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Large-scale distributed systems form the core infrastructure for many soft-
ware applications. It is well-known that designing such systems is difficult due
to interactions between concurrency and faults, and subtle bugs often show up
in production. Thus, designing testing techniques that cover diverse and inter-
esting program behaviors to find subtle bugs has been an important research
challenge.

Coverage-guided fuzzing, which guides test generation toward more cover-
age, has been effective in exploring diverse executions, mainly in the sequential
setting, using structural coverage criteria as a feedback mechanism [1, 2]. How-
ever, adopting coverage-guided fuzzing for testing distributed system implemen-
tations is nontrivial since there is no common notion of coverage for distributed
system executions. Unfortunately, structural code coverage criteria such as line
coverage can ignore the orderings of message interactions in a system, thus
missing interesting schedules. On the other hand, more detailed criteria, such
as traces of messages, may provide too many coverage goals and thus consider
each random trace a new behavior, giving up the advantages of coverage-guided
exploration.

In this talk, I will present a new approach to use the state coverage in an
abstract formal model of the system as a coverage criterion and present model-
guided fuzzing of distributed systems. Abstract formal models are often devel-
oped in the design phase of distributed systems to model and formally analyze
the underlying protocols [3, 4, 5, 6, 7, 8]. We show that these artifacts are also
beneficial in the continuous testing infrastructure of the implementations them-
selves. Our experiments show that a formal model can serve as a good “guide”
for a random testing engine—this is because the formal model often captures
the important scenarios of the protocol, and coverage of states in the model
correlates well with coverage of interesting behaviors in the implementation.

At a high level, the abstract models recognize semantically interesting behav-
ior; the use of abstract states is a way to provide coverage criteria that capture
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program semantics. Of course, the use of abstract models is not a panacea:
the abstraction may not cover certain implementation details where bugs may
lurk. However, lack of structural coverage after model-guided exploration can
indicate where additional testing effort should focus, as well as point out aspects
of implementation behavior that are not covered by the model.

We have implemented our algorithm for testing distributed systems imple-
mentations using TLA+ models [3] of protocols. In a nutshell, our testing
algorithm proceeds as follows. We start by exploring random schedules of mes-
sages, but feed the same sequence of messages to the TLA+ model. We modify
the TLC model checker [9] to obtain the set of reachable model states corre-
sponding to the explored schedule. We mark a schedule as “interesting” if it
covers a new state of the abstract model. We perform, as in coverage-guided
fuzzing, a mutation of an interesting schedule by swapping the receipt order of
two randomly chosen messages or changing the processes to crash. Applying a
mutation to an event schedule gives a new schedule to explore that is similar to
the original schedule but likely to exercise new system behavior.

We applied our algorithm to test the implementations Etcd-raft and Redis-
Raft. Our evaluation shows that model-guided fuzzing leads to higher coverage
and can detect bugs faster than pure (unguided) random testing, structural
code-coverage guided fuzzing, and trace-based coverage-guided fuzzing. Besides
reproducing known bugs, we discovered 13 previously unknown bugs in the im-
plementations of Etcd-raft and RedisRaft. Moreover, four of the new bugs could
only be detected by model-guided fuzzing.
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