asynchronous event-driven pro-
gramming. In Hans-Juergen Boehm and Cormac Flanagan, editors, ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, pages 321–332. ACM,
2013.

[5] Pantazis Deligiannis, Alastair F. Donaldson, Jeroen Ketema, Akash Lal, and
Paul Thomson. Asynchronous programming, analysis and testing with state
machines. In David Grove and Stephen M. Blackburn, editors, Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation, Portland, OR, USA, June 15-17, 2015, pages 154–164.
ACM, 2015.

[6] Pantazis Deligiannis, Narayanan Ganapathy, Akash Lal, and Shaz Qadeer.
Building reliable cloud services using coyote actors. In Carlo Curino, Georgia
Koutrika, and Ravi Netravali, editors, SoCC ’21: ACM Symposium on Cloud
Computing, Seattle, WA, USA, November 1 - 4, 2021, pages 108–121. ACM,
2021.

[7] James Bornholt, Rajeev Joshi, Vytautas Astrauskas, Brendan Cully, Bern-
hard Kragl, Seth Markle, Kyle Sauri, Drew Schleit, Grant Slatton, Serdar
Tasiran, Jacob Van Geffen, and Andrew Warfield. Using lightweight formal
methods to validate a key-value storage node in amazon S3. In Robbert
van Renesse and Nickolai Zeldovich, editors, SOSP ’21: ACM SIGOPS 28th
Symposium on Operating Systems Principles, Virtual Event / Koblenz, Ger-
many, October 26-29, 2021, pages 836–850. ACM, 2021.

[8] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker,
and Michael Deardeuff. How amazon web services uses formal methods.
Commun. ACM, 58(4):66–73, 2015.

[9] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking tla+

specifications. In Laurence Pierre and Thomas Kropf, editors, Correct
Hardware Design and Verification Methods, 10th IFIP WG 10.5 Advanced
Research Working Conference, CHARME ’99, Bad Herrenalb, Germany,
September 27-29, 1999, Proceedings, volume 1703 of Lecture Notes in Com-
puter Science, pages 54–66. Springer, 1999.

3


